<table>
<thead>
<tr>
<th>Title</th>
<th>Pulsed Line Source Response of a Thin Sheet With High-Contrast Dielectric and Conductive Properties—A Time-Domain Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>de Hoop, A; MENG, L; Jiang, L</td>
</tr>
<tr>
<td>Citation</td>
<td>IEEE Transactions on Antennas and Propagation, 2013, v. 61 n. 11, p. 5649-5657</td>
</tr>
<tr>
<td>Issued Date</td>
<td>2013</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10722/202835</td>
</tr>
<tr>
<td>Rights</td>
<td>IEEE Transactions on Antennas and Propagation. Copyright © IEEE.; ©2013 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.; This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.</td>
</tr>
</tbody>
</table>
Pulsed Line Source Response of a Thin Sheet With High-Contrast Dielectric and Conductive Properties—A Time-Domain Analysis

Adrianus T. de Hoop, Member, IEEE, Ling Ling Meng, Student Member, IEEE, and Li Jun Jiang, Senior Member, IEEE

Abstract—A methodology is presented for analytically modeling the reflection and transmission of line-source excited pulsed electromagnetic fields at a thin, planar layer with high-contrast dielectric and conductive properties. Closed-form analytic time-domain expressions are derived for the field components in a 2-D setting via an extension of the Cagniard–DeHoop method. The response to the power exponential source and the power exponential monochromatic pulse were studied using the newly proposed method.

Index Terms—Cagniard-de Hoop method, high-contrast thin layers, power exponential monochromatic pulse, power exponential pulse, pulsed electromagnetic (EM) fields.

I. INTRODUCTION

In the design of integrated electronic circuits and devices for ultra-high bit-rate signal processing, the research of pulsed electromagnetic (EM)-field signal transmission along thin sheets of highly conducting material is an issue of increasing interest. This holds, in particular, for signals with ultrashort pulse rise times and ultrashort pulse time widths, with spectral content in the terahertz regime. In this regime, the traditional metals can no longer be modeled as perfectly conducting and the associated decay in amplitude and, even more important, the broadening of the pulse shape are issues to be accounted for in the design procedure. The pulse broadening itself is giving rise to limits on the pulse repetition rate in the signals that carry the binary information, because of the resulting pulse crowding.

In this paper, we analyze the pulsed EM-field signal transfer in a canonical model configuration. It consists of a pulsed electric-current line source, oriented parallel to a thin sheet with high contrasts in its conductive and dielectric properties with respect to its embedding free space, that emits an EM field. The electric-field strength of the propagated EM field at some distant point is taken as the received signal. The constitutive properties of the thin sheet are modeled via the thin-sheet, high-contrast boundary conditions that have been derived in [1] (where also references to related methods in the earlier literature can be found). Preliminary results to the problem have been reported in [2]. Closed-form time-domain (TD) expressions for the field components are constructed with the aid of an extension of de Hoop’s modification to the Cagniard method for handling pulsed-field propagation in layered media [3]–[7].

Section II contains the description of the configuration and the formulation of the problem. The corresponding problem in the wave slowness domain is constructed in Section III. In Section IV, the solution to the problem in the wave slowness domain is presented. Section V discusses the transformation of this solution back to the space-time domain. Section VI gives two types of line source pulses. Section VII gives a number of illustrative numerical results. Section VIII concludes this paper.

II. DESCRIPTION OF THE CONFIGURATION AND FORMULATION OF THE PROBLEM

The position in the configuration is specified by the coordinates \(\{x_1, x_2, x_3\} \in \mathbb{R}^3 \) with respect to a Cartesian reference frame with the origin \(O \) and the three mutually perpendicular base vectors \(\{\hat{i}_1, \hat{i}_2, \hat{i}_3\} \) of unit length each. In the indicated order, the base vectors form a right-handed system. The time coordinate is \(t \in \mathbb{R} \). Differentiation with respect to \(x_m \) is denoted by \(\partial_m \); \(\partial_t \) is a reserved symbol denoting differentiation with respect to \(t \).

