<table>
<thead>
<tr>
<th>Title</th>
<th>Breaking the Space Charge Limit in Organic Solar Cells by a Novel Plasmonic-Electrical Concept</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Sha, W; Li, X; Choy, WCH</td>
</tr>
<tr>
<td>Citation</td>
<td>Scientific Reports, 2014, v. 4, p. 6236</td>
</tr>
<tr>
<td>Issued Date</td>
<td>2014</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10722/202896</td>
</tr>
<tr>
<td>Rights</td>
<td>This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.</td>
</tr>
</tbody>
</table>
Breaking the Space Charge Limit in Organic Solar Cells by a Novel Plasmonic-Electrical Concept

Wei E. I. Sha, Xuanhua Li & Wallace C. H. Choy

As a fundamental electrostatic limit, space charge limit (SCL) for photocurrent is a universal phenomenon and of paramount importance for organic semiconductors with unbalanced photocarriers mobility and high exciton generation. Here we proposed a new plasmonic-electrical concept to manipulate electrical properties of organic devices including photocarriers recombination, transport and collection. As a proof-of-concept, organic solar cells (OSCs) comprising metallic planar and grating electrodes are systematically investigated with normal and inverted device structures. Interestingly, although strong plasmonic resonances induce abnormally dense photocarriers around a grating anode, the grating-inverted OSC is exempt from space charge accumulation (limit) and degradation of electrical properties in contrast to the planar-inverted and planar-normal ones. The particular reason is that plasmonically induced photocarriers redistribution shortens the transport path of low-mobility holes, which are collected by the grating anode. The work demonstrated and explained the SCL breaking with the plasmonic-electrical effect. Most importantly, the plasmonic-electrical concept will open up a new way to manipulate both optical and electrical properties of semiconductor devices simultaneously.

The space charge limit (SCL) effect is a universal phenomenon in semiconductor devices involving light emitting diodes, solar cells, and photodetectors. It also sets a fundamental electrostatic limit in electrical properties of organic semiconductor devices with unbalanced photocarriers (electrons and holes) mobility and high exciton generation efficiency. With the interesting features of low cost, low-temperature fabrication, semi-transparency, and mechanical flexibility, organic solar cells (OSCs) are currently one of emerging optoelectronic devices and shows a bright outlook for green energy industry. Understanding the SCL effect is important to manipulate transport, recombination, and extraction of photocarriers, which will significantly affect the power conversion efficiency (PCE) of OSCs. Typically, the occurrence of SCL satisfies the following conditions: (1) unbalanced hole and electron mobility; (2) thick active layer; (3) high light intensity or dense photocarriers (electrons and holes) generation; and (4) moderate reverse bias. Compared to electron mobility, a low mobility of holes typically occurs in organic semiconductor devices depending on fabrication procedures, e.g. thermal annealing, solvent annealing, etc; and even occurs in the OSCs with robust active materials such as the polymer blend of poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM). To investigate SCL characteristics, the inverted OSC with a planar multilayered structure is taken as a representative example. In the planar-inverted OSCs, photocarriers will be generated at the region close to the transparent cathode, such as indium tin oxide (ITO), where incident light will first penetrate. The photogenerated holes with a low mobility will have to transport through the whole active layer, and finally reach the anode (see Figure 1(a)). SCL will occur if the length of active layer is longer than the mean drift length of holes, which is very short because of the low mobility. Meanwhile, holes pile up inside the device to a greater degree than electrons. In other words, positive space charges are accumulated due to the unbalanced photocarriers mobility and a long transport path of holes. As a result, the short-circuit current and fill factor of OSCs will drop significantly due to both the bulk recombination and space charge formation. In this work, we will demonstrate the SCL breaking in the OSCs incorporating metallic (Ag or Au) nanostructures, which offers a novel route to eliminate the SCL effect in semiconductor devices.

Having unique features of tunable resonances and unprecedented near-field enhancement, plasmon is an enabling technique for light management. Recently, performances of semiconductor devices (such as thin-film solar cells) have been pronouncedly improved by introducing metallic nanostructures. The improvements are mainly attributed to the plasmonic-optical effects for manipulating light propagation, absorption, and
scattering. The plasmonic-optical effects could: (1) boost optical absorption of active materials; (2) spatially redistribute light absorption at the active layer due to the localized near-field enhancement around metallic nanostructures. Except for the plasmonic-optical effects, the effects of plasmonically modified recombination, transport and collection of photocarriers, hereafter named plasmonic-electrical effects, have not been explored systematically particularly in organic semiconductors.

