<table>
<thead>
<tr>
<th>Title</th>
<th>Distributed CFOs Estimation and Compensation in Multi-cell Cooperative Networks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Du, J; Wu, YC</td>
</tr>
<tr>
<td>Citation</td>
<td>International Conference on Information and Communication Technology Convergence (ICTC), Jeju, South Korea, 14-16 October 2013. In International Conference on Information and Communication Technology Convergence, 2013, p. 117-121, article no. 6675320</td>
</tr>
<tr>
<td>Issued Date</td>
<td>2013</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10722/199394</td>
</tr>
<tr>
<td>Rights</td>
<td>International Conference on Information and Communication Technology Convergence. Copyright © I E E E.; ©2013 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.; This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.</td>
</tr>
</tbody>
</table>
Distributed CFOs Estimation and Compensation in Multi-cell Cooperative Networks

Jian Du and Yik-Chung Wu
Department of EEE, The University of Hong Kong, Pokfulam Road, Hong Kong
Email:{dujian, ycwu}@eee.hku.hk

Abstract—In this paper, we propose a fully distributed algorithm for frequency offsets estimation in multi-cell cooperative networks. The idea is based on belief propagation, resulting in that each base station or mobile user estimates its own frequency offsets by local computations and limited exchange of information with its direct neighbors in the cellular network. Such algorithm does not require any centralized information processing or knowledge of global network topology, thus is scalable with network size. Simulation results demonstrate the fast convergence of the algorithm and show that estimation mean-squared-error at each node touches the centralized Cramér-Rao bound within a few iterations of message exchange.

I. INTRODUCTION

In traditional cellular systems, geographical area is divided into cells and a base station is dedicated to serve users within each cell. Frequency reuse pattern that forbids adjacent cells using the same frequency is adopted to avoid excessive inter-cell interference. Unfortunately, frequency reuse also leads to the fact that each cell is only using a small portion of the whole system bandwidth. Recent breakthrough in multi-cell cooperative networks allows fully frequency reuse among the cells. Despite different users interfere with each other, multiple base stations could coordinate their coding and decoding. It was shown that such joint-processing significantly outperforms a network with individual cell processing [1]–[3].

Since frequencies synthesized from independent oscillators will be different from each other due to variation of oscillator circuits, frequency offset exists at each antenna in the cellular system, as shown in Fig. 1. Multi-cell cooperation requires frequency synchronization over the whole cellular network, otherwise there would be capacity degradation [4], offsetting the benefits of cooperation. Despite the relative CFO between each base station and its users can be optimally estimated by existing methods [5]–[12], network-wide CFOs correction is difficult since each base station needs to synchronize with multiple users with different relative CFOs at the same time. Making the problem more challenging is the fact that synchronization should be accomplished by local operations without knowing the global network structure since users move around and join different parts of the network randomly.

Pioneering works for multi-cell CFOs correction have been proposed in [4]. By gathering all the information in a central processing unit, CFOs are estimated at the receiver and then feedback to corresponding transmitters to adjust the offsets. However, this method is centralized, and is not suitable for large-scale network.

In this paper, we propose a network-wide fully distributed CFOs estimation and compensation method which only involves local processing and information exchange between direct neighbors. The frequency offset of each oscillator is estimated and corrected locally by the base station or mobile user. After synchronization, the mean-square-error (MSE) for each frequency offset approaches the corresponding Cramér-Rao bound (CRB) asymptotically. Moreover, the proposed algorithm is scalable with network size, and robust to topology changes.

The following notations are used throughout this paper. Boldface uppercase and lowercase letters will be used for matrices and vectors, respectively. Superscripts \(H \) and \(T \) denote Hermitian and transpose, respectively. The symbol \(I_N \) represents the \(N \times N \) identity matrix, while \(1_K \) is an all one \(K \) dimensional vector. The symbol \(\otimes \) denotes the Kronecker product and \(\odot \) denotes the Hadamard product. Notation \(\mathcal{N}(x; \mu, R) \) stands for the probability density function (pdf) of a Gaussian random vector \(x \) with mean \(\mu \) and covariance matrix \(R \). The symbol \(\propto \) represents the linear scalar relationship between two real valued functions. \(\text{diag}\{a_1, \ldots, a_N\} \) corresponds to an \(N \times N \) diagonal matrix with diagonal components \(a_1 \) through \(a_N \), while \(\text{blkdiag}\{[A_1, \ldots, A_K]\} \) corresponds to a block diagonal matrix with \(A_1 \) through \(A_N \) as diagonal blocks.

