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We have performed a comparative study of resonance Raman scattering in transition-metal

dichalcogenides 2H-MX2 semiconductors (M¼Mo, W; X¼S, Se) and single-layer MoS2. Raman

spectra were collected using excitation wavelengths 633 nm (1.96 eV), 594 nm (2.09 eV), 532 nm

(2.33 eV), 514 nm (2.41 eV), and 488 nm (2.54 eV). In bulk-MoS2 and WS2, the resonant energies

appear to coincide with their exciton excitations. The resonance can be fine tuned by varying

sample temperatures, which confirms its excitonic origin in both MoS2 and WS2. Temperature

dependence of Raman intensities is analyzed in the context of resonance Raman theory, which

agrees well with the existing absorption data. While in WSe2, the resonance has been observed in a

wider range of excitations from 633 to 514 nm, which cannot be explained with its excitonic

energies of 1.6 and 2.0 eV. It is considered that additional excitonic bands induced by band

splitting are involved in the inter-band transitions and substantially extend the resonance energy

range. The Raman resonance energy range remains unchanged in single-layer MoS2 compared with

that in the bulk sample. However, most phonon modes in single-layer MoS2 are significantly

broadened or strongly suppressed under resonance conditions. This change could be related to the

modification of acoustic modes by the substrate. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4862859]

INTRODUCTION

The transition-metal dichalcogenides 2H-MX2 semicon-

ductors (M¼Mo, W; X¼S, Se) are layered compounds

very similar to graphite. MX2 layers are held together by

weak van der Waals interaction, so atomically thin MX2

flakes can be easily exfoliated from bulk crystal.1 The simi-

larity between the two layered systems has attracted exten-

sive interests in the two-dimensional materials. Single-layer

MX2 exhibits many unique properties, for example, surpris-

ingly high photoluminescence (PL) efficiency,2,3 a clear spin

splitting of valence bands due to strong spin-orbit

coupling,4–8 and a novel spin-valley coupling,9–15 etc. In

spite of its structural similarity to graphene, layered MX2 has

some advantages over graphene. Originally, it is a semicon-

ductor and has intrinsic band-gaps. Furthermore, photolumi-

nescence and absorption measurements reveal that the

indirect band-gap in bulk crystal evolves into a direct one in

single-layer MoS2,15–19 which is also predicted by

theory.20–23 These properties make MX2 more flexible than

graphene in electronic device applications.

Raman scattering is proved to be a key technique in

both determining the number of layers and probing band

excitations in few-layer MX2 and graphene.24–31 In a general

Raman process, Raman intensities Iph are proportional to

scattering probability Pph which is described by three-step

time-dependent perturbation theory as following:32–34

Iph / Pph/
�
�
�
�

hf jHe�R xsð Þjm0ihm0jHe�pjmihmjHe�R xið Þjii
Eim � �hxi � iC1ð Þ Em0f � �hxs � iC2ð Þ

�
�
�
�

2

;

(1)

where jii, jfi, and jmi/jm0i are initial, final, and intermediate

states, respectively; He-R and He-p the electron-radiation

interaction and electron-phonon interaction Hamiltonians,

respectively; Eim and Em0f the energy differences between

initial and intermediate states and between final and interme-

diate states, respectively; xi and xs the incident and scat-

tered photon frequencies, respectively. C1 and C2 are

damping constants which are related to the lifetimes of the

intermediate states. If intermediate states are real conductio-

n/excitonic bands rather than virtual states, Eim/Em0f exactly

measures band/excitonic excitation gaps. In this case, when

�hxi or �hxs approaches gap energies, Raman scattering inten-

sity will be enhanced dramatically as seen in Eq. (1). In fact,

Eq. (1) provides a basis for quantitatively analyzing exci-

tonic excitations and temperature dependence of phonon

intensities in the vicinity of resonance. If the 1 s exciton state

is well separated from other states and is the main intermedi-

ate state that contributes to Raman scattering in

transition-metal dichalcogenide system we study, Eq. (1) can

be simplified to32–34

Iph /
�
�
�
�

1

EðTÞ � �hxi � iCðTÞ½ � � EðTÞ � �hxs � iCðTÞ½ �

�
�
�
�

2

;
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where all the matrix elements are incorporated into a con-

stant (not shown here), E(T) and C(T) are temperature-

dependent transition energies and damping of exciton, which

will be discussed in more detail later.

