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Abstract 

This paper describes experimental and numerical investigations on stress concentration factors 

(SCFs) of cold-formed stainless steel square and rectangular hollow section (SHS and RHS) tubular 

X-joints. Both high strength stainless steel (duplex and high strength austenitic) and normal strength 

stainless steel (AISI 304) specimens were investigated. The SCFs were experimentally determined 

under static loading by measuring the strains at typical hot spot locations using strip strain gauges. 

The corresponding finite element analysis was performed to simulate the non-uniform stress 

distribution along the brace and chord intersection region. Good agreement between the 

experimental and finite element analysis results was achieved. Therefore, an extensive parametric 

study was then carried out by using the verified finite element model to evaluate the effects of the 

SCFs of cold-formed stainless steel tubular X-joints. The SCFs at the hot spot locations obtained 

from the experimental investigation and parametric study were compared with those calculated 

using the design formulae given in the CIDECT for carbon steel tubular X-joints. It is shown from 

the comparison that the design rules for the SCFs specified in the CIDECT are generally quite 

unconservative for cold-formed stainless steel tubular X-joints. In this study, a unified design 

equation for the SCFs of cold-formed stainless steel tubular X-joints is proposed. The proposed 

design equation was based on the CIDECT design equation for carbon steel tubular X-joints. It is 

shown that the SCFs calculated from the proposed unified design equation are generally in 

agreement with the values predicted from finite element analysis. 
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1. Introduction 

Cold-formed welded tubular joints made of square hollow section (SHS) and rectangular 

hollow section (RHS) are widely used in onshore and offshore structures. These tubular joints are 

often subjected to cyclic loading and fail by fatigue. It is very important to investigate the fatigue 

behaviour of welded tubular joints, since this type of failure is normally caused by loading applied 

repeatedly and the loads could be small. The fatigue failure is an accumulate process and the 

corresponding fatigue loads are much lower than the ultimate loads resulted from static failure. 

Hence, the design procedures related to the static failure criterion are inapplicable to the fatigue 

failure problem. The most commonly used method to assess the fatigue life of welded tubular joints 

is the hot spot stress (HSS) method, which is also called geometric stress method. This method 

estimates the fatigue resistance of welded tubular joints based on the HSS rather than the nominal 

stress. 

The HSS ranges at the so-called hot spot locations can be determined by either experimental 

techniques using special strain gauges or sophisticated three dimensional finite element analyses. 

These two approaches, however, are not feasible for engineering designers. Thus, an important 

parameter called stress concentration factor (SCF) was introduced in the fatigue design, which is the 

ratio between the HSS at the joint intersection area and the nominal stress obtained from the applied 

load that causes this HSS. 

Currently, there is no design equation to calculate the SCF for cold-formed stainless steel 

tubular joints. The design equations for the calculation of SCFs given in the CIDECT Design Guide 

No. 8 [1] are only applicable to carbon steel tubular joints. Therefore, one of the aims of this study 

is to propose design equation for the calculation of SCFs for cold-formed stainless steel tubular 

X-joints. Cold-formed stainless steel tubular X-joints were tested. In addition, finite element 

analysis was performed and an extensive parametric study was carried out. The data obtained from 

this study were used to compare with the SCFs predicted using the proposed design equation. 

2. Hot spot stress (HSS) method 

2.1. General 

Experimental stress analysis and finite element method (FEM) are commonly used to estimate 
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the SCFs of welded tubular joints. Many parametric formulae based on either strain gauge 

measurements or FEM have been reported for different types of welded tubular joints subjected to 

different loading cases. Toprac et al. [2] carried out one of the early experimental works on the 

fatigue behaviour of tubular joints. It was concluded from the test results that the stress 

concentration was an important factor and the point of crack initiation at the weld toe occurred on 

the highest stress. Kuang et al. [3] derived SCF formulae based on thin shell finite element models, 

which pioneered the numerical analysis method for the determination of the SCFs of tubular joints. 

The middle surface of the member wall thickness was modelled and the weld element was omitted 

at the joint intersection. Thus, the comparison of the SCFs obtained from the finite element analysis 

with the experimental results showed a difference of 20% and the predicted SCFs of the KT-joints 

were four times higher. Gibstein [4] derived SCF formulae for T- and Y-joints based on finite 

element analyses. It was commented that the thin shell theory was inadequate for the 

three-dimensional stress condition at the joint intersection. Romeijn et al. [5] established guidelines 

on the determination of the SCFs of tubular joints on several important aspects numerically. For the 

finite element analysis, the 20-noded solid element with the SCFs defined at the weld toe was 

commented to be the most accurate finite element model. The stresses perpendicular to the weld 

toes were suggested for the determination of the SCFs. The combination of linear and parabolic 

curves was the recommended extrapolation procedure for the nonlinear stress gradients. It was 

finally suggested that compensation moments should be applied to the chord ends to eliminate the 

effect of the boundary conditions on the SCFs. Additionally, the effect of chord member loads due 

to axial force, in-plane and out-of-plane bending on the SCFs of T- and Y-joints was also studied. It 

should be noted that the aforementioned investigations focused on carbon steel tubular joints rather 

than stainless steel tubular joints. 

Macdonald and Haagensen [6] studied the fatigue behaviour of welded aluminum RHS 

T-joints based on both fatigue tests and finite element analysis. Appropriate SCFs were determined 

from strain gauge measurements in the experimental investigation and the validated finite element 

modelling. Parametric equations for the prediction of the SCFs of aluminum RHS T-joints were 

proposed. The HSS method has also been discussed in many fatigue design guidelines. The 

definition of HSS, however, is still under debate. 
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2.2. Stress concentration factor (SCF) and strain concentration factor (SNCF) 

In most fatigue design guidelines, HSS and SCF are usually presented. They are actually 

determined based on the corresponding strains, which show a certain degree of advantages 

compared to the stresses (van Wingerde et al. [7]): 

• The hot spot strain (HSSN) can be easily measured by the specially designed strain gauges, 

whereas the HSS should be calculated based on the relative strain components. 

• Fatigue is a strain-based phenomenon rather than a stress-driven mechanism. The HSS can not 

significantly exceed the yield stress of structural members. 

Therefore, the HSS and SCF can then be predicted in terms of the corresponding HSSN and SNCF. 

2.3. Type of stress for the determination of SCF 

Fatigue design procedures for carbon steel tubular joints are available in the International 

Institute of Welding Subcommission XV-E [8], Department of Energy [9] and Eurocode 3 part 1.9 

[10]. The principal stress was recommended in these design guidelines to be used for the 

determination of SCF. In some other fatigue design codes, such as the American Welding Society 

[11], American Petroleum Institute [12] and CIDECT Design Guide No. 8 [1], however, the stress 

perpendicular to the weld toe was employed in the HSS method. The stress perpendicular to the 

weld toe rather than the principal stress is preferable due to the following reasons (van Wingerde et 

al. [7]): 

• Strains perpendicular to the weld toe can be easily measured by simple strain gauges instead of 

complex strain gauge rosettes, which is specially designed for principal strains. 

• The closer the position to the weld toe, the smaller the difference between the principal stress 

and stress perpendicular to the weld toe. 

• Among stress components, only stresses perpendicular to the weld toe are enlarged by stress 

concentrations from weld shape and relative tubular members. 

• In the extrapolation method to exclude the effects of welding fabrication, all strain components 

of the principal strains need to be extrapolated, which makes the procedure quite complicated. 

• The direction of the principal stress is different for different loading cases, which makes the 

superposition technique for combined loading difficult. 
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2.4. Hot spot location 

The SCF may vary around the intersection region of the welded tubular joints. Several fixed 

lines A to E representing so-called hot spot locations were chosen for the determination of the SCFs, 

as shown in Fig. 1. These fixed lines for SHS and RHS tubular joints are recommended in the 

CIDECT Design Guide No. 8 [1]. The HSS determined at the hot spot locations may underestimate 

the true HSS if the direction of the principal stress deviates from those fixed lines, especially if the 

stress concentration is less pronounced. A minimum SCF equaled 2.0 was then recommended. This 

recommendation is also applicable to the full width welded tubular joints and tubular joints whose 

SCFs significantly depend on the weld shapes. 

2.5. Extrapolation method 

The stress concentrations related to the welding fabrication and local condition of the weld toe 

will not be taken into account in the HSS method since they can not be easily determined. Therefore, 

an extrapolation procedure for strain distribution was recommended in many fatigue design 

guidelines to estimate the HSSN at the weld toe based on the geometric strains outside the brace 

and chord intersection region, which are significantly affected by the welding fabrication. Two 

extrapolation methods namely linear and quadratic extrapolation are commonly used for the 

determination of HSSN, as shown in Fig. 2. It was proposed in the CIDECT Design Guide No. 8 [1] 

that the linear extrapolation method is applicable to circular hollow section (CHS) tubular joints, 

while the quadratic extrapolation method can be used for SHS and RHS tubular joints due to the 

strong nonlinear strain distribution. 

In addition to the linear and nonlinear extrapolation methods, the determination of 

extrapolation region is also quite important. In the early US practice for offshore structures, the hot 

spot was assumed to be located at the weld toe. The American Welding Society [11] and American 

Petroleum Institute [12] defined the HSS to be obtained from the strain gauges placed within 6 mm 

to rt1.0  of the weld toe, in which r and t are the radius and thickness of relative tubular 

members. In the European Coal and Steel Community (ECSC) method [13], a value of rt2.0  to 

rt65.0  of the weld toe, with a minimum distance of 4 mm was used for the strain extrapolation. 

In the Det Norske Veritas (DNV) method [14], a value of 0.25t, with a minimum distance of 4 mm 
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was recommended as the extrapolation region. In the current fatigue design of the CIDECT Design 

Guide No. 8 [1], the extrapolation region for the strain distribution was also defined. For linear 

extrapolation method, two data points on the strain distribution curve will be used for the 

extrapolation. The first point was recommended to be 0.4t from the weld toe, with a minimum 

distance of 4 mm. The second point was taken to be 0.6t from the first data point, in which t is the 

wall thickness of tubular members whose strain distribution was extrapolated. For quadratic 

extrapolation method, a minimum of three strain gauges are required for the extrapolation. The first 

point was also 0.4t from the weld toe, with a minimum distance of 4 mm. The second point was 

taken to be 0.6t from the first data point. The third point was taken to be 1.0t from the first data 

point, in which t is the wall thickness of tubular members whose strain distribution was extrapolated. 

By means of least squares method, a quadratic curve fitting through all data points was formed. The 

quadratic SCF can then be obtained. 

2.6. Purpose of this study 

The previous investigations on the determination of the SCFs were mainly focused on carbon 

steel tubular joints. There is little research being carried out for cold-formed stainless steel tubular 

connections. With the rapid development of cold-formed stainless steel structures, the SCFs of 

cold-formed stainless steel tubular joints need to be investigated for fatigue design. It is well known 

that the mechanical properties of stainless steel sections are clearly different from those of carbon 

steel sections. Stainless steel sections have a rounded stress-strain curve with no yield plateau and 

low proportional limit stress compared to carbon steel sections. Hence, the fatigue design criteria of 

carbon steel tubular joints may not be applicable to the stainless steel tubular joints. To facilitate the 

use of stainless steel tubular connections, design guidelines should be provided for tubular joints 

subjected to fatigue loading. 

This paper focuses on the SCFs of cold-formed stainless steel SHS and RHS tubular X-joints. 

Both high strength stainless steel (duplex and high strength austenitic) and normal strength stainless 

steel (AISI 304) specimens were investigated. The design guidelines given in the CIDECT Design 

Guide No. 8 [1] for carbon steel tubular joints were used in this study for stainless steel tubular 

joints. The SCFs at typical hot spot locations were presented in this paper. 



