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Abstract

The purpose of this study is to explore the optimal control problems for a class of single spin 1/2

quantum ensembles. The system in question evolves on a manifold in R3 and is modeled as a bilinear

control form whose states are represented as coherence vectors. An associated matrix Lie group system

with state space SO(3) is introduced in order to facilitate solving the given problem. The controllability

as well as the reachable set of the system is first analyzed in detail. Then, the maximum principle is

applied to the optimal control for system evolving on the Lie group of special orthogonal matrices of

dimension 3, with cost that is quadratic in the control input. As an illustrative example, the authors

apply our result to perform a reversible logic quantum operation NOT on single spin 1/2 system.

Explicit expressions for the optimal control are given which are linked to the initial state of the system.

Keywords. Spin 1/2 System, Optimal Control, Right Invariance, Maximum Principle

1 Introduction

Quantum control has drawn much attention in the control community since it has numerous potential

applications in many fields [1], such as physical chemistry, quantum optics, nanotechnology, etc. The de-

scriptions for the dynamics of classical and quantum systems coupling to the surrounding environment are

essentially distinct owing to the different intrinsic nature reacting to observations between the macroscop-

ic objects and microscopic particles [2], and thus the classical control theory cannot be indiscriminately

applied to the quantum systems. It is necessary to establish and develop new control strategies and theory

in order to bring us better emerging applications of quantum technology.

In recent years, many reports on the control of the spin 1/2 quantum systems have appeared in the

literature [3–9]. The spin 1/2 particle with two spin states: “spin up” and “spin down” is a good instance

of an implementation of qubits for a quantum computer, and has been discussed and utilized for many

years in the nuclear magnetic resonance (NMR) spectroscopy. Moreover, the design of quantum logic gate

has been becoming an area of research focus among the field of quantum information processing, in which

the spin 1/2 systems also are playing an important role, and has been used as a building block for the

construction of quantum computers. Currently, there are some prototype which have been invented using

different types of spin 1/2 systems. Over the last four decades, various and universally accepted set of tools

have been developed to achieve control and state manipulation. Nevertheless, there are still a number of

practical issues such that further investigations are needed to deal with them in practical applications.

By employing the principles of optimal control theory, a variety of techniques [4,5,7,11,12,15] have been

proposed for determining the control actions to steer the dynamical systems described by the Schrödinger

equation and to acquire a good performance in an optimal manner. D’Alessandro et al. [4] studied the
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optimal control problem of a two-level quantum system. The system considered was modeled as a bilinear

system based on the Schrödinger equation. The optimal controls were provided which could steer the

system from an initial state to a prescribed target state with a minimum cost. Khaneja et al. [5] investigated

the design of controls as the pulse sequences to implement a unitary transfer between states in a minimum

time. An analytical characterization of such time optimal pulse sequences for two-spin systems was given,

in which the problem of obtaining the minimum time to generate a unitary propagator was converted to

finding the shortest length paths on certain coset spaces. Specifically, Boscain et al. [7] tackled the problem

of minimizing the population transfer time for spin 1/2 particles with control amplitude bounded. This

problem was settled with approaches of optimal syntheses on two-dimensional manifolds.

The aim of this paper is to investigate an optimal control problem for a class of mixed-state single spin

1/2 system whose dynamics are evolving on a manifold. The description of the system is modeled as a

right invariant system and there are many existing literature on the right invariant systems. Brockett [17]

investigated some fundamental issues of the right invariant systems whose state space is the Lie groups

generated by the right invariant vector field associated with the system. Necessary and sufficient conditions

of controllability, observability and realization problems were presented by exploiting the properties of Lie

groups and Lie algebras, which laid a foundation for the studies of this kind of systems. Using the

topological properties of Lie groups, alternative conditions for controllability and observability of right

invariant systems were given in [16]. The reachable set was characterized from both the topological

and algebraic perspectives. In [18], some general criteria for testing the controllability, observability and

realization were established for a special class of system, whose state space is defined on spheres. The

optimal control problems in both deterministic and stochastic cases were discussed, and Pontryagin’s

maximum principle was applied to derive the necessary conditions for the optimal control.

More specifically, we are interested in the optimal control problem of the single spin 1/2 quantum

ensembles modeled as bilinear systems whose states are represented as coherence vectors. The main

contribution of this paper is to extend the existing result to a larger class of system, generalizing existing

wave-function-based results to single spin 1/2 quantum ensembles whose states are represented by density

matrices such that it allows the inclusion of mixed states. Controlling the evolution of coherence vector

is equivalent to controlling the state of an associated matrix Lie group system. Thus, the optimal control

problem for single spin 1/2 systems can be transformed to steer state of the matrix Lie group system

from the identity matrix to a final matrix corresponding to an target state of single spin 1/2 system in an

optimal fashion. The main tool we shall use is the maximum principle for systems on matrix Lie groups.