In this paper, through the study of plasmonic OSCs, we will show metallic nanostructures go beyond their optical functions to control recombination, transport, and collection of photocarriers generated from active organic materials. Through spatially redistributing light absorption at the active layer, the proposed plasmonic-electrical concept is fundamentally different from the hot carrier effect where photocarriers are generated from metallic nanostructures. The new plasmonic-electrical effect not only lays a physical foundation but also upgrades electrical properties for semiconductor devices. Exploiting both plasmonic-optical and plasmonic-electrical effects via metallic nanostructures will open up a more flexible and integrated way to design high-performance optoelectronic nanodevices.

Results

OSC structures for investigating plasmonically modified SCL characteristics. To intuitively show the plasmonic-electrical effects without involving complicated device structures, we identify and integrate three structural and material configurations into OSCs. 1. Annealed P3HT:PCBM active layer at non-optimized annealing temperature (robust and well-recognized) for unbalanced electron/hole mobility and low hole mobility (to favor SCL effects). 2. Inverted OSC structures for a long hole transport path (to favor SCL effects). 3. Metallic nanograting as an anode shown in Figure 1(b) for demonstrating the plasmonically modified SCL effect. The planar and grating OSCs are inverted device structures of ITO/TiO₂ (20 nm)/P3HT:PCBM (220 nm)/MoO₃ (10 nm)/Ag or Au (100 nm); and the device structure of the grating-inverted OSC is: ITO (70 nm)/TiO₂ (20 nm)/P3HT:PCBM grating (220 nm)/MoO₃ (10 nm)/Ag or Au grating (100 nm). The short notation “SC” denotes the space charge. A long transport path of holes in the planar-inverted OSC induces the SCL characteristics. A short transport path of holes manipulated by the plasmonic-electrical effect in the grating-inverted OSC breaks the SCL. (c) 45°-tilt SEM image of the planar P3HT:PCBM film. (d) 45°-tilt SEM image of the P3HT:PCBM film with the grating structure.

Elimination of SCL in Ag-grating-inverted (hole-path shortened) OSCs. According to the Mott-Gurney law, by assuming the number...
of deep localized states is negligible and the mobility is almost field independent, photocurrent \(J_{\text{ph}} \) in the SCL regime can be described by:

\[
J_{\text{ph}} = \left(\frac{9\varepsilon_{r}\varepsilon_{0}\mu_{h}}{8} \right)^{1/4} \left(qG^{3/4}V_{e}^{1/2} \right)
\]

where \(G \) is the averaged generation rate, \(V_{e} \) is the effective voltage drop across the active layer or hole accumulation region, \(\mu_{h} \) is the hole mobility, \(q \) is the electron charge, and \(\varepsilon_{0}\varepsilon_{r} \) is the dielectric permittivity of the active layer. Differently, \(J_{\text{ph}} \) with a sufficiently large reverse bias (recombination is ignorable) is approximated as

\[
J_{\text{ph}} = qGL
\]

where \(L \) is the thickness of the active layer. The compensation voltage \(V_{0} \), which is almost equal to the built-in potential of OSCs, is defined as \(J_{\text{ph}} (V_{0}) = 0 \). The effective applied voltage \(V_{e} \) is given as \(V_{0} - V \), where \(V \) is the applied bias voltage.

To comparatively study the SCL characteristics in Ag-planar-inverted and Ag-grating-inverted OSCs, we investigated photocurrents under various incident light intensities \(I \) and effective applied voltages \(V_{0} - V \) conditions measured at room temperature. For the Ag-planar-inverted device, as shown in Figure 2(a), when \(V_{0} - V < 0.2 \ \text{V} \), \(J_{\text{ph}} \) is almost linearly proportional to \(V_{0} - V \). It is because the dependence of \(J_{\text{ph}} \) on \(V_{0} - V \) at a low internal electrostatic field is governed by both diffusion and drift currents. For intermediate and higher internal fields (see Figure 2(a)), \(J_{\text{ph}} \) shows a square-root dependence on \(V_{0} - V \) covering a wide range of voltages.