 7 

3. Experimental investigation 

3.1. General 

The determination of SCF of welded tubular X-joints is depending mainly on the following: (1) 

the brace to chord width ratio (β = b1/b0); (2) the brace to chord thickness ratio (τ = t1/t0); and (3) the 

chord width to thickness ratio (2γ = b0/t0). Tests were performed by applying axial compression 

force to the brace members using different values of β ranged from 0.5 to 1.0 (full width joint); τ 

from 0.5 to 1.5, and 2γ from 10 to 50. It should be noted that the parameters of τ and 2γ are beyond 

the validity range of most current design guidelines for SCF of welded tubular connections, in 

which τ ≤ 1.0 and 12.5 ≤ 2γ ≤ 25. 

3.2. Test specimens 

The specimens were cold-rolled from austenitic stainless steel type AISI 304 (EN 1.4301), 

high strength austenitic (HSA) and duplex (EN 1.4462) stainless steel sheets. The stainless steel 

type AISI 304 is considered as normal strength material, whereas the HSA and duplex are 

considered as high strength material. The duplex stainless steel tubes are 40×40×2 and 140×80×3 

having the measured 0.2% tensile proof stresses of 707 and 486 MPa, respectively; the high 

strength austenitic (HSA) stainless steel tubes are 150×150×6 and 200×110×4 having the measured 

0.2% tensile proof stresses of 497 and 503 MPa, respectively; the normal strength stainless steel 

(AISI 304) tubes are 40×40×2 and 40×40×4 having the measured 0.2% tensile proof stresses of 447 

and 565 MPa, respectively. It should be noted that the 0.2% tensile proof stresses of the stainless 

steel tubes were obtained from the tensile coupon tests based on the fabricated specimens after 

cold-forming. The process of cold-forming on square and rectangular hollow sections (SHS and 

RHS) by cold-working produces remarkable enhancement of the material properties. Hence, more 

economical designs can be achieved by taking into account the enhancement of the material 

properties. 

The compression tests were performed on cold-formed stainless steel tubular X-joints 

fabricated with brace members fully welded at right angles to the opposing sides of the continuous 

chord members. The welded SHS and RHS consisted of a large range of section sizes. For the chord 

members, the tubular hollow sections had nominal overall flange width (b0) ranged from 40 to 200 
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mm, nominal overall depth of the web (h0) from 40 to 150 mm, and nominal thickness (t0) from 3 to 

6 mm. For the brace members, the nominal overall flange width (b1) ranged from 40 to 150 mm, 

nominal overall depth of the web (h1) from 40 to 150 mm, and nominal thickness (t1) from 2 to 6 

mm. The nominal wall thickness of both chord and brace members go beyond the limits of the 

current fatigue design guidelines, in which the nominal wall thickness of hollow sections should not 

be less than 4 mm. The length of the chord member (L0) was chosen as 5h0+h1 to ensure that the 

stresses at the brace and chord intersection region are not affected by the ends of the chord member. 

The length of the brace member (L1) was chosen as 2.5h1 to avoid the overall buckling of brace 

members. The measured cross-section dimensions of the cold-formed stainless steel tubular X-joints 

are shown in Table 1, using the nomenclature defined in Fig. 3. 

3.3. Specimen labeling 

The specimens are labeled according to their joint configuration, stainless steel types and 

cross-section dimensions of chord and brace members. For example, the label ‘XD-C140×3-B40×2’ 

defines the following stainless steel tubular X-joint: 

• The first letter ‘X’ indicates the X-joint specimens. 

• The second letter ‘D’ indicates that the stainless steel type of the specimen, which is duplex 

stainless steel. If the letter is ‘H’, it refers to high strength austenitic (HAS) stainless steel. If 

the letter is ‘N’, it refers to normal strength austenitic stainless steel type AISI 304. 

• The third letter ‘C’ refers to chord member and the following expression ‘140×3’ indicates the 

cross-section dimensions of the chord member, which having nominal overall depth of the web 

(h0) of 140 mm and wall thickness (t0) of 3 mm. The overall flange width (b0) is purposely not 

shown for simplification. 

• The fourth letter ‘B’ refers to brace member and the following expression ‘40×2’ indicates the 

cross-section dimensions of the brace member, which having nominal overall depth of the web 

(h1) of 40 mm and wall thickness (t1) of 2 mm. Once again, the overall flange width (b1) is 

purposely not shown. 

3.4. Hot spot strain (HSSN) measurement 

To obtain the strain distribution along the brace and chord intersection region, two types of 

strip strain gauges TML FXV-1-17-002LE and TML FCV-1-17-005LE, which are specially 
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designed for stress concentration measurements of stainless steel structural members were used. 

The strain gauge TML FXV-1-17-002LE, which consists of five uniaxial strain gauges at a 12 mm 

backing enables five strain values to be measured at 2 mm interval simultaneously. The strain gauge 

TML FCV-1-17-005LE, which consists of ten biaxial strain gauges at a 12 mm backing enables ten 

strain values to be measured at 2 mm interval simultaneously. These two types of strip strain gauges 

were positioned at typical hot spot locations recommended by the CIDECT Design Guide No. 8 [1] 

to identify the nonlinear strain distribution along the brace and chord intersection region. 

In the fabrication of cold-formed stainless steel tubular X-joints, the seam weld of brace 

members was positioned parallel to the cross-section of chord member. Hence, the strip strain 

gauges were also positioned at the center of brace and chord intersection edges to measure the 

corresponding HSSNs. The typical hot spot locations adopted in this study comprised nine fixed 

lines from A to I, as shown in Fig. 1. In order to evaluate the effects of welding fabrication on the 

SCFs at brace and chord intersection region, the strip strain gauges were placed to the weld toe as 

closer as possible. The first point of strain measurement was 2 mm away from the weld toe and the 

four other points of strain measurement were within the specified distance, which is out of the 

extrapolation region recommended in the current fatigue design guidelines. In addition to the strip 

strain gauges for the stress concentration measurements, commonly used single element strain 

gauges with a gauge length of 5 mm (TML FLA-5-17) specific to stainless steel were also attached 

at the mid-length of brace member to measure the nominal strain caused by applied loads, which 

were used for the prediction of SCFs. These strain gauges were located at the corners of the 

cross-section to exclude the possible effects of local buckling. The positions of all types of strain 

gauges for stress concentration measurements in the experimental investigation are illustrated in Fig. 

4. 

3.5. Test rig and procedure 

A servo-controlled hydraulic testing machine was used to apply axial compression force to the 

stainless steel tubular X-joints. A special fixed-ended bearing was designed to simulate the pure 

axial compression test without any bending moment. Load control was used to drive the hydraulic 

actuator at a constant speed of 30 kN/min for all test specimens. The stainless steel tubular X-joints 

were subjected to the incremental static loading, which was predetermined to avoid any occurrence 

of plastic strains at the joint intersection area. During the tests, the hydraulic actuator was ramped to 
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the predetermined loads. The strain readings were recorded by pausing the applied loads for 1.5 

mins near the predetermined loads. This allowed the stress relaxation associated with plastic 

straining to take place and also taking consideration of the time lag caused by the data acquisition 

system. The applied loads were then increased to the next load level and held in place for another 

1.5 mins near the predetermined loads, while the strain readings were taken again. This test 

procedure was repeated until the final predetermined load level was reached, and then the test was 

continued using displacement control that allows the test to be continued in the post-ultimate range. 

Two photographs of the test setup of strain concentration measurements for stainless steel tubular 

X-joints are shown in Figs. 5 and 6 for the overall and close up views, respectively. 

3.6. Comparison of experimental and calculated nominal strains 

To determine the SNCFs of stainless steel tubular X-joints, the nominal strain in the brace 

member due to the applied load which causes the HSSN needs to be predicted. Since the nominal 

stress can be calculated from the applied load divided by the cross-sectional area of the brace 

member, the nominal strain can then be obtained from the nominal stress using the Hooke’s Law. 

The calculated nominal strain was verified experimentally using four single element strain gauges 

mounted at the mid-length of brace member to measure the nominal strain. The locations of strain 

gauges were far away from the effects of end conditions and brace-chord welded junction to ensure 

the uniform strain measurements. The experimentally determined nominal strain was plotted against 

the calculated nominal strain, as illustrated in Figs. 7-11 for different stainless steel tubular X-joints 

under different applied load levels. It is shown from the comparison that good agreement between 

these two methods was achieved, confirming that the calculation method is applicable to nominal 

strain estimation for the SCF calculations of stainless steel tubular X-joints. 

3.7. Determination of SCF 

In the static tests for SCFs of stainless steel tubular X-joints, the strain components 

perpendicular to the weld toe as well as strain components parallel to the weld toe corresponding to 

the predetermined applied loads were all obtained from the strip strain gauges. It was found that the 

strain value for all test specimens generally increases as the distance between the strain gauge point 

and the weld toe decreases. The strain direction may also change from tension to compression as the 

applied load increases, and from compression to tension as the distance between the strain gauge 
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point and the weld toe increases. The strain distribution at typical hot spot locations follow the same 

trend for different applied load levels, showing that the strains were measured within the elastic 

response of stainless steel tubular X-joints, in this range high-cycle fatigue usually occurs. 

Furthermore, the maximum strains at brace and chord members under different applied load levels 

are generally within 10% of the strains corresponding to the 0.2% tensile proof stress of stainless 

steel tubes as shown in Tables 2 and 3, indicating that plastic strains generally do not occur at the 

brace and chord intersection region. 

The HSSN ⊥ξ , which is perpendicular to the weld toe, and another strain component //ξ , 

which is parallel to the weld toe were obtained by using the quadratic extrapolation method based 

on the recommendation given in the CIDECT Design Guide No. 8 [1] for SHS and RHS tubular 

joints. The SNCF which is easier to obtain from strain gauge measurement can be calculated as: 

nSNCF ξξ /⊥=  (1) 

where nξ  is the nominal strain obtained from single element strain gauges which were placed at 

the mid-length of brace member. In order to obtain the SCF, the relationship between the SCF and 

SNCF needs to be determined. It was reported by Shao [15] that the relationship between SCF and 

SNCF can be expressed as: 

SNCFSCF 2

//

1

1

ν
ε
ε

ν

−

+
= ⊥  (2) 

where ν is the Possion’s ratio. In the static tests, the coefficient between SCF and SNCF can be 

determined by the ratio of strain component //ξ  to HSSN ⊥ξ . The value of this coefficient ranged 

from 0.6 to 1.4. This coefficient was proposed by Dutta [16] to be equal to 1.2 for CHS tubular 

joints and 1.1 for SHS tubular joints, which was also recommended by the CIDECT Design Guide 

No. 8 [1] for CHS, SHS and RHS tubular joints based on the studies of Frater [17] and van Deflt et 

al. [18]. In this study, the coefficient between SCF and SNCF was investigated at typical hot spot 

locations as summarized in Tables 2 and 3 for stainless steel tubular X-joints of 

XD-C140×3-B140×3 and XH-C110×4-B150×6, respectively. It can be generally concluded from 

the tables that this coefficient is more or less constant at typical hot spot locations under different 

applied load levels. Thus, the coefficient between SCF and SNCF was obtained by averaging all the 

values at every hot spot locations under different applied load levels, excluding the abnormal 
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predictions resulted from deviation of strain gauge placement and sensitivity of the quadratic 

extrapolation method to relatively small extrapolation region for thin-walled tubular joints. In this 

study, an average value of this coefficient was calculated as 1.08 for stainless steel tubular X-joints. 

The SNCF can then be converted to SCF by using the expression of SCF = 1.08*SNCF for SHS and 

RHS stainless steel tubular X-joints. 

The resulting SCFs obtained from the corresponding SNCFs at all hot spot locations were 

summarized in Table 4 for stainless steel tubular X-joints. The average values of SNCFs at typical 

hot spot locations were calculated by averaging all the values at every applied load levels, excluding 

the maximum and minimum values to eliminate the unstable strain measurements from small 

applied loads and any drift of strain measurements from comparatively large applied loads. Some 

conclusions can be drawn from the table as follows: 

• The highest SCFs are usually found for stainless steel tubular X-joints with medium β values. 