Rather than computing the numerical results for the optimal control based on the necessary conditions

obtained by the maximum principle, as an illustrative example, we derive the explicit expressions that the

optimal control law must follow for specified initial condition.

The organization of this paper is as follows. In Section 2, we derive the mathematical model for a mix-

state single spin 1/2 quantum system in a typical NMR setting and give the state-space representation.

The optimal control problem that we shall investigate is formulated. In Section 3, we present our main

results of this paper. The controllability for the associated matrix Lie group system is first analyzed, and

then by applying the maximum principle of Pontryagin, the necessary conditions for the optimal control

are presented with only single input involved. The characterization of the optimal control for an specified

operation is further revealed explicitly in view of the necessary conditions. Concluding remarks are given

in Section 4.

Throughout this paper, we use fairly standard notations listed as follows:
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R The real field.

A′ The transpose of matrix A.

A† The conjugate transpose of matrix A.

[A,B] AB −BA commutator of operators A and B.

SO(3) The special orthogonal group of 3× 3 real matrices.

so(3) The Lie algebra of SO(3).

Tr(A) Trace of matrix A.

2 Problem Formulation

In quantum mechanics, it is well-known that the Liouville-von Neumann equation is used to describe the

time evolution of a quantum system

i~ρ̇ = [H, ρ], (1)

where i denotes the imaginary unit, ~ is called the reduced Planck constant, H is the system Hamiltonian,

ρ is the density operator which represents the state of the system of interest and the bracket [·, ·] denotes
commutator of two operators. In what follows, we shall take ~ = 1 for the sake of brevity, thus one has a

neater form of (1) as follows

ρ̇ = −i[H, ρ]. (2)

We briefly recall some notions and definitions which are necessary for our problem statement. The

rescaled Pauli matrices together with the identity matrix are as follows:

λ0 =
1√
2

[
1 0

0 1

]
, λ1 =

1√
2

[
0 1

1 0

]
, λ2 =

1√
2

[
0 −i

i 0

]
, λ3 =

1√
2

[
1 0

0 −1

]
. (3)

It is well-known that in the case of single spin 1/2 system, any time-dependent density operator ρ ∈ SU(2)

can be expressed in terms of a real linear combination of these four matrices, that is

ρ = υjλj = υ · λ, j = 0, 1, 2, 3, (4)

in which υj ∈ R denotes the coefficient with respect to λj , υ = [υ0, υ1, υ2, υ3]
′ is referred to as the coherence

vector for ρ, λ is a vector formed by λj , j = 0, 1, 2, 3.

In quantum control, for a system in question the system Hamiltonian H usually consists of two parts:

one is the drift or free Hamiltonian Hd (also is known as the Zeeman Hamiltonian), and the other is

referred to as the control Hamiltonian Hc, in which the control term is involved; The latter one can be

altered externally. The Hamiltonian of a single spin 1/2 system in a static magnetic field B0 with control

actions by applying an electromagnetic field rotating at a frequency ωc close to the Larmor frequency

in the (λ1, λ2) plane can be accordingly divided into time-independent and time-dependent parts, which

correspond to Hd and Hc, respectively. Referenced to the laboratory frame, these two parts are formulated

as follows

Hd = −γB0λ3, (5)

Hc = −γB1(cos(ωct+ ϕ)λ1 + sin(ωct+ ϕ)λ2), (6)

where γ is the gyromagnetic ratio, B0 and B1 are the amplitudes of the static magnetic field and the

applied electromagnetic field in the (λ1, λ2) plane, respectively. For convenience, we define ω0 = γB0 and

ω1 = γB1, where ω0 is commonly known as Larmor frequency.
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In order to facilitate the solution of Eq. (2), it is necessary to switch Hd and Hc in the laboratory

frame into the representations in the rotating frame. In NMR, the reason for this is that experiments

are also observed in the rotating frame, which in fact can get rid of the large effects due to the Zeeman

Hamiltonian, and at the same time can remove the time dependence of the control Hamiltonian. In our

formulation, we take the rotation operator Rz to be exp(−iωcλ3t), and let ρ̃ denote the density operator

in the rotating frame corresponding to ρ. To obtain the time evolution equation of ρ̃ in the rotating frame,

one has

d

dt
ρ̃ =

d

dt
[RzρR

†
z]

=

[
d

dt
Rz

]
ρR†

z +Rz

[
d

dt
ρ

]
R†

z +Rzρ

[
d

dt
R†

z

]
= −iωcλ3RzρR

†
z +Rz

[
d

dt
ρ

]
R†

z +Rzρ(iωcλ3)R
†
z

= −iωcλ3ρ̃+Rz

[
d

dt
ρ

]
R†

z + ρ̃(iωcλ3)

= −i[ωcλ3, ρ̃] +Rz

[
d

dt
ρ

]
R†

z. (7)

Then, by Eq. (2), one can expand the right-hand side of Eq. (7),

d

dt
ρ̃ = −i{[ωcλ3, ρ̃] +Rz[H, ρ]R†

z}

= −i{[ωcλ3, ρ̃] + [RzHR†
z, RzρR

†
z]}

= −i{[ωcλ3, ρ̃] + [H̃, ρ̃]}

= −i[H̃ + ωcλ3, ρ̃], (8)

in which H̃ = RzHR†
z.

