Critical design issues of retrofit light-emitting diode (LED) light bulb

Li, S; Chen, H; Tan, SC; Hui, RSY; Waffenschmidt, E

2014

http://hdl.handle.net/10722/204069

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.; ©2014 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
Critical Design Issues of Retrofit Light-Emitting Diode (LED) Light Bulb

Sinan Li, Huanting Chen, Siew-Chong Tan, S.Y.R. Hui
Department of Electrical & Electronic Engineering
The University of Hong Kong
Hong Kong, China

Eberhard Waffenschmidt
Faculty of Information, Media, and Electrical Engineering
Cologne University of Applied Science
Cologne, Germany

Abstract—For retrofit applications, some high-brightness (HB) light-emitting diode (LED) products have the same form factor restrictions as existing light bulbs. Such form factor constraints may restrict the design and optimal performance of the LED technology. In this paper, some critical design issues for a commercial LED bulb designed for replacing an E27 incandescent lamp are quantitatively analyzed. The analysis involves a power audit on such densely packed LED system so that the amounts of power consumption in (1) the LED driver, (2) the LED wafer, (3) the phosphor coating, and (4) the bulb translucent cover are quantified. The outcomes of such an audit enable R&D engineers to identify the critical areas that need further improvements in a compact LED bulb design.

I. INTRODUCTION

Light-emitting diodes (LED) have emerged as an important technology on a growing list of applications. This is mainly due to their preponderant long lifetime, environmentally friendly characteristic, high luminous efficacy, and having the ability to illuminate in various colors [1]–[3]. For general lighting applications, the high-brightness LEDs (HB-LEDs) are expected to replace traditional light sources such as the incandescent and fluorescent lamps [4]. However, it may still take some time before the HB-LEDs can really dominate the general lighting market because of the many complicated problems that involve the photometric, electrical, thermal, and reliability related issues of the LED system [3], [5]–[8]. In this paper, we investigate a classic example of a white LED light bulb for replacing an E27 incandescent lamp such that future challenges in optimizing such compact LED systems could be systematically tackled.

An HB-LED system for general illumination usually comprises several functional stages:

- LED ballast—It supplies electric power to the LED chips from the power source;
- LED chips—They receive electric power from the ballast and radiate white light;
- Lamp cover or lenses—It scatters the emitted light as a way to satisfy certain color temperature or viewing angle requirements. The optical power emitted from the LED chips are partially lost in this stage;
- Heatsink—It dissipates the heat generated from the ballast and the LEDs and all other heat sources.

II. ENERGY FLOW CHART AND POWER AUDIT OF THE LED SYSTEM

This paper presents a power audit of an LED bulb based on the use of phosphor-coated (PC) white LED devices. The light spectrum shown in Fig. 1 indicates that it consists of the sum of two spectra, namely one strong blue light spectrum generated directly from a GaN or InGaN LED at the 450 nm, and a second light spectrum of Stokes-shifted wavelengths emitted from the phosphor. During the Stokes-shift process where the phosphor absorbs the blue photon energy and emits light of longer wavelengths, there is a loss of heat energy, commonly known as the Stoke-shift loss. A detailed view of the interior structure is shown in Fig. 2.

For simplicity, the phosphor-based LEDs can be perceived as having two power processing sub-stages: one being the blue LED chip generating blue light from electrons and the other being the phosphor layer performing the Stock-shift process. Since the phosphor-
based LED is still the most popular method of generating white light from LEDs, due to their simple manufacturing and design process for the LED system, the following analysis will be based on the phosphor-based LED structures.

![Diagram of LED structure]

Figure 2. A detailed inside view of the function stages of an LED package.

Based on Fig. 2, the energy flow chart can be drawn as shown in Fig. 3, which consists of five stages of energy conversion functional basis. Fig. 4 shows the photograph of the exterior and interior functional stages of the LED bulb.

![Energy flow chart]

Figure 3. Energy flow chart with the five functional stages of the LED system.