A line source of electric current with volume source density

\[
J_2(x_1, x_3, t) = I(t) \delta(x_1, x_3 - h)
\]

electric current \(I(t) \) and located at \(\{x_1 = 0, -\infty < x_2 < \infty, x_3 = h\} \), with \(h > 0 \), in a homogeneous, isotropic, lossless medium with electric permittivity \(\varepsilon > 0 \) and magnetic permeability \(\mu > 0 \), generates a 2-D, \(x_2 \)-independent, EM field with nonvanishing components \(\{H_1, E_2, H_3\}\).\(\{x_1, x_3, t\} \). The pertaining EM-field equations are

\[
\partial_1 H_1 - \partial_3 H_3 + \varepsilon \partial_t E_2 = -I(t) \delta(x_1, x_3 - h),
\]
\[
\partial_1 H_2 + \mu \partial_t H_3 = 0,
\]
\[
\partial_3 E_2 - \partial_t H_1 = 0.
\]
In the plane \(\{ x_3 = 0 \} \), a thin layer of vanishingly small thickness \(d \) and with high contrasts in dielectric and conductive properties is present as shown in Fig. 1. Its properties are modeled via the thin-sheet boundary conditions [1]

\[
\lim_{x_3 \to 0^+} E_2(x_1, x_3, t) = \lim_{x_3 \to 0^-} E_2(x_1, x_3, t) = E_2(x_1, 0, t) \text{ for all } x_1 \in \mathbb{R}, t \in \mathbb{R},
\]

where \(\epsilon_L(x_3) \) is the electric permittivity of the layer and

\[
\lim_{x_3 \to 0^+} H_1(x_1, x_3, t) - \lim_{x_3 \to 0^-} H_1(x_1, x_3, t) = (G_L + C_L \partial_t) E_2(x_1, 0, t) \text{ for all } x_1 \in \mathbb{R}, t \in \mathbb{R},
\]

where

\[
G_L = \lim_{a \to 0^+} \int_{x_3 = -a}^{x_3 = a} \sigma_L(x_3) dx_3
\]

and

\[
C_L = \lim_{a \to 0^+} \int_{x_3 = -a}^{x_3 = a} \epsilon_L(x_3) dx_3
\]

where \(\sigma_L(x_3) \) is the electric conductivity of the layer and \(\epsilon_L(x_3) \) is the electric permittivity of the layer.

It is assumed that the electric current excitation starts to act at the instant \(t = 0 \) and that prior to this instant, the field quantities vanish throughout the configuration (initial condition).

III. Field Problem in the Wave Slowness Domain

The problem is solved with the aid of an extension of de Hoop’s modification [5] of the Cagniard technique [3], [4]. It yields closed-form time-domain expressions for the field components in the configuration. Exploiting the time invariance of the configuration and the causality of the source and field quantities, the method starts with the one-sided time Laplace transformation

\[
\{ \hat{H}_1, \hat{E}_2, \hat{H}_3 \}(x_1, x_3, s) = \int_0^{\infty} \exp(-st) \{ H_1, E_2, H_3 \}(x_1, x_3, t) dt
\]

for \(s \in \mathbb{C}, \Re(s) > 0 \). (9)

The transforms in the left-hand side are analytic in the right-half \(\{ s \in \mathbb{C}, \Re(s) > 0 \} \) of the complex \(s \)-plane (Fig. 2). In view of Lerch’s theorem ([8, 63–65]), the interrelation between the time-domain functions and their Laplace transform’s counterparts is unique when the latter are specified at the sequence of equidistant values of the transform parameter \(s \) (Fig. 2)

\[
\mathcal{L} = \{ s \in \mathbb{R}, s = s_0 + nh, s_0 > 0, h > 0, n = 0, 1, 2, \ldots \}
\]

