<table>
<thead>
<tr>
<th>Title</th>
<th>On Retarded Integral Inequalities for Dynamic Systems on Time Scales</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Li, QL; Fu, XY; Gao, ZJ; Cheung, WS</td>
</tr>
<tr>
<td>Citation</td>
<td>Abstract and Applied Analysis, 2014, v. 2014, article no. 980396</td>
</tr>
<tr>
<td>Issued Date</td>
<td>2014</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10722/199121</td>
</tr>
<tr>
<td>Rights</td>
<td>This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.</td>
</tr>
</tbody>
</table>
Research Article

On Retarded Integral Inequalities for Dynamic Systems on Time Scales

Qiao-Luan Li, 1 Xu-Yang Fu, 1 Zhi-Juan Gao, 1 and Wing-Sum Cheung 2

1 College of Mathematics & Information Science, Hebei Normal University, Shijiazhuang 050024, China
2 Department of Mathematics, The University of Hong Kong, Hong Kong

Correspondence should be addressed to Wing-Sum Cheung; wscheung@hku.hk

Received 13 September 2013; Accepted 16 January 2014; Published 20 February 2014

Academic Editor: Jaeyoung Chung

Copyright © 2014 Qiao-Luan Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The object of this paper is to establish some nonlinear retarded inequalities on time scales which can be used as handy tools in the theory of integral equations with time delays.

1. Introduction

Integral inequalities play an important role in the qualitative analysis of differential and integral equations. The well-known Gronwall inequality provides explicit bounds for solutions of many differential and integral equations. On the basis of various initiatives, this inequality has been extended and applied to various contexts (see, e.g., [1–4]), including many retarded ones (see, e.g., [5–9]).

Recently, Ye and Gao [7] obtained the following.

Theorem A. Let $I = [t_0, T) \subset \mathbb{R}$, $a(t), b(t) \in C(I, \mathbb{R}^+)$, $\phi(t) \in C([t_0 - r, t_0], \mathbb{R}^+)$, $a(t_0) = \phi(t_0)$, and $u(t) \in C([t_0 - r, T], \mathbb{R}^+)$ with

\[
\begin{align*}
\int_{t_0}^{t} (t-s)^{\beta-1} b(s) u(s-r) \, ds, \quad t \in [t_0, T), \\
\int_{t_0}^{t} (t-s)^{\beta-1} b(s) \phi(s-r) \, ds, \quad t \in [t_0, t_0 + r).
\end{align*}
\]

where $\beta > 0$. Then, the following assertions hold.

(i) Suppose that $\beta > 1/2$. Then,

\[
\begin{align*}
u(t) &\leq a(t) + \int_{t_0}^{t} (t-s)^{\beta-1} b(s) u(s-r) \, ds, \quad t \in [t_0, T), \\
u(t) &\leq a(t) + \int_{t_0}^{t} (t-s)^{\beta-1} b(s) \phi(s-r) \, ds, \quad t \in [t_0, t_0 + r),
\end{align*}
\]

where $K_1 = \Gamma(2\beta - 1)e^{-2r}/4^{\beta-1}$, $C_1 = \max\{2, e^{2r}\}$, $w_1(t) = C_1 e^{-2r} a(t)$, $\phi_1(t) = C_1 e^{-2r} \phi_1(t)$, and

\[
y_1(t) = \int_{t_0}^{t} K_1 b^2(s) \phi_1(s-r) \, ds
\]

\[
\cdot \exp\left(\int_{t_0}^{t} K_1 b^2(r) \, dr\right)
\]

\[
+ \int_{t_0}^{t} w_1(s-r) K_1 b^2(s) \exp\left(\int_{s}^{t} K_1 b^2(r) \, dr\right) \, ds.
\]

If, in addition, $a(t)$ and $\phi(t)$ are nondecreasing C^1-functions, then

\[
u(t) \leq \sqrt{C_1 a(t)} \exp\left(t - t_0 + \frac{K_1}{2} \int_{t_0}^{t} b^2(s) \, ds\right),
\]

$t \in [t_0, T)$.