In Stage 1, the input power P_{in} is processed by the LED ballast with an efficiency of $\eta_{electrical}$. For linear or passive types of ballasts, the power loss is mainly due to the conduction loss of the lossy components such as the current limiting resistors, transistors and transformers, while in switched-mode ballasts, the power loss is mainly caused by switching losses, conduction loss, and core losses of magnetic components. Linear/passive ballasts are generally simpler in structure, but larger in size when compared with the switched-mode ballasts. Regardless of the type of ballasts used, the power delivered to the LED chips from the ballast can be generalized as

$$P_d = P_{in} \times \eta_{electrical}$$ \hspace{1cm} (1)

where P_d is also the input power of the second stage.

In Stage 2, the blue LED chips convert electric energy into light energy by emitting blue light with an efficiency of η_1. The emitted optical power of the blue LED, $P_{opt(blue)}$, is given as

$$P_{opt(blue)} = P_d \times \eta_1$$ \hspace{1cm} (2)

while the rest of the input power are converted into heat. The heat generation is related to several power-loss mechanisms, such as the leakage current power loss due to tunneling of electrons to the states of InGaN/GaN interfaces, power loss due to the effect of auger recombination, and power loss due to non-radiative recombination. Additionally, any photons generated by radiative recombination inside the LED chip may be emitted as external light or are trapped within the LED chip (caused by total internal reflection phenomenon of the semiconductor crystal), where they are finally absorbed and converted into heat. Taking all power losses into consideration, the total fraction of photons with respect to a known power level input that are emitted by the LED is known as the extraction efficiency η_1. Currently, the extraction efficiency of HB-LED is around 20-40\% [9], which is relatively much lower than other functional stages of energy conversion, and it is therefore the most influencing factor affecting the overall efficiency of the LED lamps.

In Stage 3, the blue light carrying a power of $P_{opt(blue)}$ is converted into white light by the phosphor with a conversion power efficiency of η_2. The conversion power loss is related to the quantum efficiency and absorption characteristic of the phosphor materials, and is influenced by the trapping and absorption of the photons’ energy, which is eventually converted into heat by the phosphor material of the phosphor-coated (PC) LED. Currently, many commercially available phosphor materials are of good performance with a conversion efficiency η_2 of usually higher than 90\%. The optical power of the emitted white light, $P_{opt(white)}$, is given by

$$P_{opt(white)} = P_{opt(blue)} \times \eta_2$$ \hspace{1cm} (3)

Finally, the power of white light emitted from the phosphor coated (PC) LED will pass through Stage 4, which is the lamp covers or lenses (blue LED coated with phosphor epoxy is also a form of lenses), where the white light will be scattered to the ambient. For this stage, the lamp covers or lenses act as light filters, which in the process of scattering the light, partially trap photons within the covers/lenses converting them into extra heat, thereby incurring an additional form of optical power loss. Thus, the final optical output power of the light emitted to the ambient in terms of the lenses efficiency η_3, can be expresses as

$$P_{opt(ambient)} = P_{opt(white)} \times \eta_3$$ \hspace{1cm} (4)

In order to analyze the power flow of each functional stage, their energy conversion efficiencies η must be individually evaluated and compared. Practically, it is much easier to measure the optical power emitted from the respective stages than to measure the heat power dissipated form the stages. Hence, in the following discussion, the optical power coefficient K_{opt} is defined for each stage, which is the ratio of optical power P_{opt} over the total input power to LED P_d. In the same manner, the heat dissipation coefficient K_h is defined as the ratio of heat power P_{heat} (the power that finally ends up as heat in each stage) over P_d.

$$K_{opt} = P_{opt}/P_d$$ \hspace{1cm} (5)

$$K_h = P_{heat}/P_d$$ \hspace{1cm} (6)
K_{opt} and K_h can be used to derive the conversion efficiency η for each stage. For example, after Stage 2, the output optical power and heat power are,

$$P_{opt\text{(blue)}} = P_d \cdot K_{opt1} = P_d \cdot \eta_1 \quad (7)$$

$$P_{heat1} = P_d \cdot K_{h1} = P_d - P_{opt\text{(blue)}} = P_d (1 - \eta_1) \quad (8)$$

Therefore,

$$K_{opt1} = \eta_1 \quad (9)$$

$$K_{h1} = 1 - \eta_1 \quad (10)$$

Using (9), the conversion efficiency η_1 can be calculated as,

$$\eta_1 = K_{opt1} = 1 - K_{h1} \quad (11)$$

Following the same approach, the relationships between K_{opt}, K_h and η for each stage can be derived and are tabulated in Table I.