(10)

on the positive real \(s \)-axis. (Note that in this theorem, causality is a decisive property.) Under the transformation (9) and the zero-value initial conditions, the operator \(\partial_t \) is replaced with a multiplication by \(s \). Furthermore (11)

\[
\{ \hat{H}_1, \hat{E}_2, \hat{H}_3 \}(x_1, x_3, s)
\]

\[
= \frac{s}{2\pi i} \int_{p - i\infty}^{p + i\infty} \exp(-spx_3) \{ \hat{H}_1, \hat{E}_2, \hat{H}_3 \}(p, x_3, s) dp
\]

(12)

where \(p \) is the (complex-valued) wave slowness parameter. Through this representation, the operator \(\partial_t \) is replaced with \(-sp \). Furthermore, using the properties of the Dirac delta distribution

\[
\hat{J}_2(p, x_3, s) = \delta(x_3 - h).
\]

(13)

With this, the field (2)–(4) transform into

\[
-sp\hat{H}_3 - \partial_x \hat{H}_3 + s \epsilon \hat{E}_2 = -\hat{I}(s) \delta(x_3 - h)
\]

(14)

\[
-sp\hat{E}_2 + s \mu \hat{H}_3 = 0
\]

(15)

\[
\partial_x \hat{E}_2 - s \mu \hat{H}_3 = 0
\]

(16)

and the boundary conditions (5)–(6) into

\[
\lim_{x_3 \to 0^+} \hat{E}_2(p, x_3, s) - \lim_{x_3 \to 0^-} \hat{E}_2(p, x_3, s) = \hat{I}(p, 0, s)
\]

(17)

\[
\lim_{x_3 \to 0^+} \hat{H}_1(p, x_3, s) - \lim_{x_3 \to 0^-} \hat{H}_1(p, x_3, s) = (G_L + s C_L) \hat{E}_2(p, 0, s).
\]

(18)
IV. WAVE SLOWNESS-DOMAIN FIELD EXPRESSIONS

Defining the incident field \{H_1^i, E_2^i, H_3^i\} as the field that would exist in the absence of the contrasting layer, (14)–(16) lead to

\[
\partial_s^2 \tilde{E}_2^i - s^2 \gamma^2(p) \tilde{E}_2^i = s \mu \tilde{I}(s) \delta(x_3 - h)
\]

(19)

where

\[
\gamma = (\epsilon - \rho^2)^{1/2}
\]

(20)

with \(\gamma > 0 \) for \(p \in \mathbb{R} \) and

\[
c = (\epsilon \mu)^{1/2}
\]

(21)

From (19), it follows that:

\[
\tilde{E}_2^i = \mu \tilde{I}(s) \frac{\exp \left[-s \gamma(p) X_3^i \right]}{2 \gamma(p)}
\]

(22)

where \(X_3^i = |x_3 - h| \). In the half-space \(\{x_1, x_2 \in \mathbb{R}^2, x_3 > 0\} \), we now write the total field as the sum of the incident and the reflected field \{H_1^t, E_2^t, H_3^t\}. In the half-space \(\{x_1, x_2 \in \mathbb{R}^2, x_3 < 0\} \), we denote the total field as the transmitted field \{H_1^t, E_2^t, H_3^t\}. Taking into account that the reflected field and the transmitted field travel away from the scattering thin layer, we write their electric-field wave slowness representation as

\[
\tilde{E}_2^t = \mu \tilde{R}(p, s) \tilde{I}(s) \frac{\exp \left[-s \gamma(p) X_3^t \right]}{2 \gamma(p)}
\]

(23)

where \(X_3^t = x_3 + h \), with \(x_3 > 0 \), and

\[
\tilde{E}_2^r = \mu \tilde{T}(p, s) \tilde{I}(s) \frac{\exp \left[-s \gamma(p) X_3^r \right]}{2 \gamma(p)}
\]

(24)

where \(X_3^r = h - x_3 \), with \(x_3 < 0 \). In (23), \(\tilde{R}(p, s) \) is the wave slowness domain reflection coefficient; in (24), and \(\tilde{T}(p, s) \) is the wave slowness domain transmission coefficient. Using (22)–(24) in (15)–(16) and substituting the result in the boundary conditions (17)–(18), we obtain

\[
\tilde{R}(p, s) = -1 + \tilde{T}(p, s),
\]