II. SYSTEM MODEL

We consider a general network consisting of \(K \) nodes (where each node could be a base station or a mobile user)
with separate oscillator circuit. Therefore, for the Multiple node neighborhood of node vertexes, and system, for the parallel Multiple Input Single Output (MISO) CFOs estimation (with respect to a reference frequency) of the and distributed in a field as shown in Fig. 2. The topology of the network is described by a communication graph $G = (V, E)$ of order K, where $V = \{1, 2, \ldots, K\}$ is the set of graph vertexes, and $E \subseteq V \times V$ is the set of graph edges. In the example shown in Fig. 2, the vertices are depicted by circles and the edges by lines connecting these circles. The neighborhood of node i is the set of nodes $I(i) \subseteq V$ defined as $I(i) \triangleq \{j \in V | \{i,j\} \in E\}$, i.e., those nodes that are connected via a direct communication link to node i. It is also assumed that any two distinct nodes can communicate with each other through finite hops, such graph is named strongly connected graph.

In general, relative CFOs exist between any pair of neighboring nodes, and can be estimated by traditional CFOs estimation methods. Let nodes i and j equipped with N_i and N_j antennas, respectively. Denote the frequency offsets (with respect to a reference frequency) of the q^{th} antenna on node i as $\omega_{i,q}$, while that of k^{th} antenna of node j as $\omega_{j,k}$. Then, the relative CFO between the q^{th} and k^{th} antenna of nodes i and j is $\epsilon_{i,j}^{q,k} \triangleq \omega_{i,q} - \omega_{j,k}$. Here we consider the general case where each antenna can be associated with separate oscillator circuit. Therefore, for the Multiple Input Multiple Output (MIMO) system between node i and node j, there are $N_i N_j$ relative CFOs denoted as $\epsilon_{i,j} \triangleq [\epsilon_{i,j}^{q,k}]_{q=1}^{N_i} [\epsilon_{i,j}^{q,k}]_{k=1}^{N_j}$, where $\epsilon_{i,j}^{q,k}$ is the unknown channel gain between the q^{th} antenna of node i and the k^{th} antenna of node j. By stacking (1) with $t = 1, \ldots, N$ in vector form and omitting superscript i, j without confusion, the received vector $y_k \triangleq [y_k(1), \ldots, y_k(N)]^T$ can be written as

$$y_k = \Gamma_k(\epsilon_k) \odot Z_k h_k + \xi_k \quad k = 1, \ldots, N_j,$$

where $\Gamma_k(\epsilon_k)$ is an N-by-N_i Vandermonde matrix with its t^{th} row given by $[e^{j\epsilon_{1,k}}, e^{j\epsilon_{2,k}}, \ldots, e^{j\epsilon_{N_i,k}}]$; Z_k is the N-by-N_j training sequence matrix with its t^{th} row $[z_1(t), z_2(t), \ldots, z_{N_j}(t)]$; and $\xi_k = [\xi_k(1), \ldots, \xi_k(N)]^T$ is the observation noise. The parameters $\epsilon_k \triangleq [\epsilon_{1,k}, \epsilon_{2,k}, \ldots, \epsilon_{N_j,k}]^T$ and $h_k \triangleq [h_{1,k}, \ldots, h_{N_j,k}]^T$ are the parameters need to be estimated.

If the noise is white and Gaussian, i.e., $\xi_k \sim \mathcal{CN}(\xi_k; 0, \sigma^2 I_N)$, joint relative CFOs and channels estimation have been extensively studied in the past two decades and the optimal estimates $\hat{\epsilon}_k$ and \hat{h}_k have been proposed in [6]–[10], with the MSEs approaching the corresponding CRBs in medium and high signal-to-noise ratio (SNR) ranges. From (2), the CRB of ϵ_k can be shown to be

$$B_{\epsilon_k}(\epsilon_k, h_k) = \frac{\sigma^2}{2} \{ \text{Re} [V_k - T_k^H (A_k^H A_k)^{-1} T_k] \}^{-1},$$