<table>
<thead>
<tr>
<th>Energy Flow Stage</th>
<th>K_{opt}</th>
<th>K_h</th>
<th>η</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>$K_{opt1} = \eta_1$</td>
<td>$K_{h1} = 1 - \eta_2$</td>
<td>K_{opt1}</td>
</tr>
<tr>
<td>3</td>
<td>$K_{opt2} = \eta_1 \eta_2$</td>
<td>$K_{h2} = 1 - \eta_1 \eta_2$</td>
<td>K_{opt2} / K_{opt1}</td>
</tr>
<tr>
<td>4</td>
<td>$K_{opt3} = \eta_1 \eta_2 \eta_3$</td>
<td>$K_{h3} = 1 - \eta_1 \eta_2 \eta_3$</td>
<td>K_{opt3} / K_{opt2}</td>
</tr>
</tbody>
</table>

It is evident from Table I that the higher the conversion efficiency η in each power conversion stage, the higher the K_{opt} and the lower the K_h. From Table I, the conversion efficiency η of each stage can easily be derived given K_{opt1}, K_{opt2}, K_{opt3}. Detailed results are included and compared in Section III.

III. EXPERIMENTAL RESULTS OF AUDITING THE POWER OF AN LED BULB

The LED system used in the experimental evaluation is a commercial warm-white LED bulb with a rated power of 8 W. It has an internal LED ballast and the bulb is comprised of all the five function stages as mentioned above. Fig. 4 illustrates some pictures of the exterior and internal functional stages of the LED bulb used in this experiment. In order to analyze the efficiency of Stokes-shift effect of converting blue light of Stage 2 (Fig.4 b)) to white light of Stage 3 (Fig.4 c)), the phosphor epoxy layer should be removed leaving only the blue LED wafer. However the epoxy encapsulation process is irreversible and the layer cannot be easily removed, since the bonding wires inside the LED chips are easily broken.

In this experiment, an identical blue LED with the same characteristics (in terms of thermal, electrical and optical performance) is used to substitute the one used in the white LED bulb, as shown in Fig. 4(b). All experiments are done at the ambient temperature of 22 °C under free convection.

Fig. 5 shows the measurement results of the power audit of the LED bulb for each stage and at different power level P_d. The power distribution is represented by the optical efficiency K_{opt} in each stage using different colors. A thinner layer of the area between any two adjacent stages signifies a lower conversion loss between these stages, i.e., higher efficiency during conversion.

Fig. 5 gives a clear view of the energy distribution for each functional stage. For example, in Stage 2, when $P_d = 7.22$ W (with LED conducting current of $I_{LED} = 0.58$ A), the output optical power of blue LED is 2.65 W (with $K_{opt1} = 36.7\%$). After the phosphor conversion stage, i.e., Stage 3, some power is lost and the total optical power emitted in the form of white light drops to 1.99 W (with $K_{opt2} = 27.6\%$). Moreover, after the lamp cover is mounted, the actual emitted optical power left is only 1.77 W ($K_{opt3} = 24.5\%$). If the output optical power is assumed to be proportional to the emitted lumen flux, we can then predict that the huge drop from K_{opt1} to K_{opt3} (12.2%) results in the same amount of reduction in the output light...
intensity. Finally, by taking into consideration the power loss from the LED ballast, and assuming an efficiency of $\eta_{\text{electrical}} = 85\%$, the final energy efficiency in this LED system will be 20.8\%. This result shows that around 21\% of total input electric energy has been converted as light.