At sufficiently high reverse voltage, photocurrent becomes saturated (internal-field independent) and no recombination occurs, as the mean distance \(w \) of free charge carriers becomes equal to or larger than the active layer thickness \(L \). To verify the SCL occurs in the Ag-planar-inverted OSC, we further plot \(J_{\text{ph}} \) versus light intensity at three different effective applied voltages (at \(V_{0} - V = 0.2 \ \text{V}, 0.5 \ \text{V}, 1 \ \text{V} \) in the square-root regime, and \(V_{0} - V = 10 \ \text{V} \) in the saturation regime) as depicted in Figure 2(b). We see that \(J_{\text{ph}} \) is approximately proportional to \(I^{0.93} \) at the SCL region \((1/2 \ \text{power dependence of } V_{0} - V) \). Additionally, \(J_{\text{ph}} \) is approximately proportional to \(I^{0.85} \) at the saturation region for sufficiently high \(V_{0} - V \). According to Equation (1) and SCL theory, we conclude that the space charge effect occurs, which dominates electrical properties of the Ag-planar-inverted device.

Regarding the Ag-grating-inverted OSCs, \(J_{\text{ph}} \) versus \(V_{0} - V \) at different incident light intensities is shown in Figure 2(c). Amazingly, we found that the SCL characteristics disappear when a metallic grating anode is incorporated. When \(V_{0} - V < 0.2 \ \text{V} \), \(J_{\text{ph}} \) is almost linearly proportional to \(V_{0} - V \), which is the same as the Ag-planar-inverted device. However, at higher voltages, \(J_{\text{ph}} \) becomes saturated and shows no square-root dependence on \(V_{0} - V \). Furthermore, with the help of the curve of \(I_{\text{ph}} \) versus the light intensity at different \(V_{0} - V \) (see Figure 2(d)), \(J_{\text{ph}} \) shows a linear dependence on the light intensity. This suggests the eliminated SCL and reduced bulk recombination.

Temperature will strongly affect the mobility of polymer blend and thus SCL characteristics of OSC devices. Regarding the temperature effect, we again study \(J_{\text{ph}} \) as a function of \(V_{0} - V \) for both the Ag-planar-inverted and Ag-grating-inverted OSCs for a temperature range of 178 K-298 K. As shown in Figures 3(a) and (b), the...
square-root region of I_{ph} will extend to higher voltage regions as temperature decreases for both types of OSCs. Meanwhile, the mobility difference between electrons and holes will be enlarged when temperature decreases (See Supplementary Figure S2 and Figure S3). Especially, at 178 K the mobility ratio (μ_e/μ_h) increases to a value of 2000. Thus, an extremely unbalanced transport in these blends is expected. In this case, the SCL will reoccur as depicted in Figures 3(c) and (d).

Origins of SCL elimination and understanding. To understand above experimental findings particularly for the SCL elimination in the Ag-grating-inverted OSCs at room temperature, the physical process is theoretically modeled with a mechanistic insight. Through rigorously solving Maxwell’s equations\(^5\), we calculate the ratio of exciton generation of the Ag-grating-inverted device to that of the Ag-planar-inverted one, which is plotted in Figure 4 (See Supplementary Note 3 for simulation details). Compared to s polarized light which cannot excite plasmons, p polarized light shows a significant enhancement for exciton generation. It was confirmed by the measured polarized absorption ratio (μ_e/μ_h) increases to a value of 2000. Thus, an extremely unbalanced transport in these blends is expected. In this case, the SCL will reoccur as depicted in Figures 3(c) and (d).