where $V_k \triangleq \text{diag} \{h_k\}$, $A_k^H D^2 A_k \text{diag} \{h_k\}$, $T_k \triangleq A_k^H D^2 A_k \text{diag} \{h_k\}$, with $A_k \triangleq \Gamma_k(\epsilon_k) \odot Z_k$ and $D \triangleq \text{diag} \{[1, 2, \ldots, N] \}$. Since there are N_j independent MISO estimation problems as in (2), the CRB for frequency estimation in MIMO system between nodes i and j is given by $B_{\epsilon_k}^{(i,j)} \triangleq \text{blkdiag} \{B_{\epsilon_k}^{(i,j)} \} \{h_k^{(i,j)} \} = \text{blkdiag} \{B_{\epsilon_k}^{(i,j)} \} \{h_k \}$. After joint estimation of relative CFOs and channels, the relative CFOs between nodes i and j can be obtained as

$$r_{i,j} = A_{i,j} \omega_i + A_{j,i} \omega_j + n_{i,j},$$

where $r_{i,j} \triangleq [\epsilon_{i,j}^1, \epsilon_{i,j}^2, \ldots, \epsilon_{i,j}^N]^T$ are the $N_i N_j$ relative CFOs estimates; $A_{i,j} \triangleq I_{N_j} \otimes I_{N_i}$ and $A_{j,i} \triangleq -I_{N_i} \otimes I_{N_j}$; and $n_{i,j}$ is the estimation error. It is known that for the maximum likelihood (ML) estimates, $r_{i,j}$ is asymptotically Gaussian distributed with mean $[\epsilon_{i,j}^1, \epsilon_{i,j}^2, \ldots, \epsilon_{i,j}^N]^T = A_{i,j} \omega_i + A_{j,i} \omega_j$ and covariance matrix $B_{\epsilon_k}^{(i,j)} \{h_{k}^{(i,j)} \} = A_{i,j} \omega_i + A_{j,i} \omega_j$ and covariance matrix $B_{\epsilon_k}^{(i,j)} \{h_{k}^{(i,j)} \} [13]$. That is, $r_{i,j} \sim \mathcal{CN}(r_{i,j}; e_{i,j}, B_{\epsilon_k}^{(i,j)} \{h_{k}^{(i,j)} \})$. Notice that the CRB depends on the true value of $\{\epsilon_{k}^{(i,j)}\}_{k=1}^{N_j}$ and $\{h_k \}_{k=1}^{N_j}$, but since we have obtained the ML estimate $\{\epsilon_{k}^{(i,j)}\}_{k=1}^{N_j}$ and $\{h_k \}_{k=1}^{N_j}$, $B_{\epsilon_k}^{(i,j)} \{h_{k}^{(i,j)} \} = \{h_{k}^{(i,j)} \}_{k=1}^{N_j}$ can be closely approximated by $R_{i,j} = B_{\epsilon_k}^{(i,j)} \{h_{k}^{(i,j)} \} = \{h_{k}^{(i,j)} \}_{k=1}^{N_j}$. Notice that traditional CFO estimation for point-to-point link only estimates $N_i N_j$ relative CFOs given by $r_{i,j}$ in (4). However, in order to compensate the offset of individual oscillator, we need to estimate $N_i + N_j$ absolute CFOs in ω_i and ω_j. For simple MIMO systems, [4] provides a method to resolve $N_i + N_j$ absolute CFOs from $N_i N_j$ relative CFOs. In this paper, we take a significant step further to resolve all
absolute CFOs in a distributed network. That is, to estimate and compensate ω_i in each node based on estimation results of local relative CFOs $r_{i,j}$.