(ii) Suppose that $0 < \beta \leq 1/2$. Then,

\[
\begin{align*}
u(t) &\leq a(t) + \int_{t_0}^{t} (t-s)^{\beta-1} b(s) u(s-r) \, ds, \quad t \in [t_0, T), \\
u(t) &\leq a(t) + \int_{t_0}^{t} (t-s)^{\beta-1} b(s) \phi(s-r) \, ds, \quad t \in [t_0, t_0 + r),
\end{align*}
\]

\[
\begin{align*}
u(t) &\leq e^{\sqrt{\int_{t_0}^{t} w_1(s-r) K_1 b^2(s) \, ds}} \cdot \exp\left(\int_{t_0}^{t} K_1 b^2(r) \, dr\right)
\]

\[
+ \int_{t_0}^{t} w_1(s-r) K_1 b^2(s) \exp\left(\int_{s}^{t} K_1 b^2(r) \, dr\right) \, ds.
\]

Theorem B. Let $I = [t_0, T) \subset \mathbb{R}$, $a(t), b(t) \in C(I, \mathbb{R}^+)$, $\phi(t) \in C([t_0 - r, t_0], \mathbb{R}^+)$, $a(t_0) = \phi(t_0)$, and $u(t) \in C([t_0 - r, T], \mathbb{R}^+)$ with

\[
\begin{align*}
\int_{t_0}^{t} (t-s)^{\beta-1} b(s) u(s-r) \, ds, \quad t \in [t_0, T), \\
\int_{t_0}^{t} (t-s)^{\beta-1} b(s) \phi(s-r) \, ds, \quad t \in [t_0, t_0 + r),
\end{align*}
\]

where $\beta > 0$. Then, the following assertions hold.

(i) Suppose that $\beta > 1/2$. Then,

\[
\begin{align*}
u(t) &\leq e^{\sqrt{\int_{t_0}^{t} w_1(s-r) K_1 b^2(s) \, ds}} \cdot \exp\left(\int_{t_0}^{t} K_1 b^2(r) \, dr\right)
\]

\[
+ \int_{t_0}^{t} w_1(s-r) K_1 b^2(s) \exp\left(\int_{s}^{t} K_1 b^2(r) \, dr\right) \, ds.
\]

If, in addition, $a(t)$ and $\phi(t)$ are nondecreasing C^1-functions, then

\[
u(t) \leq e^{\sqrt{\int_{t_0}^{t} w_1(s-r) K_1 b^2(s) \, ds}} \cdot \exp\left(\int_{t_0}^{t} K_1 b^2(r) \, dr\right)
\]

\[
+ \int_{t_0}^{t} w_1(s-r) K_1 b^2(s) \exp\left(\int_{s}^{t} K_1 b^2(r) \, dr\right) \, ds.
\]

(ii) Suppose that $0 < \beta \leq 1/2$. Then,

\[
\begin{align*}
u(t) &\leq e^{\sqrt{\int_{t_0}^{t} w_1(s-r) K_1 b^2(s) \, ds}} \cdot \exp\left(\int_{t_0}^{t} K_1 b^2(r) \, dr\right)
\]

\[
+ \int_{t_0}^{t} w_1(s-r) K_1 b^2(s) \exp\left(\int_{s}^{t} K_1 b^2(r) \, dr\right) \, ds.
\]
where \(K_2 = \left[\Gamma(1 - (1 - \beta)p)/p^{1-p(1-\beta)}\right]^{1/p} \), \(C_2 = \max\{2^{1/p}, e^{\nu_r}\} \), \(\omega_2(t) = C_2 e^{-\nu_r} \alpha^q(t) \), \(\phi_2(t) = C_2 e^{-\nu_r} \phi^q(t) \), \(\psi(t) = 2^{1-1/p} K_2 e^{-\nu_r} \beta^p(t) \), and
\[
y_2(t) = \int_{t_r}^{t} \psi(s) \phi_2(s-r) \, ds \cdot \exp \left(\int_{s_r}^{t} \psi(\tau) \, d\tau \right) + \int_{t_r}^{t} \omega_2(s-r) \psi(s) \exp \left(\int_{s}^{t} \psi(\tau) \, d\tau \right) \, ds.
\]