As shown in Figure 1(b) and Figure 4, the abnormally redistributed holes (resulting from the dense exciton generation) just transport a short path before collected by the anode. To investigate the influence of the short transport path of holes on electrical properties of OSCs, semiconductor equations (Poisson, drift-diffusion, and continuity equations)\(^5\)–\(^7\) are solved self-consistently (See Theoretical Model at Methods Section). For the Ag-planar-inverted device, the generation rate of exciton is obtained from a rigorous solution of Maxwell’s equations. From Supplementary Figures S6(b) and S8, photocarriers are generated at the region close to the transparent cathode. For the Ag-grating-inverted device, the generation rate is set to $G_{g} = \left\{ \begin{array}{ll} 0, & y \leq 0.8L \\ G_{p}, & 0.8L < y \leq L \end{array} \right.$ for simulating the nonuniform exciton generation and short transport path of holes. In Equation (3), the Ag-grating anode is
located at $y = L$ and \bar{G}_g is the mean value of generation rate of the Ag-planar-inverted OSCs. Mathematically, we trivially get
\[
\int_{0}^{L} G_g dy = \int_{0}^{L} G_g dy = \int_{0}^{L} G_g dy = \bar{G}_g L.
\]
Physically, light absorption at the active layer is spatially redistributed in the Ag-grating-inverted OSCs by the localized plasmonic-optical effect.

After solving semiconductor equations, Figure 5 shows the dependence of photocurrent J_{ph} on effective applied voltage V_{ph}, V. The red solid curves of $J_{ph} \sim (V_{ph}, V)^{0.9}$ are also drawn to identify the SCL regions. At room temperature, the Ag-grating-inverted device is far away from the SCL region while the Ag-planar-inverted device falls into the SCL region extending until 5 V. These results are consistent with the experimental findings as illustrated in Figures 2(a) and 2(c) [1 Sun case]. As the temperature decreases, the SCL regions dilate for both Ag-planar-inverted and Ag-grating-inverted OSCs, which also has a good agreement with the experimental results by comparing Figures 2(a, c) to Figures 3(a, c). At the lower temperature, the simulated J_{ph} curve draws more close to the fitted square-root curve for the Ag-grating-inverted OSCs. Figure 6 shows the dependence of J_{ph} on the light intensity V_{ph}, V. At room temperature, the order α of 0.9 ($J_{ph} \sim V^{0.9}$) achieved by the Ag-grating-inverted device is fundamentally different from that of 0.7 by the Ag-planar-inverted device, which again verifies the elimination of the SCL characteristics and is identical to the fitted experimental order (See Figures. 2(b, d)). Interestingly, $\alpha = 0.9$ at the room temperature is reduced to $\alpha = 0.84$ at the lower temperature (See Figure 6) approaching 3/4 for the Ag-grating-inverted device. The theoretical reduction of α agrees with the experimental demonstrations seen at Figures 2(d) and 3(d). Because the shortened hole transport path cannot compensate the slower drift velocity of holes with a lower mobility. According to our comparative investigations, all the theoretical results are in agreement with experimental findings well.

A short transport path for the Ag-grating-inverted OSCs can be equivalently regarded as a thin active layer configuration for the Ag-planar-inverted OSCs. It is well known that SCL characteristics disappear in the thin-active-layer OSCs (<100 nm)\(^{24,25}\). Hence, with the short transport path of holes, the Ag-grating-inverted device does not favor the SCL effect even if it has the same thickness of active layer as the Ag-planar-inverted one where the SCL effect occurs. The shortened transport path leads to a fast collection of holes with reduced bulk recombination and hole accumulation, which can be also observed in the transient photovoltage results (See Supplementary Figure S7). It is worth to note that if the thickness of active layer extensively increases, plasmonic enhancement will become insignificant. Under this situation, few holes are generated around the grating anode and the SCL effect will reoccur (See Supplementary Note 5). Additionally, the enlarged grating anode contact could facilitate the collection of holes, but it does not shorten hole transport paths if the spatial distribution of light absorption at the active layer is unchanged. Consequently, the enlarged anode area is not the physical origin of the eliminated SCL effect.