(25)

\[
\tilde{T}(p, s) = \frac{\beta_L(p)}{\beta_L(p) + G_L/C_L + s}
\]

(26)

with

\[
\beta_L(p) = \frac{2 \gamma(p)}{\mu C_L}
\]

(27)

V. SPACE-TIME EXPRESSIONS FOR THE ELECTRIC-FIELD CONSTITUENTS

Based on (22)–(24), the expressions for the time Laplace transformed electric-field constituents are written as

\[
\hat{E}_2^{t,r}(x_1, x_3, s) = s \mu \tilde{I}(s) \hat{G}^{t,r}(x_1, x_3, s)
\]

(28)

where

\[
\hat{G}^t(x_1, x_3, s) = \frac{1}{2\pi i} \int_{p = -i\infty}^{i\infty} \tilde{R}(p, s) \exp \left\{ -s \left[px_1 + \gamma(p) X_3^t \right] \right\} \frac{dp}{2 \gamma(p)}
\]

(29)

\[
\hat{G}^r(x_1, x_3, s) = \frac{1}{2\pi i} \int_{p = -i\infty}^{i\infty} \tilde{T}(p, s) \exp \left\{ -s \left[px_1 + \gamma(p) X_3^r \right] \right\} \frac{dp}{2 \gamma(p)}
\]

(30)

\[
\hat{G}^s(x_1, x_3, s) = \frac{1}{2\pi i} \int_{p = -i\infty}^{i\infty} \tilde{T}(p, s) \exp \left\{ -s \left[px_1 + \gamma(p) X_3^s \right] \right\} \frac{dp}{2 \gamma(p)}
\]

are the corresponding Green’s function constituents. Note that the integrands, considered as a function of \(p \) and \(s \) real and positive, have no poles in the complex \(p \)-plane, only the branch points at \(p = \pm \epsilon \). This is indicative for the absence of true surface waves like, for example, in elastodynamics, the Rayleigh wave at the stress-free boundary of an elastic solid, the Scholte wave at a fluid/solid boundary, and the Stoneley wave at the interface of two elastic solids. This does, however, not imply that no large surface effects can occur.

The time-domain counterparts of (29)–(31) are determined with the aid of an extension of the standard Cagniard-de Hoop method [5]. Accordingly, the integrands in the integration with respect to \(p \) are, away from the imaginary axis, continued analytically into the complex \(p \)-plane, cut along the branch cuts \(\{1/c < \text{Re}(p) < \infty, \text{Im}(p) = 0\} \), taking \(\text{Re}(\gamma(p)) > 0 \) for all \(p \) in the cut plane. Under the application of Cauchy’s theorem and Jordan’s lemma ([9, p. 1054–1056] of complex function theory, the integration along the imaginary \(p \)-axis is replaced with one along the hyperbolic path (“modified Cagniard” or “Cagniard-DeHoop” path, as shown in Fig. 3)

\[
px_1 + \gamma(p) X_3 = \tau \text{ for } T < \tau < \infty
\]

(32)

where \(X_3 > 0, T - 1/c \) and \(D = (x_1^2 + X_3^2)^{1/2} > 0 \), while \(\tau \) replaces \(p \) as the variable of integration. In the relevant Jacobian, the relation

\[
\partial p/\partial \tau = -i \gamma(p)/(\tau^2 - \tau^2)^{1/2}
\]

(33)

is used.