This resonance Raman scattering creates an important

avenue to studies of band/excitonic excitations in diverse

nanomaterials.34–37 It also offers unique insight into multi-

phonon process due to the relaxation of selection rules and a

huge amplification of Raman intensity under the resonance

condition. Fortunately, the direct gaps of all the above MX2

bulk crystals and few-layer flakes (�1.5 eV–2.5 eV)38 over-

lap the photon energies of visible light, which enables our

studies of resonance Raman scattering in these materials by

using visible laser excitations.

MX2 (M¼Mo, W; X¼ S, Se) compounds share the

similar crystal structure and symmetry, where Raman-active

modes E1g, A1g, E2g(1), and E2g(2) are arised.39–45 There

have been some reports of resonance Raman scattering in

bulk MoS2 and WS2, in which multi-phonon modes com-

posed of optical A1g/E1
2g and longitudinal acoustic (LA)

phonons were clearly observed under the resonance

conditions.46–50 Livneh and Sterer carefully studied pressure

and temperature-dependent Raman resonance in bulk

2H-MoS2 and pointed out that the excitonic excitations offer

the resonance enhancement of Raman intensities. Despite

the sporadic reports, comprehensive study of resonance

Raman scattering in bulk 2H-MX2 and single-layer flake is

still lacking.

In this paper, we report resonance Raman study of bulk

2H-MoS2, WS2, WSe2, and monolayer MoS2. Resonance

Raman spectra of MoS2 and WS2 can be well understood in

terms of excitonic band excitations. This interpretation natu-

rally explains why resonance Raman spectra show a system-

atic evolution with varying temperature which is equivalent

to the fine tuning of excitonic band gaps. The resonance in

WSe2 remains at excitation energies even higher than its

excitonic band gaps. It is believed that additional excitonic

states induced by band splitting are involved in the resonance

and effectively extend the energy range of resonance. This is

also supported by the existing absorption spectra. We further

measured Raman spectra of single-layer MoS2 under several

excitation wavelengths. The energy at which resonance occurs

seems to be unchanged in comparison with that of bulk crystal.

Interestingly, under the resonance condition, many observed

modes, including multi-phonon ones, are significantly broad-

ened and their intensities are weaker. This cannot be simply

attributed to the change of electronic or phononic band struc-

tures with the transition from bulk to monolayer. The anoma-

lous phonon change is considered to be affected by the

acoustic modes in monolayer MoS2, which participate in most

of the observed multi-phonon processes but are modified by

the interaction with substrates in the monolayer case.

EXPERIMENTAL PROCEDURES

Single-layer MoS2 was obtained by exfoliation from

bulk MoS2 crystals (SPI Supplies) and placed on a Si wafer

coated with 300 nm-thick oxide layer. Single layer MoS2 can

be identified under an optical microscope by color contrast.

Lateral size of single-layer MoS2 is estimated to be

�5 � 10 lm2. The number of MoS2 layers was confirmed by

frequency separation between E2g(1) and A1g modes (see the

inset of Fig. 6). Bulk WS2 and WSe2 were prepared by

chemical vapor deposition (CVD) method.19 Raman spectra

with five excitation wavelengths were measured using differ-

ent spectrometers. We employed Jobin Yvon T64000 system

for 633 nm (Melles Griot, HeNe Laser) and 532 nm (Torus

532, Laser Quantum) excitations, and PI TriVista system for

594 nm (Cobolt Mambo) and 488 nm (Coherent Sapphire)

excitations. The spectra at 514 nm (Melles Griot, Argon

Laser) were measured with WITec-Alpha micro-Raman sys-

tem. A backscattering configuration was adopted in all the

measurements. For 594 and 488 nm excitations, the cut-off

wavenumbers of edge filters are �300 and 200 cm�1, a little

higher than the other three cases. Variable-temperature

measurements were conducted in a Janis ST-500E cryostat

under a vacuum of �10�7 mbar. Variable-temperature PL

spectra were measured at 633 nm excitation using the

T64000 system.