SCL characteristics in normal (electron-path shortened) OSCs. In order to further comprehend the role of transport path in manipulating the SCL characteristics, we fabricated the normal P3HT:PCBM device with structures of ITO/PEDOT:PSS (30 nm)/active layer (220 nm)/Ca (10 nm)/Ag (with or without grating) (100 nm). Differently, in the normal devices, the Ag grating as a cathode for collecting electrons and electrons (not holes) transport...
a short path before collected by the cathode. For both Ag-planar-normal and Ag-grating-normal devices, we study J_{ph} versus $V_e - V$ at different incident light intensities (Figures 7(a) and (c)) and J_{ph} versus light intensity at four different $V_e - V$ (Figures 7(b) and (d)). At the square-root region of J_{ph}, photocurrent is approximately proportional to $I^{3/4}$. Particularly, the Ag-grating-normal device shows the same SCL characteristics at room temperature as what the Ag-planar-normal device does. The short transport path of high-mobility electrons does not reduce charge accumulation and thus SCL still exists. To improve electrical properties of OSCs, the device architecture with metallic nanostructures should be carefully engineered to redistribute light absorption for shortening the transport path of low-mobility photocarriers.

Space charge dependent OSC performances. Electrical characteristic parameters of OSCs with four different device structures are listed in Table 1. The corresponding current density-voltage (J-V) curves are given in Supplementary Figure S10 and Figure S11. For the Ag-normal OSCs, the characteristic parameters including short-circuit current (J_{SC}) and fill factor (FF) show no significant distinction for both planar and grating devices. After introducing the nanostructured cathode, the increased J_{SC} and reduced FF are respectively due to the metallic grating enhanced optical absorption and elongated hole (shortened electron) transport path. However, for the Ag-inverted OSCs, the characteristic parameters of the planar and grating devices show considerable differences. For example, FF of the Ag-planar-inverted device drops drastically compared to that of Ag-grating-inverted one. The maximum possible FF at the SCL regime is about 42%. From results in Table 1, FF of the Ag-planar-inverted device drops drastically compared to that of Ag-grating-inverted one. The maximum possible FF at the SCL regime is about 42%. From results in Table 1, FF of the Ag-planar-inverted device drops drastically compared to that of Ag-grating-inverted one. The maximum possible FF at the SCL regime is about 42%. From results in Table 1, FF of the Ag-planar-inverted device drops drastically compared to that of Ag-grating-inverted one. The maximum possible FF at the SCL regime is about 42%. From results in Table 1, FF of the Ag-planar-inverted device drops drastically compared to that of Ag-grating-inverted one. The maximum possible FF at the SCL regime is about 42%. From results in Table 1, FF of the Ag-planar-inverted device drops drastically compared to that of Ag-grating-inverted one. The maximum possible FF at the SCL regime is about 42%. From results in Table 1, FF of the Ag-planar-inverted device drops drastically compared to that of Ag-grating-inverted one. The maximum possible FF at the SCL regime is about 42%. From results in Table 1, FF of the Ag-planar-inverted device drops drastically compared to that of Ag-grating-inverted one. The maximum possible FF at the SCL regime is about 42%. From results in Table 1, FF of the Ag-planar-inverted device drops drastically compared to that of Ag-grating-inverted one. The maximum possible FF at the SCL regime is about 42%.

Figure 5 Theoretical temperature dependence of photocurrent versus effective applied voltage. (a) Ag-planar-inverted device at $T=300$ K; (b) Ag-grating-inverted device at $T=300$ K; (c) Ag-planar-inverted device at $T=270$ K; (d) Ag-grating-inverted device at $T=270$ K. The overlapped regions between fitted and simulated curves are the square-root regions of OSC devices, i.e. $J_{ph} \sim (V_e - V)^{\alpha}$. The incident light intensity is 100 mW/cm2.

Figure 6 Theoretical temperature dependence of photocurrent versus light intensity. The orders α of the curves ($J_{ph} \sim I^\alpha$) are 0.70, 0.90, 0.72, and 0.84 respectively for Ag-planar-inverted device at $T=300$ K, Ag-grating-inverted device at $T=300$ K, Ag-planar-inverted device at $T=270$ K, and Ag-grating-inverted device at $T=270$ K. The effective applied voltage is set to $V_e - V = 4.0$ V.
other hand, low-mobility holes, abnormally generated around the grating anode, are collected fast and easily leading to the reduced recombination loss. Hence, the Ag-grating-inverted device improves \(J_{SC} \) much more significantly than the Ag-grating-normal one, although the same optical enhancement can be achieved by the Ag-grating-normal device. Considering the improved FF together with the boosted short-circuit current, the PCE of the Ag-grating-inverted device increases from 0.73% to 1.73%.