In terms of Eq. (8), the Hamiltonians in the rotating frame with H̃d and H̃c denoting the Zeeman

Hamiltonian and control Hamiltonian respectively become

H̃d = exp(−iωcλ3t)Hd exp(iωcλ3t) = −(ω0 − ωc)λ3 = ω̂λ3, (9)

H̃c = −ω1(cosϕλ1 + sinϕλ2), (10)

where ω̂ = ωc−ω0 and ϕ represents the direction in which the control acts. In what follows, it is assumed

that ϕ = 0, thus we have

H̃c = uλ1, (11)

in which u = −ω1 and is taken as the control input of the system.

To facilitate our study on the dynamics of the single spin-1/2 system, the adjoint operators and their

matrix representations are introduced. Based on the matrix representations of adjoint operators, the

Liouville-von Neumann equation Eq. (1) can be transformed into coordinate differential equations in a

bilinear form.

Define the operator “ad” using the matrices of (3) as follows:

adλj
λk = [λj , λk] =

3∑
l=0

cljkλl, j, k ∈ {0, 1, 2, 3}. (12)
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The structure constants cljk in Eq. (12) can be used to construct four 4× 4 matrices adλj
, j ∈ {0, 1, 2, 3},

which are given by (adλj
)kl = cljk. The matrices adλj

, j ∈ {0, 1, 2, 3} are referred to as matrix representa-

tions of the adjoint operators adλj
λk, j, k ∈ {0, 1, 2, 3}. It will be shown in (14) that these matrices play an

important role in depicting the dynamics of single spin 1/2 systems. Following the foregoing construction

method of the matrices adλj
, j ∈ {0, 1, 2, 3}, one readily obtains a lemma as below.

Lemma 1. [10]. The matrices adλj
, j = 0, 1, 2, 3, are given by

adλ0 = 04×4, adλ1 =
√
2i


0 0 0 0

0 0 0 0

0 0 0 −1

0 0 1 0

 , adλ2 =
√
2i


0 0 0 0

0 0 0 1

0 0 0 0

0 −1 0 0

 , adλ3 =
√
2i


0 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 0

 (13)

Remark 1. It can be seen that the matrices adλj
, j = 1, 2, 3 are skew symmetric, as they are all in

so(3). This observation will be used in our controllability analysis of single spin 1/2 systems. The matrix

representations of the adjoint operators for multi-spin 1/2 systems can also be constructed by using the

adjoint matrices of single spin 1/2 systems. Exactly as the single spin 1/2 case, these matrices play an

important role in modeling the multi-spin 1/2 systems with the coherence vectors alternatively representing

the system state.

For a single spin 1/2 system, we can use the relation (4) and Eq. (2) to derive ordinary differential

equations with respect to the real vector υ ∈ R4 instead of the density operator ρ ∈ SU(2). The matrices

adλj
, j = 0, 1, 2, 3, play a part in this ordinary differential equations. Then substituting (9) and (11) into

(4), one obtains the Bloch equations

υ̇ = −i (ω̂adλ3 + uadλ1)υ, (14)

where υ ∈ R4, i is the imaginary unit, ω̂ ∈ R and u ∈ R is the single control input. However, since the

entries in the first row and first column of adλ1 and adλ3 are all zero, we rewrite (14) in the rest of our

treatment as follows

ẋ = (A+Bu)x, (15)

in which x = [υ1, υ2, υ3]
′, Am,n = (−iω̂adλ3)m+1,n+1, Bm,n = (−iadλ1)m+1,n+1,m, n ∈ {1, 2, 3} and Am,n,

Bm,n denotes the mth row and nth column entry in A,B, respectively. In what follows, we take ω̂ = 1 .

Remark 2. It is noted that the previous work [4] dealt with the optimal problem for systems modeled by

the Schrödinger equation whose state space is the Lie group SU(2). Whereas, as shown above, based on

the Liouville-von Neumann equation the model for single spin 1/2 quantum ensembles is formulated as a

right invariant system whose state space is the Lie group SO(3).