Next, Schwarz’s reflection principle of complex function theory is used to combine the integrations in the upper and lower halves of the complex \(p \)-plane. Parametrizing the upper part of the modified Cagniard path through

\[
\overline{p}(x_1, X_3, \tau) = \frac{x_1}{D^2} + \frac{X_3}{D^2} - \frac{\tau^2}{D^2}
\]

for \(T < \tau < \infty \) (34)

which has the consequence that

\[
\bar{\gamma}(x_1, X_3, \tau) = \gamma(\overline{p}(x_1, X_3, \tau))
\]

\[
= \frac{X_3}{D^2} - \frac{x_1}{D^2} - \frac{\tau^2}{D^2}
\]

for \(T < \tau < \infty \) (35)

and (29) leads to

\[
\hat{G}^t(x_1, X_3, s) = \frac{1}{2\pi} \int_{\tau = T}^{\infty} \exp \left[-s \tau \right] \frac{1}{(\tau^2 - T^2)^{1/2}} d\tau
\]

(36)

and (30) to

\[
\hat{G}^r(x_1, X_3, s) = \frac{1}{2\pi} \int_{\tau = T}^{\infty} \exp \left[-s \tau \right] \left[-1 + \frac{\beta_L(p)}{\beta_L(p) + G_L/C_L + s} \right] \frac{1}{(\tau^2 - T^2)^{1/2}} d\tau
\]

(37)
Fig. 3. Cagniard-DeHoop path of integration in the complex slowness plane \((\tau_1/X_3 = 0.75)\).

and (31) to

\[
\hat{G}^i(x_1, X_3^t, s) = \frac{1}{2\pi} \int_{\tau_1}^{\infty} \exp(-s\tau) \times \text{Re} \left\{ \frac{\beta_L[\tilde{p}^t]}{\beta_L[\tilde{p}^t] + G_L/C_L + s} \right\} \frac{1}{(\tau^2 - T^2)^{1/2}} d\tau
\]

where (25)–(27) have been used and the superscripts \(^i\) refer to the incident, reflected, and transmitted wave constituents, respectively.

In (34), Lerch’s uniqueness theorem of the one-sided Laplace transformation ([8, pp. 63–65] directly yields

\[
G^i(x_1, X_3^t) = \frac{1}{2\pi(t^2 - T^2)^{1/2}} H(t - T^i). \tag{39}
\]

If in (37) and (38), the term in brackets in the integrands had been independent of \(s\), Lerch’s theorem would, here as well, directly provide the corresponding functions of time. With the aid of the Schouten–Van der Pol theorem of the one-sided Laplace transformation [10], [11, pp. 124–126], [12], and [13, pp. 232–236], we proceed further, however, and apply further rules of the inverse Laplace transformation to obtain

\[
G^r(x_1, X_3^t) = \left[\frac{1}{2\pi(t^2 - T^2)^{1/2}} \right] \times \text{Re}\{\beta_L[\tilde{p}^t]\} \times \exp\{-[\beta_L[\tilde{p}^t] + G_L/C_L](t - \tau)\} \times \frac{1}{(\tau^2 - T^2)^{1/2}} d\tau \times H(t - T^r), \tag{40}
\]

\[
G^t(x_1, X_3^t) = \left[\frac{1}{2\pi(t^2 - T^2)^{1/2}} \right] \times \text{Re}\{\beta_L[\tilde{p}^t]\} \times \exp\{-[\beta_L[\tilde{p}^t] + G_L/C_L](t - \tau)\} \times \frac{1}{(\tau^2 - T^2)^{1/2}} d\tau \times H(t - T^t). \tag{41}
\]

(Note that due to the presence of \(\tau\) in \(\beta_L[\tilde{p}^t]\), the right-hand sides of (40) and (41) are not time convolutions.) Since \(\beta_L[\tilde{p}^t]\) is complex-valued, its occurrence in the exponential function is expected to lead to oscillatory phenomena whose magnitude is the more pronounced the larger the imaginary part of \(\beta_L[\tilde{p}^t]\) is with respect to its real part. Evidently, this ratio is position dependent and the phenomenon is expected to be larger than the ratio \(x_1/X_3^t\), that is, closer to the boundary or, which is equivalent, at large horizontal offsets.