If, in addition, \(a(t) \) and \(\phi(t) \) are nondecreasing \(C^1 \)-functions, then
\[
u(t) \leq C_2^{1/q} a(t) \exp \left(t - t_0 + \frac{1}{q} \int_{t_0}^{t} \psi(s) \, ds \right), \quad t \in [t_0, T].
\]

In this paper, we will further investigate functions \(u \) satisfying the following more general inequalities:
\[
u(t) \leq a(t) + \int_{t_r}^{t} (t-s)^{-1} b(s) u^{n/m}(s-r) \, d\Delta s, \quad t \in [t_0, T],
\]
\[
u(t) \leq \phi(t), \quad t \in [t_0-r, t_0], \quad u(t) \leq \phi(t), \quad t \in [t_0-r, t_0],
\]
where \(\mathbb{T} \) is any time scale, \(u(t), a(t), b(t), c(t), \) and \(\phi(t) \) are real-valued nonnegative rd-continuous functions defined on \(\mathbb{T} \), \(m \) and \(n \) are positive constants, \(m \geq n, m \geq 1, (1/p) + (1/m) = 1, \beta > (p-1)/p \), and \([t_0, T] := [t_0, T] \cap \mathbb{T}\).

First, we make a preliminary definition.

Definition 1. We say that a function \(p : \mathbb{T} \to \mathbb{R} \) is regressive provided that
\[
1 + \mu(t) p(t) \neq 0, \quad \forall t \in \mathbb{T}^k
\]
holds, where \(\mu(t) \) is graininess function; that is, \(\mu(t) := \sigma(t) - t \). The set of all regressive and rd-continuous functions \(f : \mathbb{T} \to \mathbb{R} \) will be denoted by \(\mathcal{R}_R \).

2. Main Results

For convenience, we first cite the following lemma.

Lemma 2 (see [10]). Let \(a \geq 0, p \geq q \geq 0, p \neq 0; \) then
\[
a^{\nu/p} \leq \frac{q}{p} K^{(q-p)/p} a + \frac{p-q}{p} K^{q/p}
\]
for any \(K > 0 \).

Lemma 3. Let \(a(t) \geq 0, b(t) > 0, p(t) := \eta b(t)/m, -b \in \mathcal{R}_R := \{f \in \mathcal{R} : 1 + \mu(t) f(t) > 0, \forall t \in \mathbb{T} \}, \phi(t) \geq 0 \) is rd-continuous on \([t_0 - r, t_0] \), and \(s \geq 0 \) and \(m \geq n > 0 \) are real constants. If \(u(t) \geq 0 \) is rd-continuous and
\[
u^m(t) \leq a(t) + \int_{t_0}^{t} b(s) u^n(s-r) \, d\Delta s, \quad t \in [t_0, T],
\]
\[
u(t) \leq \phi(t), \quad t \in [t_0-r, t_0],
\]
then
\[
u^m(t) \leq a(t) + \int_{t_0}^{t} p(s) a(s-r) e_{-p}(s,t) \, d\Delta s + e_{-p}(t_0 + r, t) \int_{t_0}^{t} b(s) \phi^n(s-r) \, d\Delta s + \frac{m-n}{n} (e_{-p}(t_0 + r, t) - 1)
\]
for \(t \in [t_0 + r, T] \) and
\[
u^m(t) \leq a(t) + \int_{t_0}^{t} b(s) \phi^n(s-r) \, d\Delta s
\]
for \(t \in [t_0, t_0 + r] \).

Furthermore, if \(a(t) \) and \(\phi(t) \) are nondecreasing with \(a(t_0) = \phi^q(t_0) \), then
\[
u^m(t) \leq c(t) e_{-b}(t_0, t), \quad t \in [t_0, T],
\]
where \(c(t) := a(t) + (m-n)/n \).

Proof. Let \(z(t) = \int_{t_0}^{t} b(s) u^n(s-r) \, d\Delta s \). Then, \(z(t_0) = 0, u(t) \leq a(t) + z(t) \) and \(z(t) \) is positive, nondecreasing for \(t \in [t_0, T] \).