• The highest SCFs may occur at the center of brace and chord intersection edges as well as the 

traditional hot spot locations for stainless steel tubular X-joints. 

• The SCFs at the brace and chord intersection region are not totally symmetric due to the 

existence of seam weld of brace members. The SCFs at hot spot locations near the seam weld 

of brace members are generally higher. 

• The lower the 2γ ratio, the lower the SCF. 

• It seems that the configuration of weld and the local condition of the weld toe have less 

influence on the stress concentrations of stainless steel tubular X-joints. The strain gauges can 

be positioned to the weld toe as close as possible. 

4. Design guidelines 

The SCFs of SHS and RHS carbon steel tubular X-joints under axial compression force can be 

determined using the following parametric equations given in the CIDECT Design Guide No. 8 [1]: 

Chord member (hot spot locations B, C and D): 

( ) ( )( ) 75.0103.1715.1377.12 2

2064.0204.0143.0 τγββ ββ ⋅⋅⋅+⋅−= ⋅−⋅+
BSCF  (3) 

( ) ( )( ) 75.0028.1874.1565.12 2

220003.0061.0129.0077.0 τγγββ ββ ⋅⋅⋅−⋅+⋅−= ⋅−⋅+
CSCF  (4)  

( ) ( )( ) 75.0881.1389.2925.02 2

2209.0387.0208.0 τγββ ββ ⋅⋅⋅+⋅−= ⋅−⋅+
DSCF  (5) 
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For tubular X-joints with β = 1.0: 

SCFC is multiplied by a factor of 0.65, SCFD is multiplied by a factor of 0.50. 

Brace member (hot spot locations A and E): 

( ) ( )( )2109.2898.1790.02 2278.0693.0013.0 ββγββ ⋅−⋅+⋅⋅−⋅+== EA SCFSCF  (6) 

For tubular joints with fillet welds: 

Both SCFA and SCFE are multiplied by a factor of 1.40 for brace side of weld. 

In which, the validity range of the parameters are: 0.35 ≤ β ≤ 1.0; 12.5 ≤ 2γ ≤ 25; 0.25 ≤ τ ≤ 1.0. 

The experimental SCFs at typical hot spot locations (lines A to E) were compared with the 

SCFs calculated using the above parametric equations for stainless steel tubular X-joints, as shown 

in Table 4. The ratios of the maximum SCFs from the laboratory tests to the maximum SCFs from 

the design formulae given in the CIDECT are also summarized in Table 4, with values all less than 

1.0 and as low as 0.18. It is shown from the comparison that the design formulae given in the 

CIDECT are quite unconservative for the prediction of the SCFs of stainless steel tubular X-joints, 

which is understood since the CIDECT design equations were derived from carbon steel instead of 

stainless steel. However, the hot spot locations where the highest SCFs occurred can be precisely 

captured by the fatigue design guideline. Hence, a new parametric equation for accurate prediction 

of the SCFs of stainless steel tubular X-joints is needed. 

5. Finite element analysis 

5.1. General 

The FEM is another feasible way to determine the SCFs of welded tubular joints. The general 

purpose finite element program ABAQUS [19] was used in this study for the prediction of the SCFs 

of stainless steel tubular X-joints. The finite element analysis, which considers various influential 

factors, such as the modelling of weld profile, loading and boundary conditions are detailed in Feng 

and Young [20] for finite element modelling of cold-formed stainless steel tubular joints. However, 

all finite element analyses carried out in this study are linear elastic modelling to ensure that the 

SCFs at typical hot spot locations are not affected by different load levels within the elastic range. 

The material properties of stainless steel tubes given by Feng and Young [21] and welding material 

with the corresponding measured Young’s modulus (E) and Poisson’s ratio (ν = 0.3) were 
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incorporated in the finite element model. 

5.2. Finite element type and mesh size 

In the current finite element simulation, three-dimensional 20-noded solid element with an 

reduced integration scheme of 2×2×2 (C3D20R) was used to model the tubular sections as well as 

the weld profile, which was recommended by the CIDECT Design Guide No. 8 [1]. The round 

corners of SHS and RHS were also modelled with four-element mesh density based on the 

recommendation of Herion [22] to consider its influence on the SCFs. The convergence studies 

were carried out to obtain the optimum finite element mesh density. The weld area and the 

extrapolation region along the brace and chord interaction are fine meshed, whereas the mesh size at 

the location away from the interest area is gradually coarse in order to save computing cost. For 

thick-walled tubular members with (b0/t0 ≤ 20 for chord member; and b1/t1 ≤ 20 for brace member), 

four layers of solid elements were employed across the tube wall thickness, while for thin-walled 

tubular members with (b0/t0 > 20 for chord member; and b1/t1 > 20 for brace member), two layers of 

solid elements were used, as recommended by Choo et al. [23] and Feng and Young [20] for finite 

element modelling of welded tubular X-joints. The typical finite element modelling of stainless 

steel tubular X-joints for the prediction of all HSSNs and nominal strains are clearly shown in Fig. 

12. 

5.3. Loading and boundary conditions 

The static compression force was applied in increments at each node of the loaded end by 

using the (*STATIC) method available in the ABAQUS library. The nodes other than the loaded 

and fixed ends were free to translate and rotate in any directions. Five consecutive load steps were 

required to complete the linear elastic finite element analysis, which was identical to the laboratory 

tests for each specimen. The HSSNs perpendicular to the weld toes at typical hot spot locations 

were obtained corresponding to the specific applied load levels. A quarter of tubular joint was 

modelled by making use of two planes of symmetry in geometry, loading application and boundary 

conditions. The nodal displacement perpendicular to the plane of symmetry is restrained while the 

two remaining transitional degrees of freedom are free. 
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5.4. Verification of finite element model 

The SNCFs at typical hot spot locations obtained from the laboratory tests (SNCFEXP) were 

compared with those predicted by the numerical analysis (SNCFFE) in order to verify the finite 

element model for stainless steel tubular X-joints, as shown in Table 5. A minimum SCF of 2.0 is 

adopted for all hot spot locations based on the recommendation given in the CIDECT Design Guide 

No. 8 [1]. Therefore, relatively larger comparison difference for the SCFs less than 2.0 is considered 

to be acceptable. Generally, good agreement between the experimental and finite element analysis 

results was achieved. Therefore, the newly developed finite element model was verified with the 

test results and considered to be accurate and reliable. 

6. Parametric study 

6.1. Specimen description 

By using the verified finite element model, an extensive parametric study was carried out to 

evaluate the effects of main parametric variations on the SCFs of cold-formed stainless steel tubular 

X-joints. A total of 115 X-joints in cold-formed stainless steel SHS and RHS tubes was analyzed in 

the parametric study. The similar label system as that defined in the experimental program based on 

the joint configuration and cross-section dimensions of chord and brace members was adopted. For 

example, the label ‘XC400×240×8-B240×120×8’ defines a tubular X-joint, indicated by the letter 

‘X’; the letter ‘C’ refers to chord member and the following expression ‘400×240×8’ indicates the 

cross-section dimensions of chord member, which having overall depth of the web (h0) of 400 mm, 

overall flange width (b0) of 240 mm, and wall thickness (t0) of 8 mm; the letter ‘B’ refers to brace 

member and the following expression ‘240×120×8’ indicates the cross-section dimensions of brace 

member, which having overall depth of the web (h1) of 240 mm, overall flange width (b1) of 120 

mm, and wall thickness (t1) of 8 mm. 

The welded SHS and RHS consisted of a large range of section sizes, which were selected 

within the range of practical applications. For the chord members, the tubular hollow sections have 

overall flange width (b0) ranged from 30 to 300 mm, overall depth of the web (h0) from 30 to 400 

mm, and wall thickness (t0) from 1 to 16 mm. For the brace members, the tubular hollow sections 

have overall flange width (b1) ranged from 30 to 300 mm, overall depth of the web (h1) from 30 to 
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400 mm, and wall thickness (t1) from 1 to 16 mm. The wall thickness of both chord and brace 

members go beyond the limits of the current design guidelines, in which the wall thickness of 

hollow sections should not be less than 4 mm. The external corner radius (Ri) of stainless steel tube 

was taken as 2.5t when the thickness of tube (t) is larger than 3 mm, otherwise the external corner 

radius was taken to be 2t, which was recommended by the AISC design guideline [24]. The weld 

size (w) was taken as 2t based on the recommendation given in the American Welding Society 

(AWS) D1.1/D1.1M specification [25], where t is the thickness of thinner part between brace and 

chord members. 

6.2. Influential parameters 

The effects of main geometric parameters on the SCFs of cold-formed stainless steel tubular 

X-joints were evaluated separately, which include the brace to chord width ratio (β = b1/b0); the 

brace to chord thickness ratio (τ = t1/t0) and the chord width to thickness ratio (2γ = b0/t0). The 

validity range of these parametric variations defined in the CIDECT Design Guide No. 8 [1] for 

carbon steel tubular structures and those applied in the laboratory tests as well as designed for the 

parametric study are summarized in Table 6. It is shown from the table that the parametric 

variations designed in the parametric study are significantly beyond the validity range of those 

defined in the current design guideline for welded tubular X-joints. Furthermore, the thickness of 

the tubes is as low as 1 mm, which is well beyond the current limit of not less than 4 mm. 

The parametric study was performed by evaluating the effect of one particular parametric 

variation at a time while the others were maintained constant. The material properties of duplex 

stainless steel tube 140×80×3 given by Feng and Young [21] and welding material with the 

corresponding measured Young’s modulus (E) and Poisson’s ratio (ν = 0.3) were used in the 

parametric study. The static uniform loads were initially applied by means of displacement to obtain 

the full load-deformation curves. The compression forces were then applied by the consecutive load 

steps as load control within the predetermined elastic range to avoid any occurrence of plastic 

strains at the joint intersection region. The main parametric variations designed in the parametric 

study and the SCFs at typical hot spot locations determined from the finite element analysis are 

summarized in Table 7. 
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6.3. Numerical analysis 

The HSSs at the hot spot locations A, E, F and H were compared with each other since they are 

defined along the same direction at the brace member. It is shown from the comparison that the 

SCFs at line A are always larger than the SCFs at lines E and F and generally larger than the SCFs 

at line H. Therefore, the proposed design equation to predict the maximum SCFs of the brace 

member is based on lines A and H only instead of deriving different design formulae for lines A, E, 

F and H, respectively. The similar approach was established to estimate the maximum SCFs of the 

chord member. It is shown from Table 7 that the SCFs at line B are always larger than the SCFs at 

line I; the SCFs at line D are always larger than the SCFs at line G, except for specimen 

XC40×40×4-B40×40×4. The SCFs for this specimen at lines B and D are a little bit smaller than the 

SCFs at the lines I and G, respectively. The difference is quite small and the SCFs at all hot spot 

locations are below the value of 2.0. Hence, the proposed design equation is based on lines B, C and 

D only to determine the maximum SCFs of the chord member. 

6.4. Comparison of SCFs obtained from parametric study and current design formulae 

The SCFs obtained from the parametric study were compared with the SCFs calculated using 

the design formulae given in the CIDECT Design Guide No. 8 [1]. It should be noted that the 

design formulae given in this guideline are only applicable to the SCFs at hot spot locations A, B, C, 

D and E. Therefore, the SCFs at hot spot locations F, G, H and I were not taken into consideration. 