Equation (28) finally leads to the time-domain expressions for the electric-field constituents

\[
E^{i,r,t}(x_1, x_3, t) = \mu \partial_t \left[I(t)^{(t)} \ast G^{i,r,t}(x_1, x_3, t) \right] \tag{42}
\]

where \(^{(t)} \ast \) denotes the time convolution. Further investigation into the effect of the different parameters on waveshapes requires a study via the numerical evaluation of the relevant integrals in (40)–(42). This is discussed in the next section.

VI. FEEDING ELECTRIC CURRENT PULSE SHAPES

Two types of feeding electric current pulse shapes will be used: the power exponential pulse and the power exponential monocycle pulse [14], [15]. Their definitions and properties are given as follows.

A. Power Exponential Pulse

The power exponential pulse belongs to the class of unipolar pulses. Unipolar pulses do not change sign with time and have a single maximum in their absolute value. Unipolar pulses are typically suited for modeling electric currents that are associated with the discharge of an initially charged capacitor in an otherwise resistive electric circuit.

A convenient three-parameter unipolar pulse is the power exponential pulse, characterized by its pulse amplitude \(I_{\text{max}}\), its pulse rise time \(t_r\), and the power \(\nu\) of its initial increase with time

\[
I(t) = I_{\text{max}} \left(\frac{t}{t_r} \right)^\nu \exp \left[-\nu \left(\frac{t}{t_r} - 1 \right) \right] H(t) \quad \text{with} \ \nu \geq 0 \tag{43}
\]

where \(H(t)\) denotes the Heaviside unit step function:

\[
H(t) = \{0, 1/2, 1\} \text{ for } \{t < 0, t = 0, t > 0\}. \tag{44}
\]

An example of a power exponential pulse is shown in Fig. 4.
B. Monocycle Pulse

In all cases where there is an electric or electronic circuit, no net electric charge is transported (as is the case in all closed electrically conducting loops), the condition
\[\int_{t=0}^{\infty} I(t)dt = 0 \] (45)
applies. The simplest manner to satisfy (45) is to take \(I(t) \) to be a function with a single zero, a so-called monocycle pulse. The condition is elegantly accommodated by taking the pulse shape of a monocycle pulse to be the time differentiated one of a unipolar pulse. Then, the pulse rise time of the differentiated pulse manifests itself as the zero crossing of the constructed monocycle pulse. For the power exponential pulse (43), this results in
\[I(t) = I_{\text{max}} \partial_t \left[\left(\frac{t}{t_r} \right)^\nu \exp \left[-\nu \left(\frac{t}{t_r} - 1 \right) \right] \right] H(t) \]
\[= I_{\text{max}} \nu \left(1 - \frac{t}{t_r} \right) \left(\frac{t}{t_r} \right)^{\nu-1} \times \exp \left[-\nu \left(\frac{t}{t_r} - 1 \right) \right] H(t) \]
with \(\nu \geq 1 \). (46)

In digital signal transfer, the first peak in each of the constituents in a monocycle pulse train is indicative of the binary value it represents. For these kinds of applications, it is customary to consider the corresponding peak value as the amplitude of the pulse. Furthermore, the zero crossing time \(t_{0x} \) is taken as one of its characteristics. The two extrema of the right-hand side of (46) follow from equating to zero its time derivative. This yields
\[\nu(\nu - 1) - 2 \nu^2 t/t_{0x} + \nu^2(t/t_{cx})^2 = 0 \] (47)
which has the solutions
\[t/t_{0x} = 1 + \nu^{-1/2} \] (48)
From this, it follows that:
\[t_{\text{peak}} = (1 - \nu^{-1/2})t_{0x} \] (49)
Introducing the peak amplitude
\[I_{\text{peak}} = I(t_{\text{peak}}) \] (50)
the standard form of (46) is obtained as
\[I(t) = I_{\text{peak}} N(\nu) \left(1 - \frac{t}{t_{0x}} \right) \left(\frac{t}{t_{0x}} \right)^{\nu-1} \times \exp \left[-\nu \left(\frac{t}{t_{0x}} - 1 \right) \right] H(t) \]
with \(\nu \geq 1 \) (51)
where
\[N(\nu) = \nu^{1/2} \left(\frac{1}{1 - \nu^{-1/2}} \right)^{\nu-1} \exp(-\nu^{1/2}). \] (52)

An example of a monocycle power exponential pulse is shown in Fig. 5.