By Lemma 2, we get
\[
z(t) = b(t) u^n(t-r) \leq b(t) [a(t-r) + z(t-r)]^{n/m}
\]
\[
\leq b(t) \left[\frac{n}{m} a(t-r) + \frac{m-n}{m} z(t-r) \right] + \frac{m-n}{m} b(t)
\]
\[
\leq b(t) z(a(t)) + \frac{n}{m} b(t) a(t-r) + \frac{m-n}{m} b(t)
\]
\[
= p(t) z(a(t)) + p(t) a(t-r) + \frac{m-n}{m} p(t)
\]
for \(t \in [t_0 + r, T] \). Multiplying (16) by \(e_{-p}(t_0 + r) > 0 \), we get
\[
z(t) e_{-p}(t_0 + r) \leq p(t) a(t-r) e_{-p}(t_0 + r)
\]
\[
+ \frac{m-n}{m} p(t) e_{-p}(t_0 + r).
\]
Integrating both sides from \(t_0 + r \) to \(t \), we obtain
\[
z(t) \leq e_{-p}(t_0 + r, t) z(t_0 + r) + e_{-p}(t_0 + r, t) \int_{t_0 + r}^{t} p(s) a(s - r) e_{-p}(s, t_0 + r) \Delta s + \frac{m - n}{n} \left(e_{-p}(t_0 + r, t) - 1\right).
\]

(18)

For \(t \in [t_0, t_0 + r]_+ \), \(z(t) \leq b(t) \phi^n(t - r) \), so
\[
z(t) \leq \int_{t_0}^{t} b(s) \phi^n(s - r) \Delta s.
\]

(19)

Using (18) and (19), we get
\[
z(t) \leq e_{-p}(t_0 + r, t) \int_{t_0}^{t} b(s) \phi^n(s - r) \Delta s + \int_{t_0 + r}^{t} p(s) a(s - r) e_{-p}(s, t_0 + r) \Delta s + \frac{m - n}{n} \left(e_{-p}(t_0 + r, t) - 1\right).
\]

(20)

for \(t \in [t_0, t_0 + r + r]_+ \).

Noting that \(u^n(t) \leq a(t) + z(t) \), inequalities (13) and (14) follow.

Finally, if \(a(t) \) and \(\phi(t) \) are nondecreasing, then for \(t \in [t_0, t_0 + r]_+ \), by (14), we have
\[
u^n(t) \leq a(t) + \phi^n(t - r) \int_{t_0}^{t} b(s) \Delta s
\]

\[
\leq a(t) \left(1 + \int_{t_0}^{t} b(s) \Delta s\right) \leq c(t) e_{-b}(t_0, t).
\]

(21)

If \(t \in [t_0 + r, T]_+ \), by (13),
\[
u^n(t) \leq a(t) + e_{-p}(t_0 + r, t) a(t) \int_{t_0}^{t + r} b(s) \Delta s
\]

\[
+ a(t) \int_{t_0 + r}^{t} p(s) a_{-p}(s, t) \Delta s
\]

\[
+ \frac{m - n}{n} \int_{t_0 + r}^{t} p(s) e_{-p}(s, t) \Delta s
\]

\[
\leq c(t) + e_{-p}(t_0 + r, t) c(t) \int_{t_0}^{t + r} b(s) \Delta s
\]

\[
+ c(t) \int_{t_0 + r}^{t} p(s) e_{-p}(s, t) \Delta s
\]

\[
= c(t) e_{-p}(t_0 + r, t) \left(1 + \int_{t_0}^{t + r} b(s) \Delta s\right)
\]

\[
\leq c(t) e_{-b}(t_0, t).
\]

(22)

The proof is complete.

\[\square\]
Hence,
\[
u(\alpha(t)) \leq 2^{m-1}a^{m}(t) + 2^{m-1}e^{m-1}(p\beta - p + 1) \times \left(\frac{m}{kn} \right)^{\beta-1} \int_{t_0}^{t} b^n(s) e^{-\gamma} u^n(s-r) \Delta s
\] (28)
and so
\[
(u(t)e^{-\alpha})^m \leq 2^{m-1}a^{m}(t) + 2^{m-1}e^{m-1}(p\beta - p + 1) \times \left(\frac{m}{kn} \right)^{\beta-1} \int_{t_0}^{t} b^n(s) e^{-\gamma} u^n(s-r) \Delta s.
\] (29)

Let \(v(t) := e^{-\alpha} u(t)\); then we have
\[
v^m(t) \leq w_1(t) + K \int_{t_0}^{t} b^n(s) v^n(s-r) \Delta s,
\] (30)
t \in [t_0,T)_\tau.