The comparison of the SCFs at hot spot locations A, B, C and D for all specimens is shown in Table 

8. The mean values of FE SCF-to-CIDECT SCF ratio (SCFFE/SCFCIDECT) are 0.80, 0.99, 0.17 and 

0.54, with the corresponding coefficients of variation (COV) of 0.350, 1.069, 3.071 and 0.932 for 

hot spot locations A, B, C and D, respectively. It can be generally concluded from the comparison 

that the design formulae specified in the current design guideline are quite unconservative for 

stainless steel tubular X-joints at hot spot locations A, C and D. It is appropriate for hot spot 

location B, but the degree of scatter is quite large. 

7. Proposed design equation for SCFs at typical hot spot locations 

Based on the study of van Wingerde [26] and design formulae given in the CIDECT Design 

Guide No. 8 [1] for carbon steel tubular X-joints, the unified design equation for the SCFs of 
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stainless steel SHS and RHS tubular X-joints subjected to axial compression force is proposed as 

follows: 

( ) ( )( ) hgfedcbaSCF τγγββ ββ ⋅⋅⋅+⋅+⋅+= ⋅+⋅+ 2

222  (7) 

where the constants a, b, c, d, e, f, g and h change for typical hot spot locations A to I. These 

coefficients were determined by the least squares method, as summarized in Table 9. It was found 

that these coefficients can be rounded off to three decimal places without compromising the 

accuracy, except for the coefficient d, which should be rounded off to four decimal places. 

The SCFs obtained from the parametric study are compared with the SCFs calculated using the 

proposed unified design equation for stainless steel SHS and RHS tubular X-joints. The comparison 

for all specimens is shown in Table 8 for the SCFs at hot spot locations A, B, C, D and H, 

respectively. A good agreement was obtained with the mean values of FE SCF-to-Proposed SCF 

ratio (SCFFE/SCFProposed) of 1.00, 1.00, 1.00, 1.00 and 1.00, and the corresponding COV of 0.281, 

0.177, 0.316, 0.279 and 0.211. 

8. Conclusions 

Experimental and numerical investigations on the SCFs of cold-formed stainless steel SHS and 

RHS tubular X-joints were conducted in this study. Both high strength stainless steel (duplex and 

high strength austenitic) and normal strength stainless steel (AISI 304) tubular X-joints were 

investigated. The newly developed finite element model was verified against the experimental 

results. An extensive parametric study was performed by using the verified finite element model to 

evaluate the effects of the main geometric parameters (β, τ and 2γ) on the SCFs of cold-formed 

stainless steel tubular X-joints at typical hot spot locations. The results of the parametric study were 

compared with the CIDECT design predictions for SHS and RHS tubular X-joints. It is shown from 

the comparison that the design rules specified in the current design guideline are generally quite 

unconservative for the SCFs of cold-formed stainless steel tubular X-joints. The values obtained 

from the proposed unified design equation for the SCFs of cold-formed stainless steel tubular 

X-joints are generally much more accurate than those calculated using the current design formulae. 

The limit of the geometric parameters (β, τ and 2γ) and the thickness of the tubular sections in the 

proposed unified design equation are beyond the limit in the CIDECT design formulae. 
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Notation 

a,b,c,d,e,f,g,h Coefficients for proposed design equations 

b0 Overall width of chord member 

b1 Overall width of brace member 

COV Coefficient of variation 

E Young’s modulus of elasticity obtained from longitudinal tensile coupon test 

h0 Overall depth of chord member 

h1 Overall depth of brace member 

L0 Overall length of chord member 

L1 Overall length of brace member 

r Corner radius of tubular member 

r0 Inner corner radius of chord member 

r1 Inner corner radius of brace member 

Ri External corner radius of stainless steel tube 

SCFA,SCFB,SCFC Stress concentration factors at typical hot spot locations 

SCFD,SCFE 

SCFCIDECT Stress concentration factor obtained from CIDECT rules 

SCFEXP Stress concentration factor obtained from experimental investigation 

SCFFE Stress concentration factor obtained from finite element analysis 

SCFProposed Stress concentration factor obtained from proposed design equations 

SNCFEXP Strain concentration factor obtained from experimental investigation 

SNCFFE Strain concentration factor obtained from finite element analysis 

S/N SCF to SNCF ratio (SCF/SNCF) 

t Overall thickness of tubular member 

t0 Overall thickness of chord member 

t1 Overall thickness of brace member 

w Weld size 

w′  Weld size for full width joint 

β Brace to chord width ratio (b1/b0) 

2γ Chord width to thickness ratio (b0/t0) 
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εBmax Maximum strain at brace member 

εB0.2 Strain corresponding to 0.2% tensile proof stress of brace member 

εCmax Maximum strain at chord member 

εC0.2 Strain corresponding to 0.2% tensile proof stress of chord member 

ν Poisson’s ratio 

nξ  Nominal strain 

⊥ξ  Hot spot strain perpendicular to weld toe 

//ξ  Strain parallel to weld toe 

τ Brace to chord thickness ratio (t1/t0) 
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Specimen 
Chord Brace Weld  
(mm) (mm) (mm)  

h0 b0
 t0

 r0
 L0

 h1 b1
 t1

 r1
 L1

 w w′  β 

XD-C140×3-B40×2 140.2 80.2 3.33 6.5 737 39.9 40.3 1.96 2.0 99 6.6 –– 0.50 
XD-C140×3-B140×3 140.0 80.1 3.09 6.5 851 140.1 80.1 3.10 6.5 346 6.6 8.5 1.00 
XH-C150×6-B150×6 150.3 150.5 5.75 6.0 902 150.3 150.3 5.84 6.0 368 9.2 15.5 1.00 
XH-C110×4-B150×6 110.3 196.3 3.98 8.5 698 150.3 150.4 5.82 6.0 365 9.6 –– 0.77 
XN-C40×4-B40×2 40.1 40.0 3.79 4.0 240 40.2 40.1 1.97 2.0 98 6.5 11.9 1.00 

Table 1. Measured specimen dimensions of stainless steel tubular X-joints 
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Hot spot 
location 

Axial compression force (kN) 
Average 

S/N 
ratio 

19.9 40.1 59.8 80.3 99.5 
εBmax/ εB0.2 = 1.1% εBmax/ εB0.2 = 3.5% εBmax/ εB0.2 = 5.8% εBmax/ εB0.2 = 8.2% εBmax/ εB0.2 = 10.9% 
εCmax/ εC0.2 = 1.4% εCmax/ εC0.2 = 1.9% εCmax/ εC0.2 = 2.6% εCmax/ εC0.2 = 3.2% εCmax/ εC0.2 = 3.9% 

ξ┴ ξ// S/N ξ┴ ξ// S/N ξ┴ ξ// S/N ξ┴ ξ// S/N ξ┴ ξ// S/N 
A -40.2 26.6 0.88 -121.6 53.4 0.95 -204.0 80.4 0.97 -295.6 113.6 0.97 -388.6 148.4 0.97 0.948 
B 20.1 44.0 1.82 -20.5 83.2 -0.24 -76.6 112.6 0.61 -155.0 139.2 0.80 -245.9 167.0 0.87 1.025 
C 41.4 37.6 1.40 51.8 67.6 1.53 59.2 92.2 1.61 60.8 105.8 1.67 67.8 121.0 1.69 1.580 
D 58.4 12.0 1.17 77.6 -20.4 1.01 95.8 -61.0 0.89 105.6 -108.8 0.76 115.2 -164.0 0.63 0.892 
E -46.2 17.3 0.98 -150.8 22.7 1.05 -247.4 25.1 1.07 -353.6 34.3 1.07 -465.4 38.5 1.07 1.048 

Average S/N ratio for all hot spot locations 1.10 

Table 2. SCF/SNCF ratios for stainless steel tubular X-joint of specimen XD-C140×3-B140×3 (β=1.00, τ=1.00, 2γ=25.92) 

 

Hot spot 
location 

Axial compression force (kN) 
Average 

S/N 
ratio 

16.1 32.1 47.9 64.0 79.8 
εBmax/ εB0.2 = 3.5% εBmax/ εB0.2 = 6.3% εBmax/ εB0.2 = 8.0% εBmax/ εB0.2 = 9.2% εBmax/ εB0.2 = 10.0% 
εCmax/ εC0.2 = 1.5% εCmax/ εC0.2 = 3.8% εCmax/ εC0.2 = 6.5% εCmax/ εC0.2 = 9.8% εCmax/ εC0.2 = 13.6% 
ξ┴ ξ// S/N ξ┴ ξ// S/N ξ┴ ξ// S/N ξ┴ ξ// S/N ξ┴ ξ// S/N 

A -160.4 26.4 1.04 -289.4 59.8 1.03 -366.8 102.8 1.01 -418.0 154.8 0.98 -456.0 213.6 0.94 1.000 
B -324.6 -18.0 1.12 -709.0 -36.2 1.12 -1100.2 -49.0 1.11 -1476.6 -71.0 1.11 -1848.6 -101.6 1.12 1.116 
C -207.8 -87.0 1.24 -494.2 -202.8 1.23 -809.2 -336.0 1.24 -1136.6 -476.6 1.24 -1496.6 -646.2 1.24 1.238 
D -65.6 -79.8 1.50 -172.6 -187.4 1.46 -295.4 -307.6 1.44 -441.0 -437.6 1.43 -615.0 -593.6 1.42 1.450 
E -4.4 23.8 -0.68 -24.0 60.2 0.27 -55.4 108.6 0.45 -99.8 162.6 0.56 -153.4 228.4 0.61 0.473 

Average S/N ratio for all hot spot locations 1.06 

Table 3. SCF/SNCF ratios for stainless steel tubular X-joint of specimen XH-C110×4-B150×6 (β=0.77, τ=1.46, 2γ=49.32) 
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Specimen β=b1/b0 τ=t1/t0 2γ=b0/t0 Comparison 
Stress concentration factor (SCF) 

A B C D E 

XD-C140×3-B40×2 0.50 0.59 24.08 
Experiment 2.19 16.23 10.28 4.74 1.37 

CIDECT 19.21 19.46 17.42 8.50 19.21 
SCFEXP/SCFCIDECT 0.11 0.83 0.59 0.56 0.07 

XD-C140×3-B140×3 1.00 1.00 25.92 
Experiment 2.49 0.15 0.73 -0.55 1.39 

CIDECT 3.95 1.95 2.04 1.60 3.95 
SCFEXP/SCFCIDECT 0.63 0.08 0.36 -0.34 0.35 

XH-C150×6-B150×6 1.00 1.02 26.17 
Experiment 2.28 2.06 0.98 -0.11 1.64 

CIDECT 4.01 2.08 2.00 1.64 4.01 
SCFEXP/SCFCIDECT 0.57 0.99 0.49 -0.07 0.41 

XH-C110×4-B150×6 0.77 1.46 49.32 
Experiment 5.62 16.51 12.14 4.47 0.84 

CIDECT 26.93 93.02 -12.55 28.38 26.93 
SCFEXP/SCFCIDECT 0.21 0.18 -0.97 0.16 0.03 

XN-C40×4-B40×2 1.00 0.52 10.55 
Experiment 1.16 0.56 0.09 -0.04 0.81 

CIDECT 2.31 0.19 0.68 0.27 2.31 
SCFEXP/SCFCIDECT 0.50 2.95 0.13 -0.15 0.35 

Table 4. Comparison of experimental SCFs with values calculated using design formulae given in the CIDECT 
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Specimen Comparison 
Strain concentration factor (SNCF) 

A B C D E F G H I 

XD-C140×3-B40×2 
Experiment –– 15.03 9.52 4.39 1.27 -0.79 –– 4.26 12.27 
FE model –– 15.38 8.82 3.74 0.86 -1.33 –– 4.26 9.04 

SNCFEXP/SNCFFE –– 0.98 1.08 1.17 1.48 0.59 –– 1.00 1.36 

XH-C150×6-B150×6 
Experiment 2.11 1.91 0.91 –– 1.52 0.35 0.09 2.49 1.69 
FE model 2.27 2.13 1.01 –– 2.16 0.27 0.06 1.55 1.37 