RESULTS AND DISCUSSIONS

Fig. 1 shows Raman spectra of bulk MoS2 collected at

different excitation wavelengths. Only two Raman-active

modes E2g
1 and A1g can be seen with 488 and 532 nm excita-

tions. Many additional modes appear in the Raman spectra

when 594 nm (2.09 eV) and 633 nm (1.96 eV) lasers are

applied. The resonance at 633 nm has been studied by sev-

eral groups,46,47,51 which can be well understood as facili-

tated by excitonic excitations in the vicinity of A(�1.88 eV)

exciton. The additional modes were also assigned to

multi-phonon lines. The 466 cm�1 mode with strong inten-

sity is attributed to a combination of two LA modes.

Similarly, the combinations between LA modes and E2g, A1g

E1g, E1u optical modes can explain most of the additional

lines at higher frequencies.47 The resonance at 594 nm is

similar to that occurs at 633 nm case, despite the small dis-

crepancy in the relative intensities between different modes.

Naturally one can associate the excitation energy with the

energy of B exciton, which is about 2.06 eV at room

FIG. 1. Raman spectra of bulk MoS2 crystal under different excitation wave-

lengths at room temperature.

053527-2 Fan et al. J. Appl. Phys. 115, 053527 (2014)
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temperature.52 As revealed in our resonance Raman experi-

ments, both the A and B excitons formed at K/K0 points are

involved in the optical resonance processes. On the other

hand, the excitonic gaps can be smoothly changed by exter-

nal conditions like temperature or pressure.51,53 This means

that we can fine tune the excitonic gaps by varying temperature

or pressure and hence the resonance condition to further con-

firm the resonance enhancement mechanism by monitoring the

evolution of excitonic gaps with temperature or pressure.

Under non-resonant conditions, temperature dependence

of Raman intensities is governed by the Bose-Einstein ther-

mal factor. However, Raman resonance plays a more impor-

tant role in Raman intensities compared with phonon

thermal population. Fig. 2(a) shows Raman spectra of bulk

2H-MoS2 collected at different temperatures under a 633 nm

laser excitation. The spectra exhibit a continuous and rapid

increase in intensity with decreasing temperature. For a qual-

itative view, the inset of Fig. 2(a) shows the temperature de-

pendence of integrated spectral intensities from 135 to

1200 cm�1, which demonstrates a nearly linear decrease in

the integrated intensity with increasing temperature. And the

integrated intensity at 70 K is almost nine times higher than

that at 300 K. As a comparison, we also measured Raman

spectra of the same sample at different temperatures using a

532 nm laser excitation, as depicted in Fig. 2(b). The dra-

matic changes in spectral intensities observed under a

633 nm laser excitation completely disappear. Clearly, it is

out of resonance due to the relatively large difference

between the excitation photon energy and the excitonic tran-

sition energies in the material.51 With decreasing tempera-

ture, the gap of A exciton is fine tuned and approaches the

photon energy of 633 nm incident light,54 which causes the

rapid enhancement of Raman scattering intensities.

In order to obtain quantitative information from our reso-

nance measurements, we plot the temperature dependence of

integrated intensities of A1g mode in Fig. 3(a). The formula (1a)

can be used to fit the data when the functional forms of E(T)

and C(T) are given. The temperature dependence of excitonic

transition energies follows Varshini empirical relationship51

EðTÞ ¼ Eð0Þ � aT2

ðbþ TÞ ; (2)

where E(0) and E(T) are transition energies of exciton at 0 K

and finite temperatures, and a and b are the fitting parameters

related to exciton-phonon interaction and Debye tempera-

ture, respectively. The temperature dependence of exciton

damping is given by55

CðTÞ ¼ C0 þ
Cph

expðHph=TÞ � 1
; (3)

where C0 is the temperature-independent width, Cph is the

exciton-phonon coupling strength, and Hph is the phonon

temperature. Combining (1a) with (2) and (3), we have made

a perfect fitting of the temperature dependent intensity of the

A1g mode (shown in Fig. 3(a)). The fitting quantitatively

determines the evolution of excitonic transition energies and

damping with temperature, which are shown in Fig. 3(b).

The evolution is in excellent agreement with the results from

absorption measurements.55 Note that the damping of exci-

ton, corresponding to full width at half maximum (FWHM),

is adopted in our analysis.