III. DISTRIBUTED CFOs ESTIMATION

A. Distributed CFOs Estimation via Belief Propagation

The optimal CFO estimator at each node is the ML estimator, which finds the maximum points of the global likelihood function:

$$\left[(\omega_2^{ML})^T, \ldots, (\omega_K^{ML})^T\right]^T = \arg \max_{\omega_2, \ldots, \omega_K} p\left(\{r_{i,j}\}_{i,j} \in E | \omega_1, \omega_2, \ldots, \omega_K\right). \quad (5)$$

Here, without loss of generality, node 1 is assumed to be the reference node, so ω_1 is known. The global likelihood function is given by

$$p\left(\{r_{i,j}\}_{i,j} \in E | \omega_1, \omega_2, \ldots, \omega_K\right) \propto \delta(\omega_i) \prod_{i,j \in E} p(r_{i,j} | \omega_i, \omega_j), \quad (6)$$

where $p(r_{i,j} | \omega_i, \omega_j) = \mathcal{N}(r_{i,j}; A_{i,j} \omega_i + A_{j,i} \omega_j, R_{i,j})$ is the local likelihood function. Notice that since the likelihood function in (6) depends on interactions among all unknown variables, the computation of ω_k^{ML} in (5) requires gathering of all information in a central processing unit. However, such centralized processing is not favorable in large-scale networks.

In order to compute the optimal estimate (5) in a distributed way, one can exploit the conditional independence structure of the joint distribution (6), which is conveniently revealed by factor graph (FG). FG is an undirected bipartite graphical representation of a joint distribution that unifies direct and undirected graphical models. An example of FG in the context of network-wide synchronization is shown in Fig. 3. In the FG, there are two distinct kinds of nodes. One is variable nodes representing local synchronization parameters ω_i. If there is a communication link between node i and node j, the corresponding variable nodes ω_i and ω_j are linked by the other kind of node, factor node $f_{i,j} = p(r_{i,j} | \omega_i, \omega_j)$ representing the local likelihood function. On the other hand, the factor node $f_1 = \delta(\omega_1)$ denotes value of frequency offsets of node 1, and is connected only to the variable node ω_1. Note that the FG is bipartite which means neighbors of a factor node must be variable nodes and vice versa.

From the FG, two kinds of messages are passed around: One is the message from factor node f (likelihood function $f_{i,j}$ or prior distribution f_1) to its neighboring variable node ω_i, defined as the product of the function f with messages received from all neighboring variable nodes except ω_i, and then marginalized for ω_i [14]

$$m_{f \rightarrow i}^{(l)}(\omega_i) = \int \cdots \int_{\omega_j \in B(f) \backslash \omega_i} m_{f \rightarrow j}^{(l-1)}(\omega_j) d\{\omega_j\} | \omega_j \in B(f) \backslash \omega_i, \quad (7)$$

where $B(f)$ denotes the set of variable nodes that are direct neighbors of the factor nodes f on the FG and $B(f) \backslash \omega_i$ denotes the same set but with ω_i removed. In (7), $m_{f \rightarrow j}^{(l-1)}(\omega_j)$ is the other kind of message from variable node to factor node which is simply the product of the incoming messages on other links, i.e.,

$$m_{j \rightarrow f}^{(l)}(\omega_j) = \prod_{f \in B(\omega_j) \backslash f} m_{f \rightarrow j}^{(l)}(\omega_i), \quad (8)$$

where $B(\omega_j)$ denotes the set of factor nodes that are direct neighbors of the variable nodes ω_j on the FG.

These two kinds of messages are iteratively updated at variable nodes and factor nodes, respectively. In any round of message exchange, a belief of ω_i can be computed at variable node i as the product of all the incoming messages from neighboring factor nodes, which is given by

$$b^{(l)}(\omega_i) = \prod_{f \in B(\omega_i)} m_{f \rightarrow i}^{(l)}(\omega_i). \quad (9)$$

Thereupon, the estimate of ω_i in the l^{th} iteration is simply

$$\hat{\omega}_i^{(l)} = \int \omega_i b^{(l)}(\omega_i) d\omega_i. \quad (10)$$

B. Message Computation

In the BP framework, messages are passed and updated iteratively. In order to start the recursion, in the first round of message passing, it is reasonable to set the initial messages from factor nodes to variable nodes $m_{f \rightarrow i}^{(0)}(\omega_i)$ as non-informative message $\mathcal{N}(\omega_i; \omega_i^{(0)}(0), C_{f \rightarrow i}^{(0)})$, where $\omega_i^{(0)}(0)$ can be arbitrarily chosen and $[C_{f \rightarrow i}^{(0)}]^{-1} = 0$. On the other hand, the message from f_1 to ω_1 is always $\delta(\omega_1)$, which can be viewed as a Gaussian distribution with mean ω_1 and covariance 0. Thereupon, based on the fact that the likelihood function $f_{i,j}$ is also Gaussian, according to (7), $m_{f_{i,j} \rightarrow i}^{(l)}(\omega_j)$ is a Gaussian function. In addition, $m_{j \rightarrow f_{i,j}}^{(l)}(\omega_j)$ being the product of Gaussian functions in (8) is also a Gaussian function. Thus during each round of message exchange, all the messages are Gaussian functions and only the mean vectors
and covariance matrices need to be exchanged between factor nodes and variable nodes.