In this paper, we will investigate an optimal control problem for a single spin 1/2 quantum system

described by (15). Such a model is formulated as a bilinear form yet different from the Schrödinger

equation. Only the single input case will be considered since the controllability of the system can be

achieved even for one input, which implies that just one electromagnetic field is available for control. For

a typical optimal control of quantum systems, we need to set up a measure of the total cost of the control

for time 0 up to time T , which is represented by the following objective functional

J(u) =
1

2

∫ T

0
u2(t)dt. (16)

We will design an optimal control law which can steer the system from an initial state to a specified final

state in finite time and simultaneously minimize the cost via the computation of (16).
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3 Main Results

In this section, we are interested in solving the optimal control problem of the system (15). The controlla-

bility of such system is first analyzed, then the necessary conditions of optimality are obtained by applying

the maximum principle. Given prescribed initial and final states, the optimal control input for the single

spin 1/2 system is derived using those necessary conditions.

3.1 Controllability

The existing literature on controllability for closed quantum systems is concerned with the Lie algebra

su(N) generated by matrices corresponding to the drift Hamiltonian and the control Hamiltonians in

the Schrödinger equation. The single spin 1/2 quantum ensembles is formulated as a bilinear form, in

which the drift term and control term as vector fields generate the Lie algebra so(3). The controllability

described by (15) is required to be examined before the optimal control design. Some knowledge of Lie

algebras and Lie groups acting on spheres is essential in the controllability analysis of right invariant

systems (see [13,14,16]).

The state space of the system (15) can be described by the Bloch sphere S2, that is, the system in itself

evolves on a manifold in R3. The controllability analysis of right invariant systems can be facilitated with

the introduction of matrix differential equations associated with (15), given by

Φ̇(t) = (A+ uB) Φ(t),Φ(0) = I, (17)

and the trajectory x(t) determined by (15) can also be obtained by allowing Φ(t) to act on the initial

state x(0) via usual matrix-vector multiplication. Thus, a new control problem on matrix Lie group can

be defined which is in connection with the original problem in question. Given the initial state (namely,

the identity matrix) and time T , one needs to find a control law which drives the system (17) to a

predetermined final state related to the final state of system (15) in an optimal manner. The system (15)

is controllable on the Bloch sphere S2 if for any two point on it they can be connected by a trajectory

generated by a Lebesgue integrable control input u(t); correspondingly, the system (17) is controllable if

the reachable set from the identity matrix can act transitively on Bloch sphere S2.
It is apparent that the adjoint matrices adλj

, j ∈ {1, 2, 3} are skew symmetric, and −iadλj
, j ∈ {1, 2, 3}

form a basis of the Lie algebra so(3), the adjoint representation of su(2). Also, we have the following

relations among these matrices

[−iadλj
,−iadλj

] = 0, j ∈ {1, 2, 3},
[−iadλ1 ,−iadλ2 ] =

√
2(−i)adλ3 ,

[−iadλ2 ,−iadλ3 ] =
√
2(−i)adλ1 ,

[−iadλ3 ,−iadλ1 ] =
√
2(−i)adλ2 .

(18)

Then, it can be verified that the generated Lie algebra of −iadλ1 and −iadλ3 (termed as “generators”)

obtained by following the way given in [17] is so(3), which is the smallest real-involutive linear sub-

space of gl(3,R) containing the generators −iadλ1 and −iadλ3 . The Lie algebra so(3) is isomorphic to

three-dimensional real space, with the Lie bracket corresponding to the vector product. Using this corre-

spondence, if M and N are any two linearly independent elements of so(3), then the set {M,N, [M,N ]}
forms a basis of so(3). Since an element M in a connected matrix Lie group SO(3) can be written in the

form M = eN1eN2 . . . eNm for some N1, N2, . . . , Nm in the Lie algebra so(3), then the system described by
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(17) is controllable on the Bloch sphere S2, which implies the corresponding system (15) is also control-

lable. For −iadλ1 and −iadλ3 , they satisfy the so-called “Jurdjevic-Qinn conditions” as well, which is a

sufficient condition for (15) to be globally stabilizable. It will be necessary in the following to adopt an

inner product ⟨·, ·⟩ in the Lie algebra so(3) defined as

⟨P,Q⟩ = Tr(PQ′) = −Tr(PQ). (19)

We have the following lemmas which will be used in next section.

Lemma 2. For each pair of matrices P and Q in so(3), the following properties hold

1) [P,Q] is orthogonal to both P and Q;

2) [P,Q] is equal to 0 if and only if P and Q are linearly dependent;

3) if [P,Q] ̸= 0, then P,Q, [P,Q] form a basis in so(3).

Proof. 1) By definition of the inner product in so(3) and the Lie bracket, one obtains

⟨[P,Q], P ⟩ = ⟨PQ−QP,P ⟩ = ⟨PQ,P ⟩ − ⟨QP,P ⟩ = Tr(PQP ′)− Tr(QPP ′) = 0. (20)

Thus, [P,Q] is orthogonal to both P and Q.