FIG. 2. Raman spectra of bulk 2H-MoS2 at selected temperatures under

633 nm (a) and 532 nm (b) excitations, respectively. The integrated inten-

sities have been corrected with Bose-Einstein thermal factor and normalized

to the values at 320 K. To illustrate the resonance behaviors, the insets show

the temperature dependence of normalized integrated intensity of Raman

phonons in the energy range of 135–1200 cm�1 under 633 nm excitation and

135–700 cm�1 for 532 nm excitation.

FIG. 3. (a) Normalized integrated intensities of A1g mode versus temperature.

The solid red line is the fitting curve using formula (1a) in combination with (2)

and (3). The fitting determines the parameters as following: E(0)¼ 1.954 eV,

a¼ 0.101 meV/K, b¼ 122 K, C0¼ 11.8 meV, Cph¼ 193 meV, Hph¼ 628 K.

(b) Calculated temperature dependence of transition energies and damping of A

exciton in MoS2 using (2) and (3). Parameters are taken from the fitting in (a).

053527-3 Fan et al. J. Appl. Phys. 115, 053527 (2014)
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In addition to absorption experiment, PL spectroscopy is

another widely used technique to study the resonance.

Unfortunately, PL signal is very weak in bulk MoS2 because

it is an indirect-gap semiconductor. However, in mononlayer

MoS2, the excitonic transition gap at K points in the

Brillouin zone evolves into a direct gap and PL signal is dra-

matically enhanced by more than three orders of

magnitude.16–18 It means that alternatively, one can see the

excitonic process through the enhanced PL spectra in the

monolayer case. Fig. 4 shows PL spectra of monolayer MoS2

at selected temperatures. The well-defined PL peak in Fig.

4(a), whose position defines the transition energy of A exci-

ton, smoothly shifts towards low energy and its width

becomes broader when temperature increases. We also fit the

peak positions versus temperature using Eq. (2). The temper-

ature evolution is well consistent with that of near-resonance

Raman spectra discussed above.

Fig. 5 gives Raman spectra of WS2 under five excitation

wavelengths. Raman-active E2g
1 and A1g modes exist in all

the five spectra. Additional modes can be observed in all the

spectra except the one excited by a 488 nm laser excitation.

It indicates that Raman resonance in WS2 covers a large

energy range from 1.96 to 2.41 eV. The excitonic gaps for A

and B excitons are 1.95 and 2.36 eV at room temperature,52

respectively. It provides an initial understanding for the large

resonance range. We can assign the resonance at 633 nm

(1.96 eV) to A exciton,54 and those at 532 nm (2.33 eV) and

514 nm (2.41 eV) to B exciton due to its broad features

revealed by absorption experiments.56 The resonance at

594 nm (2.09 eV) is unusual. It may be assisted by intermedi-

ate process, like higher-order excitonic states. A completely

reliable interpretation will depend on a detailed knowledge

of the electronic band structures. A comprehensive and

self-consistent understanding of such a large resonance

energy range is an open question raised by the present reso-

nance Raman experiments in WS2.

Fig. 6(a) shows resonance Raman spectra of bulk 2H-

WS2 using a 633 nm laser light at various temperatures. The

resonance becomes much stronger with increasing tempera-

ture. The background at low wavenumbers in Fig. 6(a) con-

tinuously rises with increasing temperatures, which is

attributed to the photoluminescence of A exciton. Intensity

enhancement with temperature is also found for most of the

modes in the spectra excited by a 532 nm laser light (Fig.

6(b)). For the 2LA(M) mode at 350 cm�1 (shown in the inset

of Fig. 6(b)), the intensity increases and the frequency dis-

plays a redshift with increasing temperature. Similar to the

case of MoS2, the temperature evolutions reflect the

fine-tuning of A and B excitonic gaps. It should be noted that

the spectral evolutions with temperatures in both 633 and

532 nm cases are opposite to that of MoS2 mentioned above.