VII. ILLUSTRATIVE NUMERICAL RESULTS

In this section, we present some illustrative numerical results for the aforementioned two types of pulse shapes of the feeding electric current: the unipolar pulse of the power exponential type and the monocycle pulse related to the first derivative of the power exponential pulse. The governing electromagnetic parameters in the configuration are: the layer conductance ratio
\[\eta_L = \frac{G_L}{Y} = \frac{G_L}{Z} \] (53)
where \(Y = (\epsilon/\mu)^{1/2} \) and \(Z = (\mu/\epsilon)^{1/2} \), and the layer admittance time constant
\[\tau_L = \frac{C_L}{G_L}. \] (54)

Time snaps at certain locations and 2-D color density plots of the field distribution in space at successive time instants are computed.\(^1\)

The generic time convolution integral in the representation of the different wave constituents is of the form
\[E(t) = \int_{\tau=T}^{t} I(t - \tau) \frac{A(\tau)}{(\tau^2 - T^2)^{1/2}} d\tau \] (55)
To account for the inverse square-root singularity in the integrand at \(\tau = T \), the following change of variable of integration is carried out:
\[\tau = T + (t - T)u^2 \text{ for } 0 < u < 1. \] (56)
This transforms (55) into
\[E(t) = \left[2(t - T)^{1/2} \int_{u=0}^{1} I[(t - T)(1 - u^2)] \times \frac{A[T + (t - T)u^2]}{[2T + (t - T)u^2]^{1/2}} \right] H(t - T). \] (57)
\(^1\) A copy of the Matlab programs is available upon request from jiangly@hku.hk.
Actually, $E_1(x_1, x_3, t)$ admits a closed-form expression, whereas for $E_2(x_1, x_3, t)$ and $E_3(x_1, x_3, t)$, we use this method when calculating $G^r(x_1, X_3', t)$ and $G^t(x_1, X_3', t)$.

The numerical results of $E_2(x_1, x_3, t)$, $E_3(x_1, x_3, t)$ and $E_3'(x_1, x_3, t)$ are computed using the proposed method and plotted. The first scenario computed uses the parameters $G_L/Y = 10$, $t_\tau/t_x = 0.5$ and $t_\tau/t_{0x} = 0.5$. E_0 is a constant. Figs. 6–8 are the resulting E-field time snaps at three specified locations corresponding to the power exponential pulse. The line source is located at $(0, 0, 1)ct_x$. Fig. 6 shows the incident pulsed field at $(0, 0, 0^+)ct_x$, $(0, 5, 0, 0.5)ct_x$ and $(1, 0, 1.5)ct_x$. The dimensionless values of x_1/x_3 equal 1, 1, and 2/3. Fig. 7 shows the reflected field at these three positions $(x_1/x_3 = 1, 1, 2/3)$. The power exponential pulse is obviously delayed and inverted in phase through the reflection on the thin highly conductive layer. Oscillations brought by $G^r(x_1, X_3', t)$ are overwhelmed by the attenuation. This case also occurs in other figures related to reflected E-field and transmitted E-field (Figs. 8, 10–12 and 15–16). Fig. 8 shows the transmitted waves versus the time at three positions of the other side of the object layer: $(0, 0, 0^-)ct_x$, $(0.5, 0, -0.5)ct_x$, and $(1, 0, -1)ct_x$. The dimensionless values of x_1/x_3 are equal $-1, -1$ and -1. Only a small portion of the field passes through the thin layer due to the high contrast and conductivity. Figs. 9–11 are the E-field time snaps corresponding to the monocycle pulse for the same thin layer. The position of the line source is $(0, 0, 1)ct_x$. Fig. 12 is used to verify the boundary condition. We first draw the incident field, reflected field, and transmitted field at location $(0, 0, 0)ct_{0x}$. We expect the continuity condition of the E-field to hold at $x_3 = 0$. Hence, the subtraction of the total E-field from both sides shall be zero, which means a flat line at 0. Fig. 12 demonstrates the validity of this property. Hence, it can be seen that the proposed method can reasonably predict the reflected wave and transmitted wave.