2) • Necessity: It is obvious that if αP + βQ = 0 for two not both zero real coefficients, then one has

[P,Q] = 0.

• Sufficiency: Note that −iadλ1 ,−iadλ2 ,−iadλ3 form a basis of so(3), then P and Q is expanded

as

P = p1 (−iadλ1) + p2 (−iadλ2) + p3 (−iadλ3) ,

Q = q1 (−iadλ1) + q2 (−iadλ2) + q3 (−iadλ3) . (21)

The Lie bracket of P and Q thus can be expanded as follows

[P,Q] = (p1q2 − p2q1)[−iadλ1 ,−iadλ2 ] + (p1q3 − p3q1)[−iadλ1 ,−iadλ3 ]

+ (p2q3 − p3q2)[−iadλ2 ,−iadλ3 ]. (22)

By substituting (18) into (22), we have

[P,Q] =
√
2(p1q2 − p2q1)(−i)adλ3 +

√
2(p1q3 − p3q1)(−i)adλ2

+
√
2(p2q3 − p3q2)(−i)adλ1 . (23)

Hence, [P,Q] = 0 means p1q2 − p2q1 = p1q3 − p3q1 = p2q3 − p3q2 = 0. We then conclude that

either all pi = 0, i ∈ {1, 2, 3} or qi = 0, i ∈ {1, 2, 3} or P and Q are linearly dependent.

3) If [P,Q] ̸= 0, then P and Q are linearly independent. There exist some constants c1, c2, c3, not all 0

such that

c1P + c2Q+ c3[P,Q] = 0. (24)

By taking the inner product with [P,Q] in (24), one has c3 = 0 and

c1P + c2Q = 0, (25)

which contradicts with the claim that P and Q are linearly independent.
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For the optimal control problems, we need to analyze the reachable sets in order to ensure the existence

of an optimal control for a specified task. Define R(Φ0, T ) as the set of matrices reachable from the matrix

Φ0 with the control u(t) at time T . Using the right invariance property, one has R(I, T )Φ0 = R(Φ0, T )

for all Φ0 ∈ SO(3) and all T . The following lemma summarizes properties of the reachable sets for the

system (17).

Lemma 3. Consider system (17) and the Lie algebra of so(3) generated by A and B together with the cor-

responding Lie group of SO(3). In addition, consider the subalgebra generated by A and the corresponding

Lie subgroup of SO(3), GA.

(a). There exists some time T̃ such that

R(I, T ) = SO(3), (26)

for every T > T̃ .

(b). The set of states reachable at any arbitrary time is given by∩
T>0

R(I, T ) = GA. (27)

From the above lemma, along with (17), the reachable set for the system (14) can also be characterized

by applying Φ(t) to act on the initial state of (14).

3.2 Optimal Control

Consider the system described by (15) defined on the sphere. With the time T > 0, the initial state x(0)

and the final state x(T ) given, suppose that the cost functional J(u) for the given control problem has

the form of (16), then we shall address the problem of acquiring the optimal control law which minimizes

the cost functional subject to the constraints that the system evolves according to (15) and the boundary

conditions are satisfied. As the previous controllability analysis subsection has shown, the controllability

of the vector system (15) is linked with that of the matrix Lie group system (17), thus we will attack the

problem based on the system (17).

In order to deal with the problem we need to introduce a costate matrix Θ(t), and define the system

Hamiltonian H as follows

H(Φ(t), u(t),Θ(t), t) , 1

2
u2(t) + ⟨Θ(t), AΦ(t)⟩+ ⟨Θ(t), uBΦ(t)⟩, (28)

which should be minimized with the optimal control û(t).

By applying the Pontryagin’s maximum principle, we can write the necessary conditions for the optimal

control  d
dt Φ̂(t) = (A+ u(t)B) Φ̂(t);

d
dtΘ̂(t) = − (A′ − u(t)B′) Θ̂(t),

(29)

for all t ∈ [0, T ]. Differentiating H with respect to u(t) yields the optimal control û(t), which reads

û(t) = ⟨−Θ̂(t), BΦ̂(t)⟩. (30)

Since the final time and the final state are specified, one has the boundary condition

Φ̂(T )x(0) = x(T ). (31)
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Several existing works [4, 18] have discussed the optimal control problems on matrix Lie groups by em-

ploying the maximum principle. The following result provides the necessary conditions for problems on

matrix Lie group SO(3).