SCL Characteristics of Au-grating OSCs. To reconfirm the SCL elimination by the plasmonic-electrical effect, the Au grating has been incorporated into inverted and normal OSCs as the anode and cathode, respectively. Figures 8 and 9 are the corresponding results for the Au-grating devices, which are quite similar to Figures 2 and 7 for the Ag-grating ones. The Au-grating-inverted OSC also avoids SCL due to the same physical reason, i.e. transport path of low-mobility holes is shortened by plasmonically induced light absorption redistribution at the active layer. Likewise, the plasmonic-optical enhancement by the Au grating can be verified by the PL spectra and absorption ratio results at Supplementary Figures S12 and S13. For comparative and complete studies, \(J-V \) curves for the Au-planar and Au-grating OSCs are presented in Supplementary Figure S14.

In conclusion, the work experimentally and theoretically demonstrated the plasmonic-electrical effect breaks the SCL in inverted OSCs through introducing a metallic nanostructured anode. The linear dependence of photocurrent on light intensity and significantly improved FF are clear proofs for the eliminated SCL characteristics. Plasmonically induced light absorption redistribution shortens the transport path of low-mobility holes; and thus reduces bulk recombination and space charge accumulation. The proposed plasmonic-electrical concept is helpful to improve the performance of OSCs.

Table 1 | Experimental characteristic parameters of OSCs with different structures. The parameters include open-circuit voltage \((V_{OC}) \), short-circuit current \((J_{SC}) \), fill factor (FF), and power conversion efficiency (PCE).

<table>
<thead>
<tr>
<th>Device</th>
<th>(V_{OC}) ([V])</th>
<th>(J_{SC}) ([mA/cm^2])</th>
<th>FF</th>
<th>PCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag-Planar-Inverted</td>
<td>0.61 ± 0.02</td>
<td>3.30 ± 0.15</td>
<td>0.37 ± 0.02</td>
<td>0.73 ± 0.10</td>
</tr>
<tr>
<td>Ag-Grating-Inverted</td>
<td>0.61 ± 0.01</td>
<td>5.76 ± 0.28</td>
<td>0.56 ± 0.05</td>
<td>1.73 ± 0.21</td>
</tr>
<tr>
<td>Ag-Planar-Normal</td>
<td>0.61 ± 0.01</td>
<td>2.73 ± 0.25</td>
<td>0.44 ± 0.02</td>
<td>0.74 ± 0.10</td>
</tr>
<tr>
<td>Ag-Grating-Normal</td>
<td>0.61 ± 0.02</td>
<td>2.98 ± 0.21</td>
<td>0.41 ± 0.03</td>
<td>0.75 ± 0.21</td>
</tr>
</tbody>
</table>
Device fabrication
Methods
Device fabrication. Devices with inverted structures of ITO/TiO2 (20 nm)/active layer/MoO3 (10 nm)/Ag or Au (with or without grating) (100 nm) and normal structures of ITO/PEDOT:PSS (30 nm)/active layer/Ca (10 nm)/Ag or Au (with or without grating) (100 nm) were fabricated (Figures 1 (a) and (b)). ITO glasses were cleaned based on a standard procedure. A thin layer (20 nm) of TiO2 or PEDOT:PSS was formed on the ITO by spin-coating followed by annealing at 150°C for 30 min. Subsequently, a polymer blend of P3HT:PC60BM (1:1, wt%/wt%), 20 mg/ml, note: P3HT in the current work represents Poly[3-hexylthiophene-2,5-diyl] with heavy molecular weight) in Chloroform was spin-coated at 670 rpm for 30 s on top of the TiO2 layer or PEDOT:PSS layer. The active layer thickness is about 220 nm. To obtain the grating pattern on the active layer as shown in Figure 1(b), the polydimethylsiloxane (PDMS) nanoimprinted method was applied onto the surface of active layer, after which the whole sample was thermally treated in 80°C for 4 min. By the removal of the PDMS mold, MoO3 (10 nm) or Ca (10 nm) and Ag or Au (100 nm) layers were thermally evaporated onto the active layer pattern at a pressure of 10^-6 Torr. Similarly, for the planar control device, the flat PDMS mold was also applied on the active layer. It should be noted the coverage of MoO3 or Ca is used for obtaining an ohmic contact between the Ag or Au electrode and active layer.