For \(t \in [t_0 - r, t_0)_\tau\), we have \(e^{-\alpha} u(t) \leq e^{-\alpha} \phi(t) \leq e^{e^{-\alpha} \phi(t)}\); that is, \(v(t) \leq \phi_1(t)\). By Lemma 3, we get
\[
v^m(t) \leq w_1(t) + \int_{t_0}^{t} b^n(s) w_1(s-r) e^{-b_1(s,t)} \Delta s
\] + \(e^{-b_1(t_0 + r,t)} \int_{t_0}^{t_0 + r} K b^n(s) \phi^n_1(s-r) \Delta s
\] + \(\frac{m-n}{n} e^{-b_1(t_0 + r,t)} - 1 \).
\] (31)

Hence, the first inequality in (23) follows.

Finally, if \(a(t)\) and \(\phi(t)\) are nondecreasing, and \(a^m(t_0) = 2^{m-1}e^{m-n} \phi^n(t_0)e^{m}\), by Lemma 3, we have
\[
u(t) \leq \phi_1(t) \in [t_0,T)_\tau.
\] Proof. Let \(z(t) = \int_{t_0}^{t} b(s) u^n(s) + c(s) u^n(s-r) \Delta s\). Then, \(z(t_0) = 0\), \(u^m(t) \leq a(t) + c(t) u^n(t-r)\).

Lemma 5. Let \(a(t) \geq 0, b(t) > 0, c(t) > 0\), \(p(t) := \left(\frac{nb(t)}{m} \right)^{\gamma(t)}\), \(q(t) := \left(\frac{nc(t)}{m} \right)^{\gamma(t)}\), \(\gamma(t) := a(t) + (m-n)/m\) and \(-p_c = (p + c) \in \partial \gamma\) and let \(\phi(t) \geq 0\) be rd-continuous on \([t_0 - r, t_0)_\tau\), where \(r \geq 0\) and \(m \geq n > 0\) are real constants. If \(u(t) \geq 0\) is rd-continuous and \(u^n(t) \leq a(t) + \int_{t_0}^{t} b(s) u^n(s) + c(s) u^n(s-r) \Delta s,
\] \(t \in [t_0,T)_\tau\).

The proof is complete.

\[
\phi_1(t) \in [t_0,T)_\tau,
\] (32)

Integrating both sides from \(t_0\) to \(t\), we obtain
\[
z(t) \leq \int_{t_0}^{t} p(s) \gamma(s) + c(s) \phi^n(s-r) \Delta s.
\] (39)
For $t \in [t_0 + r, T]$,

$$z(t) \leq b(t) [a(t) + z(t)]^{n/m} + c(t) [a(t - r) + z(t - r)]^{n/m}$$

$$+ b(t) \left(\frac{n}{m} (a(t) + z(t)) + \frac{m-n}{m} \right) + c(t) \left(\frac{n}{m} (a(t - r) + z(t - r)) + \frac{m-n}{m} \right)$$

$$\leq \left(\frac{n}{m} b(t) + \frac{n}{m} c(t) \right) z(\sigma(t)) + \frac{n}{m} b(t) a(t)$$

$$+ \frac{n}{m} c(t) a(t - r) + \frac{m-n}{m} b(t) + \frac{m-n}{m} c(t)$$

$$\leq \left(p(t) + q(t) \right) z(\sigma(t)) + p(t) y(t) + q(t) y(t - r) + \frac{m-n}{m} c(t).$$

(40)

Hence, we get

$$\left(e_{-(p+r)} (t, t_0 + r) z(t) \right)^{\Delta} \leq \left(p(t) + q(t) y(t - r) \right) e_{-(p+r)} (t, t_0 + r).$$