According to Fig. 6, it is evident that more efforts should be focused on the conversion efficiency of the blue LED layer (Stage 2), and that there is more room for improvement for this stage than for the others. As LED efficiencies are expected to improve continuously, the power audit information provided here can be used to predict the impact of improved LEDs on the near-future total system efficiency. Finally, the proposed five-stages model and energy flow chart could be extended as a generic model, such that other types of LED-based light sources can be evaluated.

IV. IMPACT OF VARIOUS HEAT SOURCES ON THE COMPACT RETROFIT LED BULB

Unlike incandescent lamps in which most of the heat energy from the filament are dissipated to the ambient in the form of infrared radiation (IR), the heat energy within an LED can only be dissipated through thermal conduction and convection, that is, from the active area (the LED $P-N$ junction) to the underlying printed circuit board, then to the cooling system (such as heatsink), the housing, and finally to the atmosphere. Fig. 7 gives a comparison of the power distribution among the three most common types of light sources for general illumination, that is, a HB LED, a fluorescent lamp, and an incandescent lamp [10]. Although the LED lamp gives the highest wall-plug efficiency (40\% of P_{d}) among the three, it has the most critical burden on thermal design in terms of conduction and convection (60\% of P_{d}). If the thermal design is poor, the heat energy will accumulate and heat up the $P-N$ junction temperature of the LED, which will subsequently degrade the LED performance in terms of (1) its lifetime; (2) its color property; (3) its light efficacy; and (4) the reliability of the overall LED system.

It has been reported in [11] that the wall-plug efficiency (the optical power P_{opt} of an LED chip divided by its input electrical power P_{d}) is typically within the range of 5\%-40\%. In a practical LED system, if the conversion efficiencies in all stages are considered, including the LED ballast, blue LED, phosphor layer, and lenses, the actual optical output power is even lesser. This implies that with more heat energy, the thermal design will become even more challenging. In Section III, it is illustrated that around 21\% of the total energy has been converted as the light output, whereas the rest 79\% ends up as heat, in contrast with the value of 60\% as shown in Fig. 7.

The undesired effects of various heat sources are general to all LED systems. In this section, the impacts of heat sources on a compact retrofit system, which is limited by the same form factor restrictions as existing light bulbs, are examined. Firstly, with a small form factor, the LED ballast must be able to fit with a small fixture. Compact ballasts usually have poor power conversion efficiency as compared with ballasts of a larger size, since their components have to perform multiple tasks (e.g. achieving power factor correction, output current...

Figure 6. Conversion efficiency of the LED bulb for Stage 2 to Stage 4 at 3 W to 10 W.

Next, the performance of the respective stages is compared using the conversion efficiency η. According to Table I, the efficiency of each stage is shown in Fig. 6. It can be seen that the blue LED (in Stage 2) is the most inefficient power stage among the three stages. At the low input power level of $P_{d} = 3.3$ W, the blue LED converts less than 46\% of P_{d} into optical power. As P_{d} increases and junction temperature goes higher, the Stage 2 conversion efficiency drops further, with merely 32\% of the total energy being converted into optical power when $P_{d} = 10.1$ W. Despite the low conversion efficiency of Stage 2, it should be highlighted that a blue LED efficiency of 32\% is still significantly higher than that of the incandescent sources, and is comparable to the plasma discharge conversions efficiency in compact fluorescent lamps [8], [9], also shown in Fig. 7.

Figure 7. Power distribution comparison between a HB LED, fluorescent lamp, and an incandescent lamp [10].
regulation, and dimming, all at the same time) to save space. However, it is difficult to optimize the performance for all tasks simultaneously, and significant heat loss would be generated. Secondly, with the cooling system (heatsink) also restricted to a small size, temperature within the bulb could be high. These form factor constraints do restrict the optimal performance and design of the LED bulb.