At this point, we can compute the messages at any iteration. In general, for the l^{th} ($l = 2, 3, \ldots$) round of message exchange, factor node $f_{i,j}$ receive messages $m_{f_{i,j} \rightarrow f_{i,j}^{-1}}^{(l)}(\omega_j)$ from its neighboring variable nodes and then compute messages using (7). After some derivations, it can be obtained that

$$m_{f_{i,j}^{-1} \rightarrow i}^{(l)}(\omega_i) = \int \left[\frac{\mathcal{N}(\omega_i; \nu^{(l)}_{f_{i,j}^{-1} \rightarrow i}, C_{f_{i,j}^{-1} \rightarrow i}^{(l)})}{\mathcal{N}(\omega; \nu^{(l)}_{i,j}, C_{i,j}^{(l)})} \right] \omega_j d\omega_j$$

where the inverse of covariance matrix is

$$[C_{f_{i,j}^{-1} \rightarrow i}^{(l)}]^{-1} = A_{i,j}^T \left[R_{i,j} + A_{i,j} C_{i,j}^{(l)} A_{i,j}^T \right]^{-1} A_{i,j},$$

and the mean vector is

$$\nu^{(l)}_{f_{i,j}^{-1} \rightarrow i} = C_{f_{i,j}^{-1} \rightarrow i}^{(l)} A_{i,j} \left[R_{i,j} + A_{i,j} C_{i,j}^{(l)} A_{i,j}^T \right]^{-1} \nu^{(l)}_{i,j}.$$

On the other hand, using (8), the messages passed from variable nodes to factor nodes can be computed as

$$m_{i \rightarrow f_{i,j}}^{(l)}(\omega_i) = \prod_{f \in B(\omega_i) \setminus f_{i,j}} m_{f \rightarrow f_{i,j}}^{(l)}(\omega_i)$$

where

$$[C_{i \rightarrow f_{i,j}}^{(l)}]^{-1} = \sum_{f \in B(\omega_i) \setminus f_{i,j}} [C_{f \rightarrow f_{i,j}}^{(l)}]^{-1},$$

and the mean vector is

$$\nu^{(l)}_{i \rightarrow f_{i,j}} = C_{i \rightarrow f_{i,j}}^{(l)} \sum_{f \in B(\omega_i) \setminus f_{i,j}} [C_{f \rightarrow f_{i,j}}^{(l)}]^{-1} \nu^{(l)}_{f \rightarrow i}.$$

Furthermore, during each round of message passing, each node can compute the belief for ω_i using (9), which can be easily shown to be $b_{i}^{(l)}(\omega_i) \sim \mathcal{N}(\omega_i; \mu_{i}^{(l)}, P_{i}^{(l)})$, with the inverse of covariance matrix

$$[P_{i}^{(l)}]^{-1} = \sum_{j \in I(i)} [C_{f_{i,j} \rightarrow i}^{(l)}]^{-1},$$

and mean vector

$$\mu_{i}^{(l)} = \sum_{j \in I(i)} [C_{f_{i,j} \rightarrow i}^{(l)}]^{-1} \nu^{(l)}_{f_{i,j} \rightarrow i}.$$

When the algorithm converges or the maximum number of message exchange is reached, each node computes the CFOs according to (10) as

$$\omega_{i}^{(l)} = \int \omega_i b_{i}^{(l)}(\omega_i) d\omega_i = \mu_{i}^{(l)}.$$