(41)

Integrating both sides from $t_0 + r$ to t, we obtain

$$z(t) \leq e_{-(p+r)} (t_0 + r, t) z(t_0 + r) + e_{-(p+r)} (t_0 + r, t)$$

$$\times \int_{t_0 + r}^{t} \left[p(s) y(s) + q(s) y(s - r) \right] e_{-(p+r)} (s, t_0 + r) \Delta s$$

$$\leq e_{-(p+r)} (t_0 + r, t)$$

$$\times \int_{t_0}^{t_0 + r} \left[p(s) y(s) + c(s) \phi^n (s - r) \right] e_{-p} (s, t_0 + r) \Delta s$$

$$+ \int_{t_0 + r}^{t} \left[p(s) y(s) + q(s) y(s - r) \right] e_{-(p+c)} (s, t_0 + r) \Delta s.$$

(42)

Using $u^m(t) \leq a(t) + z(t)$, we get inequalities (34) and (35).

Finally, if $a(t)$ and $\phi(t)$ are nondecreasing, then, by (35),

$$u^m(t) \leq \gamma(t) \left(1 + \int_{t_0}^{t} (p(s) + c(s)) e_{-p} (s, t) \Delta s \right)$$

$$\leq \gamma(t) \left(1 + \int_{t_0}^{t} (p(s) + c(s)) e_{-(p+c)} (s, t) \Delta s \right)$$

$$\leq \gamma(t) e_{-(p+c)} (t_0, t)$$

(43)

for $t \in [t_0, t_0 + r]$. Furthermore, by (34),

$$u^m(t) \leq \gamma(t) + \gamma(t) e_{-(p+r)} (t_0 + r, t)$$

$$\times \int_{t_0}^{t} \left(p(s) + c(s) \right) e_{-p} (s, t_0 + r) \Delta s$$

$$+ \gamma(t) \int_{t_0 + r}^{t} \left(p(s) + c(s) \right) e_{-(p+r)} (s, t) \Delta s$$

$$\leq \gamma(t) e_{-(p+r)} (t_0 + r, t)$$

$$\times \left(1 + \int_{t_0}^{t_0 + r} (p(s) + c(s)) e_{-(p+c)} (s, t_0 + r) \Delta s \right)$$

$$= \gamma(t) e_{-(p+c)} (t_0, t)$$

(44)

for $t \in [t_0 + r, T]$. The proof is complete.

□

Theorem 6. Assume that $u(t)$ satisfies condition (9), $a(t) \geq 0$, $K := 3^{m-1} m^{-1} (p \beta - p + 1)(m/pn)^{\beta m - 1}$, $p(t) := nKn u^m(t)/m$, $c_1(t) := K e^{-r \phi(t)}$, $q(t) := (n/m)c_1(t) - p - (p + c_1) \in R^+$. If, in addition, $a(t)$ and $\phi(t)$ are nondecreasing, and $a^m(t) = 3^{1-m(\alpha-n)\beta} e^{\alpha} \phi(t)$, then

$$u(t) \leq \gamma(t) e_{-(p+c)} (t_0, t) \left[1 + \int_{t_0}^{t} (t-s)^{\beta-1} e^{m/n} \phi^n (s) e^{-m/n} u^n (s) \Delta s \right.$$

$$+ \left. \int_{t_0}^{t} (t-s)^{\beta-1} e^{m/n} c(s) e^{-m/n} u^n (s-r) \Delta s \right]$$

$$\leq a(t) + \left(\int_{t_0}^{t} (t-s)^{\beta-1} e^{m/n} u^n (s) \Delta s \right)^{1/p}$$

$$\times \left(\int_{t_0}^{t} b^m (s) e^{-n_1 u^n (s)} \Delta s \right)^{1/m}$$

$$\times \left(\int_{t_0}^{t} c^m (s) e^{-n_1 u^n (s-r)} \Delta s \right)^{1/m}$$

(45)

where $\gamma(t) = 3^{m-1} a^m(t) e^{-m(n)/n + (m-n)/n}$.