Characterization. The thickness of the polymer sample was measured using a Dektak alpha-step profiler. The morphology of the sample was characterized using atomic force microscopy (AFM) (Asylum Research MFP-3D) in tapping mode and scanning electron microscopy (SEM) (Hitachi S-4800). Current density (J)-Voltage (V) characteristics were obtained by using a Keithly 2635 sourcemeter and ABET AM 1.5G solar simulator with 100 mW/cm² illumination. The low temperature measurement was conducted in an Oxford Cryostat and the incident light intensity was changed from 100 mW/cm² to 24 mW/cm² by using a set of neutral density filters.

Theoretical model. The electrical properties of OSCs can be modeled by solving organic semiconductor equations involving Poisson, drift-diffusion and continuity equations:52

\[
\nabla \cdot (q\psi) = -q(p-n)
\]

\[
\frac{\partial n}{\partial t} = \nabla \cdot \left(q\mu_n E + qD_n \nabla n \right) + G(t) - R(n,p)
\]

\[
\frac{\partial p}{\partial t} = \nabla \cdot \left(q\mu_p E - qD_p \nabla p \right) + G(t) - R(n,p)
\]

where \(q \) is the electron charge, \(\psi \) is the potential, and \(n \) and \(p \) are electron and hole densities, respectively. Moreover, \(\mu_n \) and \(\mu_p \) are the mobility of electrons and holes respectively, which are taken from measurement results (See Supplementary Figures S2 and S3). Moreover, \(D_n \) and \(D_p \) are the diffusion coefficients of electrons and holes respectively, which are accessible by the Einstein relations and mobility, \(D_n = -q\mu_n \nabla \psi + qD_n \nabla n \) and \(D_p = -q\mu_p \nabla \psi + qD_p \nabla p \) are respectively electron and hole current densities, and \(G \) is the exciton generation rate that is proportional to the incident light intensity. Here, the recombination rate \(R \) is taken as the Langevin bimolecular form. To characterize and understand the SCL effect for photocarriers (i.e., free electrons and holes), we ignored: (1) deep localized states. These states play little role in accumulating space charges; (2) exciton diffusion and dissociation process (described by the exciton diffusion equation and Onsager-Braun theory). Due to the quantum nature of wave functions for polymer materials, most excitons generated in bulk heterojunction OSCS are delocalized to support ultrafast charge transfer.

The potential boundary condition at the electrodes is given by

\[
\psi = V - \frac{W_{m}}{q}
\]
Figure 9 | SCL characteristics for Au-normal OSCs measured at room temperature ($T=300$ K). Left graphs are photocurrents versus effective applied voltage (V_0-V) at different incident light intensities. (a) Au-planar-normal device, and (c) Au-grating-normal device. The black solid lines in (a) and (c) represent the square-root dependence of photocurrent on effective applied voltage (SCL region). Right graphs are photocurrents versus incident light intensity at different effective applied voltages. (b) Au-planar-normal device, and (d) Au-grating-normal device.

where V is the applied bias voltage and W_m is the work function of the electrode. The electrodes are assumed to be ohmic contacts for studying the SCL effect, i.e.

$$n = N_c, \quad p = N_v,$$

where N_c and N_v are effective density of states for bulk heterojunction active materials.

Acknowledgments
This work is supported by the General Research Fund (grants: HKU711813 and HKU711612E), the National Natural Science Foundation of China (NSFC)/Research Grants Council (RGC) grant (N_HKU709/12) and Ministry of Education (MOE)/Research Grants Council (RGC) (M-HKU703/12) from RGC of Hong Kong Special Administrative Region, China. This project is also supported in part by Collaborated Research Fund (CUHK1/CRF/12G) of RGC, NSFC grant (No. 61201122), and UGC of Hong Kong (No. AoE/P-04/08).

Author contributions
W.E.I.S. and X.L. contributed equally to the work. W.C.H.C. planned and supervised the project.

Additional information
Supplementary information accompanies this paper at http://www.nature.com/scientificreports

Competing financial interests: The authors declare no competing financial interests.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/