SNCFEXP/SNCFFE 0.93 0.90 0.90 –– 0.70 1.30 1.50 1.61 1.23 

XN-C40×4-B40×2 
Experiment 1.07 0.52 0.08 -0.04 0.75 1.19 0.04 1.63 0.72 
FE model 1.19 0.67 0.16 -0.03 1.20 0.74 0.04 1.14 0.65 

SNCFEXP/SNCFFE 0.90 0.78 0.50 1.33 0.63 1.61 1.00 1.43 1.11 

Table 5. Comparison of experimental SNCFs with values obtained from finite element analysis 

 

 

 

Geometric parameter β=b1/b0 τ=t1/t0 2γ=b0/t0 
CIDECT [0.35-1.0] [0.25-1.0] [12.5-25.0] 

Laboratory tests [0.5-1.0] [0.5-1.5] [10.0-50.0] 
Parametric study [0.2-1.0] [0.25-2.0] [10.0-50.0] 

Table 6. Validity range of geometric parameters
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Specimen β τ 2γ 
Stress concentration factor (SCFFE) 

A B C D E F G H I 
XC120×200×4-B30×40×1 0.2 0.25 50 9.27 12.17 12.30 7.34 6.88 -2.64 2.25 1.81 7.57 
XC120×200×4-B50×40×1 0.2 0.25 50 12.90 15.27 15.30 9.12 9.34 -3.13 2.29 1.44 6.87 
XC200×200×4-B30×40×1 0.2 0.25 50 9.60 12.75 12.74 7.39 6.96 -2.88 2.16 2.01 7.99 
XC200×200×4-B50×40×1 0.2 0.25 50 13.46 16.11 15.97 9.24 9.53 -3.48 2.16 1.56 7.33 
XC60×60×2-B30×30×1 0.5 0.50 30 6.77 17.67 13.65 6.53 2.01 -0.28 0.49 6.76 9.08 
XC60×60×2-B50×30×1 0.5 0.50 30 7.89 20.21 15.60 7.47 2.45 0.14 0.22 5.64 6.58 
XC100×60×2-B30×30×1 0.5 0.50 30 7.01 18.52 14.23 6.47 1.91 -0.48 0.29 7.02 9.61 
XC100×60×2-B50×30×1 0.5 0.50 30 8.25 21.44 16.45 7.48 2.37 -0.08 -0.04 5.86 7.11 
XC60×100×2-B30×50×1 0.5 0.50 50 10.86 29.69 27.33 12.88 3.65 1.39 0.96 9.93 18.01 
XC60×100×2-B50×50×1 0.5 0.50 50 13.59 36.41 33.43 15.97 4.75 2.94 -0.58 10.62 15.27 
XC100×100×2-B30×50×1 0.5 0.50 50 11.38 31.46 28.62 12.84 3.49 1.20 0.64 10.44 19.27 
XC100×100×2-B50×50×1 0.5 0.50 50 14.43 39.07 35.49 16.19 4.64 2.82 -1.09 11.20 16.65 
XC30×50×1-B30×40×1 0.8 1.00 50 7.29 22.11 19.56 9.06 -0.43 0.58 0.21 10.45 9.61 
XC30×50×1-B50×40×1 0.8 1.00 50 8.06 24.92 22.30 10.62 -0.41 1.40 -0.09 7.77 3.74 
XC50×50×1-B30×40×1 0.8 1.00 50 7.51 24.01 21.04 8.93 -0.58 0.45 -0.08 10.69 10.95 
XC50×50×1-B50×40×1 0.8 1.00 50 8.39 27.30 24.19 10.55 -0.56 1.30 -0.42 7.96 5.64 
XC40×40×4-B30×40×1 1.0 0.25 10 1.40 0.28 0.01 0.17 0.99 0.56 0.16 1.22 0.26 
XC40×40×4-B50×40×1 1.0 0.25 10 1.35 0.31 0.02 0.22 1.06 0.63 0.21 1.06 0.30 
XC30×30×1-B30×30×1 1.0 1.00 30 2.12 1.78 0.28 -0.55 1.37 0.27 0.04 1.62 1.45 
XC30×30×1-B50×30×1 1.0 1.00 30 2.00 1.65 0.25 -0.51 1.32 0.26 0.05 1.33 1.24 
XC50×30×1-B30×30×1 1.0 1.00 30 2.17 1.94 0.80 -0.49 1.41 0.28 0.05 1.56 1.44 
XC50×30×1-B50×30×1 1.0 1.00 30 2.08 1.81 0.58 -0.50 1.39 0.27 0.04 1.29 1.24 
XC30×50×1-B30×50×1 1.0 1.00 50 2.67 2.61 0.31 -0.71 1.73 0.22 0.05 2.00 1.77 
XC30×50×1-B50×50×1 1.0 1.00 50 2.57 2.10 0.26 -0.68 1.70 0.21 0.08 1.62 1.46 
XC50×50×1-B30×50×1 1.0 1.00 50 2.74 2.43 0.91 -0.65 1.78 0.22 0.04 1.92 1.75 
XC50×50×1-B50×50×1 1.0 1.00 50 2.69 2.31 0.59 -0.67 1.79 0.22 0.04 1.58 1.47 
XC120×200×4-B40×40×4 0.2 1.00 50 9.07 42.74 30.95 19.05 0.54 -1.94 14.53 6.29 36.47 
XC200×200×4-B40×40×4 0.2 1.00 50 9.60 45.14 32.15 18.85 0.17 -2.35 14.22 6.72 38.59 
XC160×160×16-B40×80×4 0.5 0.25 10 3.84 1.20 1.71 1.13 1.95 0.32 0.43 3.34 1.02 
XC160×160×16-B120×80×4 0.5 0.25 10 4.48 1.46 2.11 1.32 2.72 0.40 0.42 1.67 0.67 
XC80×80×8-B40×40×4 0.5 0.50 10 3.40 1.84 2.25 1.19 1.00 0.44 0.96 2.97 1.41 
XC240×240×8-B120×120×4 0.5 0.50 30 20.06 22.73 17.96 9.09 7.94 -0.08 0.42 6.67 9.96 
XC240×240×8-B200×120×4 0.5 0.50 30 22.92 25.71 20.83 10.64 9.70 0.39 0.08 5.62 7.37 
XC400×240×8-B120×120×4 0.5 0.50 30 20.77 23.77 18.65 9.03 7.78 -0.26 0.18 6.93 10.55 
XC400×240×8-B200×120×4 0.5 0.50 30 23.97 27.21 21.89 10.67 9.61 0.18 -0.23 5.84 7.97 
XC120×120×4-B40×60×4 0.5 1.00 30 10.65 30.82 15.99 6.76 -0.17 -1.86 3.02 8.49 26.63 
XC120×120×4-B120×60×4 0.5 1.00 30 14.98 35.02 20.19 9.50 0.06 -1.89 4.50 8.61 13.94 
XC200×120×4-B40×60×4 0.5 1.00 30 10.99 32.02 16.47 6.45 -0.42 -2.07 2.72 8.80 27.69 
XC200×120×4-B120×60×4 0.5 1.00 30 15.58 37.04 21.11 9.23 -0.29 -2.19 4.17 8.92 14.99 
XC120×200×4-B120×100×4 0.5 1.00 50 28.38 68.05 46.41 22.14 3.66 0.40 4.78 16.83 34.43 
XC120×200×4-B200×100×4 0.5 1.00 50 32.71 77.26 52.82 25.59 4.22 1.67 5.53 16.71 26.31 
XC200×200×4-B120×100×4 0.5 1.00 50 30.05 72.92 48.96 21.82 3.00 -0.04 4.09 17.76 37.24 
XC200×200×4-B200×100×4 0.5 1.00 50 35.00 83.73 56.43 25.61 3.60 1.26 4.84 17.63 28.89 
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XC60×100×2-B40×50×4 0.5 2.00 50 16.20 111.19 62.76 25.03 -2.03 -2.60 10.38 12.96 98.12 
XC100×100×2-B40×50×4 0.5 2.00 50 17.10 118.35 65.38 23.73 -2.67 -3.11 8.82 13.72 104.59 
XC120×200×4-B120×160×4 0.8 1.00 50 23.67 33.09 19.60 8.73 1.84 0.60 0.41 10.41 11.42 
XC120×200×4-B200×160×4 0.8 1.00 50 26.56 37.03 22.09 10.07 2.32 1.45 0.16 7.87 5.66 
XC200×200×4-B120×160×4 0.8 1.00 50 24.44 35.04 20.14 8.50 1.50 0.46 0.16 10.65 12.40 
XC200×200×4-B200×160×4 0.8 1.00 50 27.75 39.64 22.92 9.94 2.01 1.34 -0.13 8.07 6.97 
XC60×100×2-B40×80×4 0.8 2.00 50 14.19 40.28 21.90 6.61 -1.88 -0.57 0.97 12.57 38.42 
XC60×100×2-B120×80×4 0.8 2.00 50 16.25 41.08 24.83 8.73 -2.11 -0.31 1.63 10.71 19.09 
XC100×100×2-B40×80×4 0.8 2.00 50 14.47 42.27 22.97 6.10 -2.14 -0.68 0.56 12.83 40.15 
XC100×100×2-B120×80×4 0.8 2.00 50 16.83 44.56 26.69 8.21 -2.38 -0.43 1.17 10.88 22.28 
XC160×160×16-B120×160×4 1.0 0.25 10 1.43 0.35 -0.01 0.33 1.12 0.57 0.12 1.23 0.29 
XC160×160×16-B200×160×4 1.0 0.25 10 1.34 0.38 0.04 0.37 1.17 0.63 0.16 1.06 0.32 
XC80×80×8-B40×80×4 1.0 0.50 10 1.56 0.76 0.28 0.29 1.11 0.67 0.05 1.54 0.73 
XC80×80×8-B120×80×4 1.0 0.50 10 1.31 0.76 0.24 0.36 1.18 0.77 0.15 1.07 0.66 
XC40×40×4-B40×40×4 1.0 1.00 10 1.44 1.22 0.33 0.18 1.10 0.99 0.23 1.46 1.23 
XC120×120×4-B120×120×4 1.0 1.00 30 2.33 2.25 0.31 0.89 1.81 0.30 0.03 1.63 1.43 
XC120×120×4-B200×120×4 1.0 1.00 30 2.16 2.05 0.28 0.83 1.71 0.27 0.04 1.32 1.20 
XC200×120×4-B120×120×4 1.0 1.00 30 2.40 2.41 0.76 1.12 1.98 0.30 0.02 1.58 1.44 
XC200×120×4-B200×120×4 1.0 1.00 30 2.27 2.22 0.56 1.02 1.88 0.29 0.02 1.29 1.22 
XC120×200×4-B120×200×4 1.0 1.00 50 3.06 2.89 0.38 1.18 2.34 0.24 0.06 2.08 1.79 
XC120×200×4-B200×200×4 1.0 1.00 50 2.82 2.62 0.31 1.11 2.17 0.23 0.08 1.62 1.41 
XC200×200×4-B120×200×4 1.0 1.00 50 3.14 3.12 0.91 1.48 2.54 0.24 0.03 2.02 1.81 
XC200×200×4-B200×200×4 1.0 1.00 50 2.95 2.85 0.60 1.33 2.39 0.23 0.03 1.59 1.46 
XC60×60×2-B40×60×4 1.0 2.00 30 3.72 4.35 1.20 0.95 0.86 0.12 0.24 3.24 3.93 
XC60×60×2-B120×60×4 1.0 2.00 30 3.26 3.63 1.19 0.81 0.86 0.17 0.31 2.55 1.79 
XC100×60×2-B40×60×4 1.0 2.00 30 3.68 4.51 1.46 1.24 0.87 0.12 0.25 3.14 4.01 
XC100×60×2-B120×60×4 1.0 2.00 30 3.47 4.05 1.23 0.97 0.96 0.17 0.27 2.45 1.91 
XC60×100×2-B120×100×4 1.0 2.00 50 4.11 4.58 1.49 1.06 1.09 0.26 0.26 3.06 2.14 
XC60×100×2-B200×100×4 1.0 2.00 50 3.83 4.28 1.41 1.04 1.06 0.28 0.30 2.58 1.48 
XC100×100×2-B120×100×4 1.0 2.00 50 4.36 5.11 1.54 1.24 1.22 0.24 0.18 2.95 2.30 
XC100×100×2-B200×100×4 1.0 2.00 50 4.05 4.77 1.48 1.17 1.17 0.27 0.23 2.66 1.80 
XC160×160×16-B80×80×8 0.5 0.50 10 4.98 1.84 1.72 1.73 1.66 0.72 1.29 3.91 1.44 
XC240×240×8-B80×120×8 0.5 1.00 30 15.47 34.64 19.33 7.60 0.72 -2.19 3.30 11.13 29.83 
XC240×240×8-B240×120×8 0.5 1.00 30 21.29 39.42 24.75 10.69 1.58 -2.10 4.88 10.82 15.69 
XC400×240×8-B80×120×8 0.5 1.00 30 15.95 35.97 19.88 7.25 0.39 -2.46 2.96 11.52 31.01 
XC400×240×8-B240×120×8 0.5 1.00 30 22.13 41.68 25.86 10.39 1.12 -2.48 4.50 11.23 16.86 
XC120×200×4-B80×100×8 0.5 2.00 50 25.13 124.92 68.01 26.19 -1.43 -2.95 10.76 17.54 103.80 
XC200×200×4-B80×100×8 0.5 2.00 50 26.55 133.14 70.79 24.58 -2.32 -3.61 9.09 18.59 110.83 
XC120×200×4-B80×160×8 0.8 2.00 50 20.13 53.18 19.54 5.95 -1.79 -0.65 0.94 15.61 42.95 
XC120×200×4-B240×160×8 0.8 2.00 50 24.01 57.80 24.01 8.42 -1.99 -0.28 1.62 13.44 23.04 
XC200×200×4-B80×160×8 0.8 2.00 50 20.55 55.09 19.81 5.32 -2.13 -0.79 0.51 15.94 44.43 
XC200×200×4-B240×160×8 0.8 2.00 50 24.92 61.47 24.65 7.75 -2.37 -0.43 1.12 13.64 25.32 
XC160×160×16-B80×160×8 1.0 0.50 10 1.54 0.81 0.27 0.46 1.22 0.73 0.04 1.52 0.75 
XC160×160×16-B240×160×8 1.0 0.50 10 1.31 0.85 0.24 0.54 1.30 0.84 0.15 1.07 0.68 
XC80×80×8-B80×80×8 1.0 1.00 10 1.46 1.29 0.33 0.48 1.26 1.13 0.28 1.47 1.24 
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XC240×240×8-B240×240×8 1.0 1.00 30 2.37 2.51 0.31 1.36 2.15 0.33 0.02 1.64 1.47 
XC240×240×8-B400×240×8 1.0 1.00 30 2.18 2.27 0.28 1.27 2.01 0.30 0.03 1.32 1.23 
XC400×240×8-B240×240×8 1.0 1.00 30 2.43 2.67 0.77 1.67 2.35 0.33 0.01 1.58 1.47 
XC400×240×8-B400×240×8 1.0 1.00 30 2.29 2.45 0.56 1.52 2.22 0.31 0.00 1.29 1.24 
XC120×120×4-B80×120×8 1.0 2.00 30 3.75 4.61 1.16 1.02 0.94 0.13 0.23 3.16 3.81 
XC120×120×4-B240×120×8 1.0 2.00 30 3.37 3.94 1.18 0.90 0.96 0.19 0.32 2.55 1.79 
XC200×120×4-B80×120×8 1.0 2.00 30 3.72 4.78 1.41 1.32 0.96 0.13 0.24 3.08 3.89 
XC200×120×4-B240×120×8 1.0 2.00 30 3.57 4.40 1.22 1.06 1.07 0.19 0.27 2.45 1.91 
XC120×200×4-B240×200×8 1.0 2.00 50 4.24 4.98 1.50 1.19 1.22 0.28 0.26 3.06 2.14 
XC120×200×4-B400×200×8 1.0 2.00 50 3.95 4.64 1.41 1.16 1.19 0.30 0.31 2.58 1.47 
XC200×200×4-B240×200×8 1.0 2.00 50 4.51 5.55 1.54 1.37 1.36 0.26 0.18 2.95 2.30 
XC200×200×4-B400×200×8 1.0 2.00 50 4.18 5.17 1.47 1.29 1.30 0.29 0.23 2.65 1.80 
XC180×300×6-B120×150×12 0.5 2.00 50 30.24 129.27 70.14 26.59 -0.96 -3.02 10.93 20.77 105.85 
XC300×300×6-B120×150×12 0.5 2.00 50 31.94 137.76 73.02 24.89 -1.99 -3.76 9.22 22.00 113.01 
XC180×300×6-B120×240×12 0.8 2.00 50 28.10 60.37 22.62 6.47 -2.08 -0.84 1.11 21.42 48.76 
XC180×300×6-B360×240×12 0.8 2.00 50 29.48 58.09 24.33 8.07 -1.97 -0.19 1.68 15.92 23.07 
XC300×300×6-B120×240×12 0.8 2.00 50 28.71 62.58 23.23 5.81 -2.55 -1.03 0.64 21.91 50.48 
XC300×300×6-B360×240×12 0.8 2.00 50 30.51 61.59 25.40 7.41 -2.39 -0.38 1.19 16.12 25.26 
XC180×180×6-B120×180×12 1.0 2.00 30 4.04 5.12 1.25 1.14 1.04 0.14 0.25 3.39 4.14 
XC180×180×6-B360×180×12 1.0 2.00 30 3.37 4.07 1.18 0.95 1.00 0.21 0.33 2.55 1.84 
XC300×180×6-B120×180×12 1.0 2.00 30 4.01 5.30 1.52 1.48 1.06 0.14 0.27 3.29 4.22 
XC300×180×6-B360×180×12 1.0 2.00 30 3.59 4.54 1.22 1.11 1.11 0.21 0.28 2.45 1.94 
XC180×300×6-B360×300×12 1.0 2.00 50 4.26 5.14 1.50 1.25 1.26 0.29 0.27 3.06 2.18 
XC300×300×6-B360×300×12 1.0 2.00 50 4.53 5.72 1.54 1.45 1.41 0.28 0.18 2.95 2.34 
XC160×160×16-B160×160×16 1.0 1.00 10 1.46 1.33 0.33 0.76 1.35 1.22 0.37 1.47 1.26 
XC240×240×8-B160×240×16 1.0 2.00 30 4.03 5.21 1.24 1.20 1.05 0.15 0.26 3.38 4.19 
XC400×240×8-B160×240×16 1.0 2.00 30 4.00 5.39 1.52 1.54 1.07 0.14 0.28 3.28 4.26 