Proof. For $t \in [t_0, T]$, using Hölder’s inequality with indices p and m, we obtain from (9) that

$$u(t) \leq a(t) + \left(\int_{t_0}^{t} (t-s)^{\beta-1} e^{m/n} \phi^n (s) e^{-m/n} u^n (s) \Delta s \right.$$
By Jensen’s inequality \((\sum_{i=1}^{n} x_i)\sigma \leq n^{\sigma-1} (\sum_{i=1}^{n} x_i^\sigma)\), we get
\[
 u^m(t) \leq 3^{m-1} a^m(t) + 3^{m-1} e^{m \left(\frac{m\beta-1}{pn} \right)} \Gamma_{m-1}^{p\beta-p+1} + 3^{m-1} \left(\frac{m}{pn} \right)^{(m\beta-1)} \Gamma_{m-1}^{p\beta-p+1}
\times \left(\int_{t_0}^{t} b^m(s) e^{-\alpha s} u^n(s) \Delta s + \int_{t_0}^{t} c^m(s) e^{-\alpha s} u^n(s-r) \Delta s \right).
\]
(46)

So,
\[
 (u(t)e^{-t})^m \leq 3^{m-1} a^m(t) e^{-m\alpha n} + 3^{m-1} \left(\frac{m}{pn} \right)^{(m\beta-1)} \Gamma_{m-1}^{p\beta-p+1} \times \left(\int_{t_0}^{t} b^m(s) e^{-\alpha s} u^n(s) \Delta s + \int_{t_0}^{t} c^m(s) e^{-\alpha s} u^n(s-r) \Delta s \right).
\]
(47)

Let \(v(t) := e^{-t} u(t), v_2(t) := 3^{m-1} a^m(t)e^{-m\alpha n}; \) we have
\[
 v^m(t) \leq w_2(t) + \int_{t_0}^{t} K b^m(s) v^n(s) \Delta s + \int_{t_0}^{t} K e^{-\alpha s} c^m(s) v^n(s-r) \Delta s
\]
(49)

for \(t \in [t_0,T]_\mathbb{T}. \) For \(t \in [0-t_0, t_0]_\mathbb{T}, \) we have \(e^{-t} u(t) \leq e^{-t} \phi(t) \leq e^{-t_0} e^\gamma \phi(t); \) that is, \(v(t) \leq \phi(t). \) By Lemma 5, we get
\[
 u(t) \leq e^t \left[y(t) e^{-1(\alpha_2 + \gamma_2)} (t_0, t) \right]^{1/m}, \quad t \in [t_0,T]_\mathbb{T}.
\]
(50)

The proof is complete.

The following is a simple consequence of Theorem 4.

Corollary 7. Suppose that \(m = n = 2, \)
\[
 u(t) \leq a(t) + \int_{t_0}^{t} (t-s)^{\beta-1} b(s) u(s-r) \Delta s, \quad t \in [t_0,T]_\mathbb{T},
\]
(51)

\[
 u(t) \leq \phi(t), \quad t \in [0-t_0, t_0]_\mathbb{T};
\]

then
\[
 u(t) \leq e^t \left[w_1(t) + \int_{t_0+r}^{t} K b^2(s) w_1(s-r) e^{-K\beta^2}(s,t) \Delta s + e^{-K\beta^2} (t_0 + r, t) \right]^{1/2}
\times \int_{t_0}^{t+r} K b^2(s) \phi^2(s-r) \Delta s,
\]
\[t \in [t_0+r,T]_\mathbb{T}, \]
(52)

where \(K := \Gamma (2\beta - 1) e^{-2(r)} \cdot (1/\beta - 1), \) \(w_1(t) := 2a^2(t)e^{-2\gamma(t)}, \)
\(\phi(t) := e^{-t_0} e^\gamma \phi(t). \)

If \(T = \mathbb{R}, \) then the conclusion reduces to that of Theorem A for \(\beta > 1/2. \)

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgments

The first author’s research was supported by NNSF of China (11071054), Natural Science Foundation of Hebei Province (A2011205012). The corresponding author’s research was partially supported by an HKU URG grant.

References