Theorem 1. Suppose that û(t) is the optimal Lebesgue integrable control for the system (17), in the sense

that, it transfers the state of system from the initial state Φ0 (i. e. the identity matrix) to a prescribed

terminal state ΦT , in time T and simultaneously minimizes the cost functional J(u) given in (16). Let

Φ̂(t) denote the system trajectory generated by the corresponding optimal control. There exists a constant

matrix Θ ∈ so(3) and a nonnegative real scalar µ, such that û(t) pointwise minimizes the Hamiltonian

function

H(Θ,Φ(t), u(t)) , 1

2
µû2(t) + ⟨Θ, Φ̂′(t)AΦ̂(t)⟩+ ⟨Θ, uΦ̂′(t)BΦ̂(t)⟩. (32)

Proof. It follows from (17) that

d

dt

(
Φ̂(t)−1

)′
= −

[
A′ + û(t)B′] (Φ̂(t)−1

)′
.

Note that (
Φ̂(0)−1

)′
= I,

then there exists some constant matrix K such that

Θ(t) =
(
Φ̂(t)−1

)′
Θ.

The Hamiltonian in (28) thus can be written as⟨(
Φ̂(t)−1

)′
Θ, (A+ u(t)B) Φ̂(t)

⟩
+

1

2
µu2(t).

By the property of trace of a product, the above can be rewritten as⟨
Θ, Φ̂(t)−1 (A+ u(t)B) Φ̂(t)

⟩
+

1

2
µu2(t).

If Θ ∈ so(3), the value of H can only affected by any component of Θ lying in so(3). Thus, the proof is

complete.

Remark 3. It is noted that the costate matrix Θ must be in so(3) in contrast to su(2) for the necessary

optimality conditions based on the Schrödinger equation. Although there is a two-to-one correspondence

between Lie group SU(2) and SO(3), they are not homeomorphic since the two have different fundamental

groups.

Note that extremals which fulfill (32) with µ nonzero is referred to as normal, otherwise abnormal. In

the case of u(t) ≡ 0, if the target state lies in the Lie group generated by the matrix A and T is given such

that Φ(T ) = ΦT , then we can also consider it to be controllable. The following result is concerned with

the abnormal extremal of the control u(t) ̸= 0 obtained from Theorem 1 for the single spin 1/2 systems.

Theorem 2. For the optimal control problem of system (17) which minimizes (16) with a specified final

state Φ(T ) = ΦT and u(t) ̸= 0 a. e. (i. e. almost everywhere), there is no abnormal extremal for the

control input.

9



Proof. It is noticed that the existence and uniqueness of solutions of (17) for Lebesgue integrable control

can be verified by the Carathéodory conditions (see [4]). Suppose that there exists an extremal û(t) ̸= 0 a.

e. and we shall show that it is a normal extremal. Also assume that µ = 0 in (32). Because the extremal

û(t) must be bounded, and pointwise minimize the system Hamiltonian (32), we have the following relation

in [0, T ] by virtue of the necessary conditions for optimality in calculus of variations.

⟨Θ, Φ̂′(t)BΦ̂(t)⟩ = 0. a. e. (33)

By continuity, one has

⟨Θ, Φ̂′(t)BΦ̂(t)⟩ ≡ 0. (34)

Define a matrix C, with Cm,n = (−iadλ2)m+1,n+1. Differentiation of (34) leads to

⟨Θ, Φ̂′(t)CΦ̂(t)⟩ ≡ 0. (35)

By differentiating (35), we have

⟨Θ, Φ̂′(t)[C,A]Φ̂(t)⟩+ û(t)⟨Θ, Φ̂′(t)[C,B]Φ̂(t)⟩ = 0. a. e. (36)

Since [C,A] =
√
2ω̂B, [C,B] = −

√
2

ω̂ A, we can also obtain

ω̂⟨Θ, Φ̂′(t)BΦ̂(t)⟩ − 1

ω̂
û(t)⟨Θ, Φ̂′(t)AΦ̂(t)⟩ = 0. a. e. (37)

By making use of (34), one has

û(t)⟨Θ, Φ̂′(t)AΦ̂(t)⟩ ≡ 0. (38)

Then we must prove that

⟨Θ, Φ̂′(t)AΦ̂(t)⟩ ≡ 0. (39)

Recall that û(t) ̸= 0 a. e. is assumed, then we can obtain (39) as a result of the continuity of ⟨Θ, Φ̂′(t)AΦ̂(t)⟩.
It can be seen from (34), (35), (39) that if we have an extremal which is not normal, then Θ must be

zero. However, this contradicts with Theorem 1 and implies that the extremal is normal. The proof is

thus complete.

Remark 4. In our treatment, the optimal control is obtained by pointwise minimizing the Hamiltonian

function H. Since Φ(t) is uniformly bounded, it can be shown that the normality indicates the optimal

control is smooth.