Table 7. SCFs of stainless steel tubular X-joints at typical hot spot locations 

obtained from finite element analysis 
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Specimen 
 SCFCIDECT  SCFProposed SCFFE/SCFCIDECT SCFFE/SCFProposed 

A B C D A B C D H A B C D A B C D H 
XC120×200×4-B30×40×1 13.73 26.06 22.98 8.85 8.87 12.70 12.60 9.98 2.68 0.68 0.47 0.54 0.83 1.05 0.96 0.98 0.74 0.68 
XC120×200×4-B50×40×1 13.73 26.06 22.98 8.85 8.87 12.70 12.60 9.98 2.68 0.94 0.59 0.67 1.03 1.45 1.20 1.21 0.91 0.54 
XC200×200×4-B30×40×1 13.73 26.06 22.98 8.85 8.87 12.70 12.60 9.98 2.68 0.70 0.49 0.55 0.84 1.08 1.00 1.01 0.74 0.75 
XC200×200×4-B50×40×1 13.73 26.06 22.98 8.85 8.87 12.70 12.60 9.98 2.68 0.98 0.62 0.69 1.04 1.52 1.27 1.27 0.93 0.58 
XC60×60×2-B30×30×1 25.03 26.51 23.09 10.83 14.50 18.65 13.91 7.14 7.01 0.27 0.67 0.59 0.60 0.47 0.95 0.98 0.91 0.96 
XC60×60×2-B50×30×1 25.03 26.51 23.09 10.83 14.50 18.65 13.91 7.14 7.01 0.32 0.76 0.68 0.69 0.54 1.08 1.12 1.05 0.80 
XC100×60×2-B30×30×1 25.03 26.51 23.09 10.83 14.50 18.65 13.91 7.14 7.01 0.28 0.70 0.62 0.60 0.48 0.99 1.02 0.91 1.00 
XC100×60×2-B50×30×1 25.03 26.51 23.09 10.83 14.50 18.65 13.91 7.14 7.01 0.33 0.81 0.71 0.69 0.57 1.15 1.18 1.05 0.84 
XC60×100×2-B30×50×1 46.48 72.10 49.42 25.16 19.72 39.41 30.52 16.06 10.48 0.23 0.41 0.55 0.51 0.55 0.75 0.90 0.80 0.95 
XC60×100×2-B50×50×1 46.48 72.10 49.42 25.16 19.72 39.41 30.52 16.06 10.48 0.29 0.50 0.68 0.63 0.69 0.92 1.10 0.99 1.01 
XC100×100×2-B30×50×1 46.48 72.10 49.42 25.16 19.72 39.41 30.52 16.06 10.48 0.24 0.44 0.58 0.51 0.58 0.80 0.94 0.80 1.00 
XC100×100×2-B50×50×1 46.48 72.10 49.42 25.16 19.72 39.41 30.52 16.06 10.48 0.31 0.54 0.72 0.64 0.73 0.99 1.16 1.01 1.07 
XC30×50×1-B30×40×1 23.19 61.43 -26.46 19.08 17.84 31.15 16.83 6.93 10.33 0.31 0.36 -0.74 0.47 0.41 0.71 1.16 1.31 1.01 
XC30×50×1-B50×40×1 23.19 61.43 -26.46 19.08 17.84 31.15 16.83 6.93 10.33 0.35 0.41 -0.84 0.56 0.45 0.80 1.33 1.53 0.75 
XC50×50×1-B30×40×1 23.19 61.43 -26.46 19.08 17.84 31.15 16.83 6.93 10.33 0.32 0.39 -0.80 0.47 0.42 0.77 1.25 1.29 1.03 
XC50×50×1-B50×40×1 23.19 61.43 -26.46 19.08 17.84 31.15 16.83 6.93 10.33 0.36 0.44 -0.91 0.55 0.47 0.88 1.44 1.52 0.77 
XC40×40×4-B30×40×1 1.62 0.10 0.36 0.14 1.30 0.55 0.14 0.42 0.90 0.86 2.80 0.03 1.21 1.08 0.51 0.07 0.40 1.36 
XC40×40×4-B50×40×1 1.62 0.10 0.36 0.14 1.30 0.55 0.14 0.42 0.90 0.83 3.10 0.06 1.57 1.04 0.56 0.14 0.52 1.18 
XC30×30×1-B30×30×1 3.07 2.60 0.00 1.96 2.71 2.37 0.82 0.90 1.83 0.69 0.68 –– -0.28 0.78 0.75 0.34 0.61 0.89 
XC30×30×1-B50×30×1 3.07 2.60 0.00 1.96 2.71 2.37 0.82 0.90 1.83 0.65 0.63 –– -0.26 0.74 0.70 0.30 0.57 0.73 
XC50×30×1-B30×30×1 3.07 2.60 0.00 1.96 2.71 2.37 0.82 0.90 1.83 0.71 0.75 –– -0.25 0.80 0.82 0.98 0.54 0.85 
XC50×30×1-B50×30×1 3.07 2.60 0.00 1.96 2.71 2.37 0.82 0.90 1.83 0.68 0.70 –– -0.26 0.77 0.76 0.71 0.56 0.70 
XC30×50×1-B30×50×1 4.12 7.18 -48.67 4.08 3.10 2.80 0.90 1.07 1.83 0.65 0.36 -0.01 -0.17 0.86 0.93 0.34 0.66 1.09 
XC30×50×1-B50×50×1 4.12 7.18 -48.67 4.08 3.10 2.80 0.90 1.07 1.83 0.62 0.29 -0.01 -0.17 0.83 0.75 0.29 0.64 0.89 
XC50×50×1-B30×50×1 4.12 7.18 -48.67 4.08 3.10 2.80 0.90 1.07 1.83 0.67 0.34 -0.02 -0.16 0.88 0.87 1.01 0.61 1.05 
XC50×50×1-B50×50×1 4.12 7.18 -48.67 4.08 3.10 2.80 0.90 1.07 1.83 0.65 0.32 -0.01 -0.16 0.87 0.83 0.66 0.63 0.86 
XC120×200×4-B40×40×4 13.73 73.70 64.99 25.03 12.55 38.50 25.20 15.12 5.35 0.66 0.58 0.48 0.76 0.72 1.11 1.23 1.26 1.18 
XC200×200×4-B40×40×4 13.73 73.70 64.99 25.03 12.55 38.50 25.20 15.12 5.35 0.70 0.61 0.49 0.75 0.76 1.17 1.28 1.25 1.26 
XC160×160×16-B40×80×4 6.61 1.83 1.54 1.05 3.51 1.11 1.69 1.11 1.89 0.58 0.66 1.11 1.08 1.09 1.08 1.01 1.02 1.77 
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XC160×160×16-B120×80×4 6.61 1.83 1.54 1.05 3.51 1.11 1.69 1.11 1.89 0.68 0.80 1.37 1.26 1.28 1.32 1.25 1.19 0.88 
XC80×80×8-B40×40×4 6.61 3.08 2.59 1.77 4.18 1.93 2.39 1.36 2.68 0.51 0.60 0.87 0.67 0.81 0.95 0.94 0.88 1.11 
XC240×240×8-B120×120×4 25.03 26.51 23.09 10.83 14.50 18.65 13.91 7.14 7.01 0.80 0.86 0.78 0.84 1.38 1.22 1.29 1.27 0.95 
XC240×240×8-B200×120×4 25.03 26.51 23.09 10.83 14.50 18.65 13.91 7.14 7.01 0.92 0.97 0.90 0.98 1.58 1.38 1.50 1.49 0.80 
XC400×240×8-B120×120×4 25.03 26.51 23.09 10.83 14.50 18.65 13.91 7.14 7.01 0.83 0.90 0.81 0.83 1.43 1.27 1.34 1.26 0.99 
XC400×240×8-B200×120×4 25.03 26.51 23.09 10.83 14.50 18.65 13.91 7.14 7.01 0.96 1.03 0.95 0.99 1.65 1.46 1.57 1.49 0.83 
XC120×120×4-B40×60×4 25.03 44.58 38.83 18.22 17.25 32.47 19.67 8.79 9.91 0.43 0.69 0.41 0.37 0.62 0.95 0.81 0.77 0.86 
XC120×120×4-B120×60×4 25.03 44.58 38.83 18.22 17.25 32.47 19.67 8.79 9.91 0.60 0.79 0.52 0.52 0.87 1.08 1.03 1.08 0.87 
XC200×120×4-B40×60×4 25.03 44.58 38.83 18.22 17.25 32.47 19.67 8.79 9.91 0.44 0.72 0.42 0.35 0.64 0.99 0.84 0.73 0.89 
XC200×120×4-B120×60×4 25.03 44.58 38.83 18.22 17.25 32.47 19.67 8.79 9.91 0.62 0.83 0.54 0.51 0.90 1.14 1.07 1.05 0.90 
XC120×200×4-B120×100×4 46.48 121.26 83.12 42.31 23.45 68.61 43.17 19.77 14.83 0.61 0.56 0.56 0.52 1.21 0.99 1.08 1.12 1.13 
XC120×200×4-B200×100×4 46.48 121.26 83.12 42.31 23.45 68.61 43.17 19.77 14.83 0.70 0.64 0.64 0.60 1.39 1.13 1.22 1.29 1.13 
XC200×200×4-B120×100×4 46.48 121.26 83.12 42.31 23.45 68.61 43.17 19.77 14.83 0.65 0.60 0.59 0.52 1.28 1.06 1.13 1.10 1.20 
XC200×200×4-B200×100×4 46.48 121.26 83.12 42.31 23.45 68.61 43.17 19.77 14.83 0.75 0.69 0.68 0.61 1.49 1.22 1.31 1.30 1.19 
XC60×100×2-B40×50×4 46.48 203.94 139.79 71.16 27.88 119.46 61.05 24.34 20.97 0.35 0.55 0.45 0.35 0.58 0.93 1.03 1.03 0.62 
XC100×100×2-B40×50×4 46.48 203.94 139.79 71.16 27.88 119.46 61.05 24.34 20.97 0.37 0.58 0.47 0.33 0.61 0.99 1.07 0.97 0.65 
XC120×200×4-B120×160×4 23.19 61.43 -26.46 19.08 17.84 31.15 16.83 6.93 10.33 1.02 0.54 -0.74 0.46 1.33 1.06 1.16 1.26 1.01 
XC120×200×4-B200×160×4 23.19 61.43 -26.46 19.08 17.84 31.15 16.83 6.93 10.33 1.15 0.60 -0.83 0.53 1.49 1.19 1.31 1.45 0.76 
XC200×200×4-B120×160×4 23.19 61.43 -26.46 19.08 17.84 31.15 16.83 6.93 10.33 1.05 0.57 -0.76 0.45 1.37 1.12 1.20 1.23 1.03 
XC200×200×4-B200×160×4 23.19 61.43 -26.46 19.08 17.84 31.15 16.83 6.93 10.33 1.20 0.65 -0.87 0.52 1.56 1.27 1.36 1.43 0.78 
XC60×100×2-B40×80×4 23.19 103.31 -44.51 32.09 21.22 54.23 23.80 8.53 14.61 0.61 0.39 -0.49 0.21 0.67 0.74 0.92 0.77 0.86 
XC60×100×2-B120×80×4 23.19 103.31 -44.51 32.09 21.22 54.23 23.80 8.53 14.61 0.70 0.40 -0.56 0.27 0.77 0.76 1.04 1.02 0.73 
XC100×100×2-B40×80×4 23.19 103.31 -44.51 32.09 21.22 54.23 23.80 8.53 14.61 0.62 0.41 -0.52 0.19 0.68 0.78 0.97 0.72 0.88 
XC100×100×2-B120×80×4 23.19 103.31 -44.51 32.09 21.22 54.23 23.80 8.53 14.61 0.73 0.43 -0.60 0.26 0.79 0.82 1.12 0.96 0.74 
XC160×160×16-B120×160×4 1.62 0.10 0.36 0.14 1.30 0.55 0.14 0.42 0.90 0.88 3.50 -0.03 2.36 1.10 0.64 0.07 0.79 1.37 
XC160×160×16-B200×160×4 1.62 0.10 0.36 0.14 1.30 0.55 0.14 0.42 0.90 0.83 3.80 0.11 2.64 1.03 0.69 0.29 0.88 1.18 
XC80×80×8-B40×80×4 1.62 0.17 0.60 0.24 1.55 0.95 0.20 0.52 1.28 0.96 4.47 0.47 1.21 1.01 0.80 1.40 0.56 1.20 
XC80×80×8-B120×80×4 1.62 0.17 0.60 0.24 1.55 0.95 0.20 0.52 1.28 0.81 4.47 0.40 1.50 0.85 0.80 1.20 0.69 0.84 