We also plot the figures of the field distribution in space at successive time instants for reflected wave and transmitted wave.
Fig. 10. Reflected E-field when the feeding electric current pulse is a monocycle pulse.

Fig. 11. Transmitted E-field when the feeding electric current pulse is a monocycle pulse.

(Figs. 13 and 14). The feeding electric current pulse is the monocycle pulse.

In the second case, we consider a 30-μm-thick copper layer using the same method to obtain the incident wave, reflected wave, and transmitted wave. This type of copper layer is frequently used for printed-circuit boards (PCBs). The feeding electric current pulse is the monocycle pulse. The reflected and transmitted figures are given in Figs. 15 and 16 since the incident figure is the same as the aforementioned one. Comparing Figs. 15 and 16 with Figs. 10 and 11, we can see that the transmitted wave is much smaller because the high contrast layer is much thicker in this second case. To verify this method, we now calculate the generalized transmission coefficient of a three-layer medium. The thin sheet is located in the middle. The generalized transmission coefficient at the lower surface of the sheet in the frequency domain is

\[T_{1,3} = \frac{T_{1,2}}{1 - R_{2,3} e^{i k_2 \Delta d_2} e^{i k_3 \Delta d_3}}. \]

(58)

Here, \(T_{1,2} \) and \(T_{2,3} \) are transmission coefficients at the interfaces from medium 1 (air) to medium 2 (thin sheet) and from medium 2 to medium 3 (air), respectively. \(k_2 \) is the wave number in medium 2. Fig. 17 shows the magnitude of \(T_{1,3} \) corresponding to the first scenario, that is, \(G_L/Y = 10 \) and \(\tau_{L}/t_{0x} = 0.5 \). The observation point in the frequency domain is 100 MHz (\(t_{0x} = 1 \times 10^{-15} \text{s} \)). Fig. 18 gives the result of \(T_{1,3} \) when the middle layer is copper. In both figures, we can find that the transmitted wave of the incident wave matches well with our results.

Fig. 12. Verifying the boundary condition when the feeding electric current pulse is a monocycle pulse.

Fig. 13. Reflected E-field density plot when the feeding electric current pulse is a monocycle pulse.

Fig. 14. Transmitted E-field density plot when the feeding electric current pulse is a monocycle pulse.
using the proposed method if we compare the value of the transmission coefficient at the observation point with the ratio of the maximum of the transmitted wave over the maximum of the incident wave. In addition, we use a popular commercial tool for cross checking, in which the plane wave is employed as the port excitation. Fig. 19 is the simulation result using the commercial tool for the first case. From the figure, we can find that the ratio is close to the generalized transmission coefficient and our numerical result. This means that our setup for the model in the commercial tool is correct. An explicit merit of our method is high efficiency since it almost took 36 h to obtain the transient results if the commercial tool is used. We also use this tool to simulate the copper case. Unfortunately, it fails. The time-consuming drawback and the failure for a high-contrast thin layer of the commercial tool, on the other hand, set off the value of our method.
VIII. CONCLUSION

Via an extension of the Cagniard-de Hoop method for analyzing the pulsed-field behavior in layered configurations, closed-form analytic time-domain expressions have been derived for the EM-field constituents that are generated by a pulsed line source of electric current in the presence of a thin, highly contrasting layer with dielectric and conductive properties in a 2-D model setting. It provides a novel solution for the field computation of line sources on top of the thin conductive layers frequently encountered in integrated-circuit and printed-circuit-board designs. Numerical results based on the field expressions obtained can serve as an indication as to the possibilities of applying the pertaining thin-sheet (approximate) boundary conditions in codes for computational electromagnetics.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers for suggestions to improve this manuscript and to add more material.

REFERENCES