In what follows, we shall investigate a specified optimal control problem. Consider the system (15)

with the initial state x(0) = [0 0 1]
′
. It is required that by performing a control action, the system can

be steered to the final state x(T ) = [0 0 − 1]
′
, which corresponds to a reversible logic quantum operation

NOT operation. Accordingly, the system (17) needs to be driven from the identity matrix to the final

state matrix ΦT , at time T

ΦT =

1 0 0

0 −1 0

0 0 −1

 , (40)

and at the same time the cost functional J(u) is minimized.

As mentioned in Lemma 3, the states expressible as eAα, α ∈ R can be reached in arbitrary short time

T . However, there exists a time T̃ such that the problem in question possesses a solution for the final state
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(40) and a final time T > T̃ . For the system (17), this can be demonstrated by an example. Suppose that

u(t) is a control input without constraint of its magnitude, and that Φ(t) is a solution of the evolution

equation with respect to u(t) with an initial state Φ(0) = I. Φ is written as (ϕij)i,j=1,2,3. Thus, one hasϕ̇21 =
√
2ϕ11 −

√
2uϕ31,

ϕ̇32 =
√
2uϕ22.

(41)

Multiplying the first equation by ϕ21, the second equation by ϕ32 and summing up the obtained two

equations, we have
1

2

d

dt
(ϕ2

21 + ϕ2
32) =

√
2ϕ11ϕ22. (42)

Because the initial state Φ(0) = I, it is apparent that (ϕ2
21 + ϕ2

32) must vanish at time t = 0. Thus, we

obtains

(ϕ2
21 + ϕ2

32)(t) = 2
√
2

∫ t

0
ϕ11(τ)ϕ22(τ)dτ. (43)

It is noticed that ϕ11(τ) and ϕ22(τ) are elements of an orthogonal matrix, hence both values are not greater

than 1. Consequently, the following inequality is obtained

(ϕ2
21 + ϕ2

32)(t) ≤ 2
√
2t, (44)

which shows that a matrix (mij) with m2
21 + m2

32 = 1 can not be achieved from the initial state in less

than 1
2
√
2
unit of time.

For the purpose of illustration, we select T = π/
√
2. The optimal control must be in the form of

uo = −⟨Θ, Φ̂−1BΦ̂⟩ = Tr(ΘΦ̂−1BΦ̂), (45)

in which Θ is some matrix in so(3) in terms of Theorem 3.1 in [19]. We introduce another two variables

ua, ub which will be used in deriving the optimal control u(t),

ua , −⟨Θ, Φ̂−1CΦ̂⟩ = Tr(ΘΦ̂−1CΦ̂), (46)

ub , −⟨Θ, Φ̂−1AΦ̂⟩ = Tr(ΘΦ̂−1AΦ̂). (47)

Differentiating (45) with respect to time, and substituting (17) in to the derivative of (45) yields

u̇o = −
⟨
Θ,

(
d

dt
Φ̂−1

)
BΦ̂

⟩
−

⟨
Θ, Φ̂−1B

(
d

dt
Φ̂

)⟩
= −⟨Θ, Φ̂−1(A′ + uoB

′)AΦ̂⟩ − ⟨Θ, Φ̂−1B(A+ uoB)Φ̂⟩

= −⟨Θ, Φ̂−1(A′B +BA+ uoB
′B + uoBB)Φ̂⟩

= −⟨Θ, Φ̂−1(−
√
2C)Φ̂⟩

=
√
2⟨Θ, Φ̂−1CΦ̂⟩

= −
√
2ua. (48)
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In a similar way, we can also have

u̇a = −
⟨
Θ,

(
d

dt
Φ̂−1

)
CΦ̂

⟩
−

⟨
Θ, Φ̂−1C

(
d

dt
Φ̂

)⟩
= −⟨Θ, Φ̂−1(A′ + uoB

′)BΦ̂⟩ − ⟨Θ, Φ̂−1C(A+ uoB)Φ̂⟩

= −⟨Θ, Φ̂−1(A′C + CA+ uoB
′C + uoCB)Φ̂⟩

= −⟨Θ, Φ̂−1(
√
2B −

√
2uoA)Φ̂⟩

= −
√
2⟨Θ, Φ̂−1BΦ̂⟩+

√
2⟨Θ, Φ̂−1(uoA)Φ̂⟩

=
√
2uo −

√
2uoub

=
√
2uo(1− ub). (49)

u̇b = −
⟨
Θ,

(
d

dt
Φ̂−1

)
AΦ̂

⟩
−

⟨
Θ, Φ̂−1A

(
d

dt
Φ̂

)⟩
= −⟨Θ, Φ̂−1(A′ + uoB

′)CΦ̂⟩ − ⟨Θ, Φ̂−1A(A+ uoB)Φ̂⟩

= −⟨Θ, Φ̂−1(A′A+AA+ uoB
′A+ uoAB)Φ̂⟩

= −⟨Θ, Φ̂−1(
√
2uoC)Φ̂⟩

= −
√
2uo⟨Θ, Φ̂−1CΦ̂⟩

=
√
2uoua. (50)