XC40×40×4-B40×40×4 1.62 0.29 1.00 0.41 1.84 1.66 0.28 0.63 1.81 0.89 4.21 0.33 0.44 0.78 0.73 1.18 0.29 0.81 
XC120×120×4-B120×120×4 3.07 2.60 0.00 1.96 2.71 2.37 0.82 0.90 1.83 0.76 0.87 –– 0.45 0.86 0.95 0.38 0.99 0.89 
XC120×120×4-B200×120×4 3.07 2.60 0.00 1.96 2.71 2.37 0.82 0.90 1.83 0.70 0.79 –– 0.42 0.80 0.86 0.34 0.92 0.72 
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XC200×120×4-B120×120×4 3.07 2.60 0.00 1.96 2.71 2.37 0.82 0.90 1.83 0.78 0.93 –– 0.57 0.89 1.02 0.93 1.24 0.86 
XC200×120×4-B200×120×4 3.07 2.60 0.00 1.96 2.71 2.37 0.82 0.90 1.83 0.74 0.85 –– 0.52 0.84 0.94 0.68 1.13 0.70 
XC120×200×4-B120×200×4 4.12 7.18 -48.67 4.08 3.10 2.80 0.90 1.07 1.83 0.74 0.40 -0.01 0.29 0.99 1.03 0.42 1.10 1.14 
XC120×200×4-B200×200×4 4.12 7.18 -48.67 4.08 3.10 2.80 0.90 1.07 1.83 0.68 0.36 -0.01 0.27 0.91 0.94 0.34 1.04 0.89 
XC200×200×4-B120×200×4 4.12 7.18 -48.67 4.08 3.10 2.80 0.90 1.07 1.83 0.76 0.43 -0.02 0.36 1.01 1.11 1.01 1.38 1.10 
XC200×200×4-B200×200×4 4.12 7.18 -48.67 4.08 3.10 2.80 0.90 1.07 1.83 0.72 0.40 -0.01 0.33 0.95 1.02 0.67 1.24 0.87 
XC60×60×2-B40×60×4 3.07 4.37 0.00 3.30 3.23 4.13 1.17 1.11 2.59 1.21 1.00 –– 0.29 1.15 1.05 1.03 0.86 1.25 
XC60×60×2-B120×60×4 3.07 4.37 0.00 3.30 3.23 4.13 1.17 1.11 2.59 1.06 0.83 –– 0.25 1.01 0.88 1.02 0.73 0.98 
XC100×60×2-B40×60×4 3.07 4.37 0.00 3.30 3.23 4.13 1.17 1.11 2.59 1.20 1.03 –– 0.38 1.14 1.09 1.25 1.12 1.21 
XC100×60×2-B120×60×4 3.07 4.37 0.00 3.30 3.23 4.13 1.17 1.11 2.59 1.13 0.93 –– 0.29 1.07 0.98 1.05 0.87 0.95 
XC60×100×2-B120×100×4 4.12 12.08 -81.86 6.86 3.69 4.87 1.28 1.31 2.58 1.00 0.38 -0.02 0.15 1.11 0.94 1.16 0.81 1.19 
XC60×100×2-B200×100×4 4.12 12.08 -81.86 6.86 3.69 4.87 1.28 1.31 2.58 0.93 0.35 -0.02 0.15 1.04 0.88 1.10 0.79 1.00 
XC100×100×2-B120×100×4 4.12 12.08 -81.86 6.86 3.69 4.87 1.28 1.31 2.58 1.06 0.42 -0.02 0.18 1.18 1.05 1.20 0.95 1.14 
XC100×100×2-B200×100×4 4.12 12.08 -81.86 6.86 3.69 4.87 1.28 1.31 2.58 0.98 0.39 -0.02 0.17 1.10 0.98 1.16 0.89 1.03 
XC160×160×16-B80×80×8 6.61 3.08 2.59 1.77 4.18 1.93 2.39 1.36 2.68 0.75 0.60 0.66 0.98 1.19 0.95 0.72 1.27 1.46 
XC240×240×8-B80×120×8 25.03 44.58 38.83 18.22 17.25 32.47 19.67 8.79 9.91 0.62 0.78 0.50 0.42 0.90 1.07 0.98 0.86 1.12 
XC240×240×8-B240×120×8 25.03 44.58 38.83 18.22 17.25 32.47 19.67 8.79 9.91 0.85 0.88 0.64 0.59 1.23 1.21 1.26 1.22 1.09 
XC400×240×8-B80×120×8 25.03 44.58 38.83 18.22 17.25 32.47 19.67 8.79 9.91 0.64 0.81 0.51 0.40 0.92 1.11 1.01 0.82 1.16 
XC400×240×8-B240×120×8 25.03 44.58 38.83 18.22 17.25 32.47 19.67 8.79 9.91 0.88 0.93 0.67 0.57 1.28 1.28 1.31 1.18 1.13 
XC120×200×4-B80×100×8 46.48 203.94 139.79 71.16 27.88 119.46 61.05 24.34 20.97 0.54 0.61 0.49 0.37 0.90 1.05 1.11 1.08 0.84 
XC200×200×4-B80×100×8 46.48 203.94 139.79 71.16 27.88 119.46 61.05 24.34 20.97 0.57 0.65 0.51 0.35 0.95 1.11 1.16 1.01 0.89 
XC120×200×4-B80×160×8 23.19 103.31 -44.51 32.09 21.22 54.23 23.80 8.53 14.61 0.87 0.51 -0.44 0.19 0.95 0.98 0.82 0.70 1.07 
XC120×200×4-B240×160×8 23.19 103.31 -44.51 32.09 21.22 54.23 23.80 8.53 14.61 1.04 0.56 -0.54 0.26 1.13 1.07 1.01 0.99 0.92 
XC200×200×4-B80×160×8 23.19 103.31 -44.51 32.09 21.22 54.23 23.80 8.53 14.61 0.89 0.53 -0.45 0.17 0.97 1.02 0.83 0.62 1.09 
XC200×200×4-B240×160×8 23.19 103.31 -44.51 32.09 21.22 54.23 23.80 8.53 14.61 1.07 0.60 -0.55 0.24 1.17 1.13 1.04 0.91 0.93 
XC160×160×16-B80×160×8 1.62 0.17 0.60 0.24 1.55 0.95 0.20 0.52 1.28 0.95 4.76 0.45 1.92 0.99 0.85 1.35 0.88 1.19 
XC160×160×16-B240×160×8 1.62 0.17 0.60 0.24 1.55 0.95 0.20 0.52 1.28 0.81 5.00 0.40 2.25 0.85 0.89 1.20 1.04 0.84 
XC80×80×8-B80×80×8 1.62 0.29 1.00 0.41 1.84 1.66 0.28 0.63 1.81 0.90 4.45 0.33 1.17 0.79 0.78 1.18 0.76 0.81 
XC240×240×8-B240×240×8 3.07 2.60 0.00 1.96 2.71 2.37 0.82 0.90 1.83 0.77 0.97 –– 0.69 0.87 1.06 0.38 1.51 0.90 
XC240×240×8-B400×240×8 3.07 2.60 0.00 1.96 2.71 2.37 0.82 0.90 1.83 0.71 0.87 –– 0.65 0.80 0.96 0.34 1.41 0.72 
XC400×240×8-B240×240×8 3.07 2.60 0.00 1.96 2.71 2.37 0.82 0.90 1.83 0.79 1.03 –– 0.85 0.90 1.13 0.94 1.86 0.86 
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XC400×240×8-B400×240×8 3.07 2.60 0.00 1.96 2.71 2.37 0.82 0.90 1.83 0.75 0.94 –– 0.78 0.85 1.03 0.68 1.69 0.70 
XC120×120×4-B80×120×8 3.07 4.37 0.00 3.30 3.23 4.13 1.17 1.11 2.59 1.22 1.05 –– 0.31 1.16 1.12 0.99 0.92 1.22 
XC120×120×4-B240×120×8 3.07 4.37 0.00 3.30 3.23 4.13 1.17 1.11 2.59 1.10 0.90 –– 0.27 1.04 0.95 1.01 0.81 0.98 
XC200×120×4-B80×120×8 3.07 4.37 0.00 3.30 3.23 4.13 1.17 1.11 2.59 1.21 1.09 –– 0.40 1.15 1.16 1.21 1.19 1.19 
XC200×120×4-B240×120×8 3.07 4.37 0.00 3.30 3.23 4.13 1.17 1.11 2.59 1.16 1.01 –– 0.32 1.11 1.07 1.04 0.95 0.95 
XC120×200×4-B240×200×8 4.12 12.08 -81.86 6.86 3.69 4.87 1.28 1.31 2.58 1.03 0.41 -0.02 0.17 1.15 1.02 1.17 0.91 1.19 
XC120×200×4-B400×200×8 4.12 12.08 -81.86 6.86 3.69 4.87 1.28 1.31 2.58 0.96 0.38 -0.02 0.17 1.07 0.95 1.10 0.89 1.00 
XC200×200×4-B240×200×8 4.12 12.08 -81.86 6.86 3.69 4.87 1.28 1.31 2.58 1.09 0.46 -0.02 0.20 1.22 1.14 1.20 1.05 1.14 
XC200×200×4-B400×200×8 4.12 12.08 -81.86 6.86 3.69 4.87 1.28 1.31 2.58 1.01 0.43 -0.02 0.19 1.13 1.06 1.15 0.98 1.03 
XC180×300×6-B120×150×12 46.48 203.94 139.79 71.16 27.88 119.46 61.05 24.34 20.97 0.65 0.63 0.50 0.37 1.08 1.08 1.15 1.09 0.99 
XC300×300×6-B120×150×12 46.48 203.94 139.79 71.16 27.88 119.46 61.05 24.34 20.97 0.69 0.68 0.52 0.35 1.15 1.15 1.20 1.02 1.05 
XC180×300×6-B120×240×12 23.19 103.31 -44.51 32.09 21.22 54.23 23.80 8.53 14.61 1.21 0.58 -0.51 0.20 1.32 1.11 0.95 0.76 1.47 
XC180×300×6-B360×240×12 23.19 103.31 -44.51 32.09 21.22 54.23 23.80 8.53 14.61 1.27 0.56 -0.55 0.25 1.39 1.07 1.02 0.95 1.09 
XC300×300×6-B120×240×12 23.19 103.31 -44.51 32.09 21.22 54.23 23.80 8.53 14.61 1.24 0.61 -0.52 0.18 1.35 1.15 0.98 0.68 1.50 
XC300×300×6-B360×240×12 23.19 103.31 -44.51 32.09 21.22 54.23 23.80 8.53 14.61 1.32 0.60 -0.57 0.23 1.44 1.14 1.07 0.87 1.10 
XC180×180×6-B120×180×12 3.07 4.37 0.00 3.30 3.23 4.13 1.17 1.11 2.59 1.32 1.17 –– 0.35 1.25 1.24 1.07 1.03 1.31 
XC180×180×6-B360×180×12 3.07 4.37 0.00 3.30 3.23 4.13 1.17 1.11 2.59 1.10 0.93 –– 0.29 1.04 0.99 1.01 0.86 0.98 
XC300×180×6-B120×180×12 3.07 4.37 0.00 3.30 3.23 4.13 1.17 1.11 2.59 1.31 1.21 –– 0.45 1.24 1.28 1.30 1.33 1.27 
XC300×180×6-B360×180×12 3.07 4.37 0.00 3.30 3.23 4.13 1.17 1.11 2.59 1.17 1.04 –– 0.34 1.11 1.10 1.04 1.00 0.95 
XC180×300×6-B360×300×12 4.12 12.08 -81.86 6.86 3.69 4.87 1.28 1.31 2.58 1.03 0.43 -0.02 0.18 1.15 1.06 1.17 0.95 1.19 
XC300×300×6-B360×300×12 4.12 12.08 -81.86 6.86 3.69 4.87 1.28 1.31 2.58 1.10 0.47 -0.02 0.21 1.23 1.17 1.20 1.11 1.14 
XC160×160×16-B160×160×16 1.62 0.29 1.00 0.41 1.84 1.66 0.28 0.63 1.81 0.90 4.59 0.33 1.85 0.79 0.80 1.18 1.21 0.81 
XC240×240×8-B160×240×16 3.07 4.37 0.00 3.30 3.23 4.13 1.17 1.11 2.59 1.31 1.19 –– 0.36 1.25 1.26 1.06 1.08 1.31 
XC400×240×8-B160×240×16 3.07 4.37 0.00 3.30 3.23 4.13 1.17 1.11 2.59 1.30 1.23 –– 0.47 1.24 1.31 1.30 1.39 1.27 
Mean 0.80 0.99 0.17 0.54 1.00 1.00 1.00 1.00 1.00 
COV 0.350 1.069 3.071 0.932 0.281 0.177 0.316 0.279 0.211 