A set of experiments have been conducted to examine the impact of the undesired heat sources with a small heatsink (Fig. 4(d)), in terms of its maximum flux output, available power operating range, available dimming range, etc. As mentioned in Section III, a heat source might arise from each stage due to the conversion loss. Hence, a resistor emulating such heat sources is mounted together with the LED (shown in Fig. 4(c)) on the same heatsink. This resistor is externally powered up and manually controlled, and the level of the emulating resistor power represents the total heat power from the various heat sources. The results of the experiment are shown in Fig. 8.

![Figure 8. Output luminous flux versus electrical power P_d with different level of heat source energy in a compact LED bulb.](image)

In Fig. 8, four curves of the luminous flux output are plotted against the electric power P_d for different levels of heat source power under the condition of free convection at an ambient temperature of 22 °C. The LED and the emulating resistor are powered up using separate power supplies, and each data point is measured after 40 minutes of operation such that the flux and the power P_d has stabilized at equilibrium states.

The flux-power curves in Fig. 8 have been well predicted by the PET theory in [3]. The initial linear portion of the curves have good efficacy due to low junction temperature. This portion can be used for PWM dimming or n-level PWM dimming [12], since the light output by these two methods is similar to amplitude dimming due to the linear properties. As P_d increases, the slope of the flux-power curves decrease. After the curves peak at their respective power P_d*, the actual light output starts to decrease. P_d* is the turning point of the curve and should not be exceeded in a compact LED bulb design. Otherwise the light output and the lifetime will be severely degraded. For a compact LED bulb design with limited cooling mechanism, operating the LED beyond P_d* would imply a waste of power and deteriorate the LED system performance.

The maximum operating power P_d* have been given in [3] as

\[
P_d^* = \frac{1}{2K_hK_s(R_{jc} + R_{hs})}(T_a - T_o)
\]

where T_a and T_o are respectively the ambient and reference temperatures (e.g. 25 °C), R_{jc} and R_{hs} are respectively the junction-to-case thermal resistance and the heatsink thermal resistance to the ambient, K_h is the relative rate of reduction of efficacy of the LED with increasing temperature, and K_s is the heat dissipation coefficient as defined in Section II.

Equation (12) predicts that an LED system with smaller values of K_h and R_{hs} has a higher value of P_d*, which is desired from a system’s reliability viewpoint. According to Fig. 8, it seems that a small heatsink (large R_{hs}) would be adequate to guarantee LED’s safe operation. For example, when 20 W is applied to the heat source emulator, P_d* is around 10 W, which is effectively higher than the rated power of the LED (at 8 W) under consideration. However, careful study shows that there is significant improvement in the luminous output if the internal temperature of the bulb is reduced. With the extra heat source of 20W, the luminous output at the rated power of 8W is about 470 lumen. With the heat source reduced to 5W, the luminous output increases to 650 lumen. Therefore, it is beneficial for an LED bulb design to use low values of K_h and R_{hs}. In the four tests in Fig. 8, the peak value P_d* in the top curve and that of the bottom curve differ by 8W. Energy Star program suggests a continuous dimming range of 35%-100% [13]. For the same percentage change of 35%-100%, the top curve in Fig.8 covers a much wider range in terms of luminous output.

V. CONCLUSIONS

Critical design issues of an LED light bulb are addressed. The energy flow chart of an LED system based on actual measurements is included. It is found that the blue LED layer is of the lowest efficiency among all functional stages, while the phosphor layer, LED ballast layer and the lenses/lamp cover layer perform much better in terms of energy conversion. This strongly indicates that significant improvement of the conversion efficiency can be achieved if the efficiency of the blue LED layer can be improved. The limited size of the heatsink and the poor energy efficiency of the LED ballast are limiting factors. Improvements should be considered in reducing the thermal resistance in the LED package and heatsink, developing more efficient ballast, and improving the coefficient K_h. New techniques for direct fabrication of the LED wafers on heatsink materials in the device packaging should be investigated.
ACKNOWLEDGMENT

This work is supported by the Research Grant Council of Hong Kong under the Theme-Based Research Scheme (TBRS) T22-715/12N.

REFERENCES