Since Θ is some element in so(3) as mentioned earlier, we can write Θ as

Θ =

 0 θ3 −θ2

−θ3 0 θ1

θ2 −θ1 0

 . (51)

By substituting (51) into (45), (46), (47), and noting that Φ̂(0) = I, the relations between the initial

conditions of uo(0), ua(0), ub(0) and the parameters in Θ are as follows

uo(0) = 2
√
2θ1, (52)

ua(0) = 2
√
2θ2, (53)

ub(0) = 2
√
2θ3. (54)

Further, by substituting (51) into (45), (46), (47), and using the final condition Φ̂(T ) = ΦT given in (40),

the relations between the initial conditions of uo(0), ua(0), ub(0) and the parameters in Θ are as follows

uo(T ) = 2
√
2θ1, (55)

ua(T ) = −2
√
2θ2, (56)

ub(T ) = −2
√
2θ3. (57)

The system formed by (48), (49), (50) satisfies the following two prime integrals

H1 , u2o + u2a + u2b , (58)

H2 , u2a + (ub − 1)2, (59)

Hence, one has

u2o + 2ub = constant. (60)
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In terms of (52, 54, 55, 57), we have θ3 = ub(0) = ub(T ) = 0.

Notice that ub(0) = 0, then it follows from (60) that ub = −1
2((ua)

2 − (ua(0))
2). Combining this and

(48), (49), (50) leads to ordinary differential equations in terms of ua and ub given byu̇a = 2uo

u̇o = (u2a(0)− 2)ua − u3a.
(61)

Define the function

H , 4m2
o − 2(u2a(0)− 2)u2a + u4a, (62)

as a prime integral for the system (61). It is noted that if the initial conditions of uo(0) and ua(0) are

chosen such that H(uo(0), ua(0)) ≤ 0, then H(uo(t), ua(t)) ≤ 0 for arbitrary t. Due to the fact that the

trajectory along the level line of H must traverse the uo axis and at this intersection point, it is apparent

that ua should be 0 and hence, 4u2o < 0, which shows that uo = 0. Although ua(t) ≡ 0, uo(t) ≡ 0 is a

possible trajectory for the system, we are not interested in it because this leads to a control input which

is zero all the time and we then can not obtain the prescribed final states. On the basis of the above

analysis, one has to choose the initial conditions of ua(0) and uo(0) such that

H(ua(0), uo(0)) = 4u2o(0)− u4a(0) + 4u2a(0) > 0. (63)

For the type of the system (61), with the initial conditions of ua(0) and uo(0) satisfying (63), the solutions

are as follows ua(t) = acn(bt+ f, k),

uo(t) = −ab
2 sn(bt+ f, k)dn(bt+ f, k),

(64)

where sn(·, k), cn(·, k), dn(·, k) are the Jacobi elliptic functions with elliptic modulus k ∈ (0, 1), and the

coefficients are chosen as

k2 = k2(ua(0), uo(0)) =
(u2a(0)− 2) +

√
4 + 4u2o(0)

2
√

4 + 4u2o(0)
(65)

a = a(ua(0), uo(0)) =

√
(u2a(0)− 2) +

√
4 + 4u2o(0) (66)

b2 = b2(uo(0)) =
a2

k2
= 2

√
4 + 4u2o(0), (67)

and

f = cn−1

(
ua(0)

a
, k

)
(68)

if uo(0) < 0 and

f = −cn−1

(
ua(0)

a
, k

)
(69)

if uo(0) < 0.

The above analysis clearly shows that the optimal control input is Jacobi elliptic functions. The

unknowns ua(0) and uo(0) are required to be chosen such that the final condition (40) is satisfied.

Remark 5. It is noted that the optimal control expression performing the reversible logic quantum oper-

ation NOT for both formulations based on Schrödinger equation Liouville-von Neumann equation exhibit

Jacobi elliptic functions since there exists a two-to-one homomorphism between Lie group SU(2) and

SO(3). However, in general, one can only obtain numerical solutions to optimal control using the neces-

sary optimality conditions.
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4 Conclusion

The optimal control of quantum systems based on the Schrödinger equations has been discussed since the

1980s. Many existing results formulate the control problem as numerically solving the two-point boundary

value problem derived from the maximum principle. We present an explicit formula of the optimal control

for single spin 1/2 systems with prescribed initial and final states in finite time. This is an open-loop

control which is dependent on the initial state of the system. It is anticipated that the more control

inputs, the more complex the practical implementation of the optimal control becomes. The issues that

arises for the multi-spin 1/2 systems will be considered in our future work.
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