Table 8. Comparison of SCFs predicted by finite element analysis with SCFs calculated using CIDECT design formulae 

and proposed unified design equation
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Comparison Hot spot location 
Coefficient 

a b c d e f g h 

Current 

design rules 

Brace 

A/E 0.013 0.693 -0.278 0 0.790 1.898 -2.109 0 

Joints with 

fillet welds 

SCFA and SCFE are multiplied by a factor of 1.40  

for brace side of weld. 

Chord 

B 0.143 -0.204 0.064 0 1.377 1.715 -1.103 0.75 

C 0.077 -0.129 0.061 -0.0003 1.565 1.874 -1.028 0.75 

D 0.208 -0.387 0.209 0 0.925 2.389 -1.881 0.75 

X-joints 

(β=1.0) 

SCFC is multiplied by a factor of 0.65; 

SCFD is multiplied by a factor of 0.50. 

Proposed 

design rules 

Brace 
A/E/F 0.725 -2.000 2.000 -0.0025 0.270 4.350 -4.200 0.250 

H 1.700 -5.000 5.000 -0.0015 -0.250 4.480 -4.200 0.500 

Chord 

B/I 0.191 -1.276 1.856 -0.0002 4.288 -3.800 -0.155 0.800 

C 0.015 0.250 -0.250 -0.0002 1.500 0.778 -0.950 0.500 

D/G 0.075 -0.300 0.540 0.0003 1.200 1.800 -2.700 0.300 

Table 9. Comparison of current design formulae with proposed design equation 

for SCFs of tubular X-joints at typical hot spot locations 
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Figure 1. Typical hot spot locations of stainless steel tubular X-joint 
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Figure 2. Methods of extrapolation to the weld toe 
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Figure 3. Definition of symbols for stainless steel tubular X-joint 
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Figure 4. Location of strain gauges 
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Figure 5. Typical test setup for SCFs of stainless steel tubular X-joint 
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Figure 6. A close up view of the strip strain gauges specific to stress 

concentration measurements of stainless steel tubular X-joint 
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Figure 7. Experimental nominal strain versus calculated nominal strain for 

stainless steel tubular X-joint of specimen XD-C140×3-B40×2 
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Figure 8. Experimental nominal strain versus calculated nominal strain for 

stainless steel tubular X-joint of specimen XD-C140×3-B140×3 
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Figure 9. Experimental nominal strain versus calculated nominal strain for 

stainless steel tubular X-joint of specimen XH-C150×6-B150×6 
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Figure 10. Experimental nominal strain versus calculated nominal strain for 

stainless steel tubular X-joint of specimen XH-C110×4-B150×6 
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Figure 11. Experimental nominal strain versus calculated nominal strain for 

stainless steel tubular X-joint of specimen XN-C40×4-B40×2 
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Figure 12. Typical details of hot spot locations in finite element model 
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