The iterative algorithm based on BP is summarized as follows. The algorithm is started by setting the message from factor node to variable node as $m_{f_{i,j}^{-1} \rightarrow i}^{(0)}(\omega_1) = \delta(\omega_1)$ and $m_{f_{i,j}^{-1} \rightarrow i}^{(0)}(\omega_j) = \mathcal{N}(\omega_i; \nu^{(0)}_{f_{i,j}^{-1} \rightarrow i}, C_{f_{i,j}^{-1} \rightarrow i}^{(0)})$ with $\nu^{(0)}_{f_{i,j}^{-1} \rightarrow i} = 0$ and $[C_{f_{i,j}^{-1} \rightarrow i}^{(0)}]^{-1} = 0$. At each round of message exchange, every variable node computes the output messages to factor nodes according to (15) and (16). After receiving the messages from its neighboring variable nodes, each factor node computes its output messages according to (12) and (13). Such iteration is terminated when (18) converges (e.g., when $|\mu_{i}^{(l)} - \mu_{i}^{(l-1)}| < \eta$, where η is a threshold) or the maximum number of iteration is reached. Then the estimate of CFOs of each node is obtained as in (19).

Notice that after convergence, the belief $b_{i}^{(l)}(\omega_i)$ at each variable node corresponds to the marginal distribution of that variable exactly when the underlying FG is loop free [14]. However, for the FG with loops, it is generally difficult to know if BP will converge [15]. Despite the lack of general results on BP, the convergence and optimality of BP for network-wide CFO estimation algorithm are analytically proved in [16].

Remark 1: In practical networks, there is neither factor nodes nor variable nodes. The two kinds of messages $m_{i \rightarrow f_{i,j}}^{(l)}(\omega_j)$ and $m_{f_{i,j}^{-1} \rightarrow j}^{(l)}(\omega_j)$ are computed locally at node i, and only mean vector $\nu^{(l)}_{i \rightarrow f_{i,j}}(\omega_j)$ and covariance matrix $C_{f_{i,j} \rightarrow j}^{(l)}(\omega_j)$ are passed from node i to node j during each round of message exchange of BP. It can be seen the algorithm is fully distributed and each node only needs to exchange limited information with neighboring nodes.

IV. Simulation Results

This section presents numerical results to assess the performance of the proposed algorithm. In each trial, the normalized CFO of each antenna on each node (except node 1 where CFO is zero) is generated independently and is uniformly distributed in the range $[0, 1]$. Besides, the channel between each pair of nodes is Rayleigh flat-fading. The relative CFOs and channels are first estimated based on the algorithm in [8], with training length N. Then the BP algorithm is executed for network-wide CFO estimation and compensation. 5000 simulation runs were performed to obtain the average performance for each point in the figures.

In order to provide a performance benchmark for the proposed distributed algorithm, the centralized CRB is computed. The CRB can be easily derived by stacking all the pair-wise information denoted by (4) as

$$r = A\omega + n,$$

where r is a vector containing $r_{i,j}$ with ascending indexes first on i and then on j, and n containing $n_{i,j}$ with the indexes i, j ordered in the same way as in r. Since $n \sim \mathcal{N}(0; R)$, where R is a block diagonal matrix with $R_{i,j}$ as block diagonal and with the same order as $r_{i,j}$ in r, and (20) is a standard linear model, the CRB for ω is given by

$$\text{CRB}(|\omega|) = (A^T R^{-1} A)^{-1}.$$

First consider the fixed network shown in Fig. 2 and each node equipped with two antennas. We employ training with length $N = 16$ for relative CFOs estimation. The SNR during training stage and BP message passing are the same. Fig. 4 shows the sum MSE over the two antennas of ω_i for nodes...
with network size. Simulation results showed that the MSE of the proposed method touches the CRB within only a few iterations. Finally, it is worth to point out that while the focus of this paper is on multi-cell cooperative networks, the proposed algorithm is a general one, and can be applied to other distributed networks such as relay networks, heterogenous networks and massive MIMO networks.

V. CONCLUSIONS

In this paper, a fully distributed CFOs estimation algorithm for multi-cell cooperative networks was proposed. The algorithm is based on BP and is easy to be implemented by exchanging limited amount of information between neighboring nodes, thus is scalable with network size. Simulation results showed that the MSE of the proposed method touches the CRB within only a few iterations. Finally, it is worth to point out that while the focus of this paper is on multi-cell cooperative networks, the proposed algorithm is a general one, and can be applied to other distributed networks such as relay networks, heterogenous networks and massive MIMO networks.

REFERENCES