In MoS2, excitonic transition energies are at 1.88 (A) and

2.06 (B) eV at room temperature. As temperature decreases,

the energy of the A exciton gradually approaches the photon

energy of the laser light (633 nm) and hence Raman intensity

rapidly increases. Whereas in WS2, the A and B exciton

energies are at 1.96 eV (close to the photon energy of

633 nm) and 2.33 eV (close to the photon energy of 532 nm)

at room temperature. As temperature decreases, both exci-

tonic energies increase and are away from the photon ener-

gies. Therefore, Raman scattering intensities continuously

decrease with lowered temperature. In other words, the

fine-tuning by temperature has different effects on MoS2 and

WS2, i.e., close to and away from the resonance, respec-

tively. Figs. 7(a) and 7(c) quantitatively present the inte-

grated intensities of the A1g phonon versus excitonic

transition energies for A and B excitons, respectively. Just

FIG. 4. (a) Photoluminescence spectra of monolayer MoS2 at selected temper-

atures under 633 nm excitation. The sharp peak superimposed on the PL peak,

is the phonon line from substrate Si. (b) Temperature dependence of PL peak

positions drawn from (a). The solid red line is the fitting curves following

Eq. (2). The fitting parameters are E(0)¼ 1.891 eV, a¼ 0.371 meV/K,

b¼ 243 K. (c) Temperature dependence of PL peak widths. The red line is a

guide to the eye.

FIG. 5. (a) Raman spectra of bulk 2H-WS2 at five excitation wavelengths.

(b) Same spectra as in (a) with magnified intensities for a clearer view of

weak features.

053527-4 Fan et al. J. Appl. Phys. 115, 053527 (2014)
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like the MoS2 case, the expression (1a) can also be applied

here to produce perfect fittings (solid red lines in Figs. 7(a)

and 7(c)). This indicates that the fine-tunable Raman

enhancement in WS2 can be well understood in term of exci-

tonic resonance. This is also supported by absorption spectra

in WS2.55 Furthermore, the information on transition ener-

gies and damping of A and B excitons can be drawn from

the fittings, as we have seen in MoS2. Figs. 7(b) and 7(d)

demonstrate their temperature evolutions, which are calcu-

lated based on formula (2) and (3) with the parameters deter-

mined by the fittings in Figs. 7(a) and 7(c). The results also

quantitatively overlap with those obtained from absorption

experiments.55

Fig. 8 shows Raman spectra of bulk WSe2 at different

excitations. It should be noted that only a sharp mode

located at 250 cm�1 is observed in the spectrum with

488 nm excitation. It has been reported that this mode

actually consists of nearly degenerate E2g
1 and A1g

modes.24,42 While for the other four excitations, many addi-

tional modes are seen and they appear to be quite similar

under different excitations. Just like the case of WS2, the

resonance also covers a wide energy range at least from

1.96 to 2.41 eV. However, the measured gaps of A and B

excitons in WSe2 are at about 1.65 and 2.0 eV, respec-

tively,4,38 which are much lower than the energy range in

which resonance occurs. Therefore, Raman resonance in

WSe2 cannot be simply explained as the excitonic excita-

tions. It was pointed out that different from sulfur ions in

MoS2 and WS2, Se has a larger ionic radius and hence a

larger overlap between Se orbitals from adjacent layers.38

This would induce a band splitting and bring additional

excitonic bands. In fact, absorption measurements observed

not only the peaks contributed by A and B excitons, but

also the ones originated from A0 and B0 excitons which

were considered to be caused by band splitting.4,38 Then

the resonance at 633 nm (1.96 eV) and 594 nm (2.09 eV)

can be assigned to B exciton and the ones at 532 nm

(2.33 eV) and 514 nm (2.41 eV) to A0 exciton.

In Figs. 1, 5, 8, and 9, abundant higher-order phonon

processes can be clearly seen under resonance conditions in

the bulk and monolayer samples. Some of them in MoS2 and

WS2 have been assigned in Refs. 46 and 47, while a compre-

hensive assignment of the multi-phonons in WSe2 is still

lacking. It requires complicated LDA calculations of joint

density of states for multi-phonon processes and a careful

symmetry analysis under conservations of energy and mo-

mentum, which is apparently beyond the scope of the present

paper. Nevertheless, the clear regular phonon bands seen in

Fig. 8 offer insight on multi-phonons in WSe2. The “period”

of phonon bands is about 250 cm�1, which may be an indica-

tion of the LA(M) acoustic mode as in MoS2 and WS2.

FIG. 6. Raman spectra of bulk 2H-WS2 at selected temperatures under 633

(a) and 532 nm (b) excitations. For a qualitative view, the inset in (a) and the

right inset in (b) show the temperature dependence of integrated intensities

in the same way as we show in Fig. 2. The left inset in (b) shows tempera-

ture evolution of 2LA(M) and E2g
1 modes around 350 cm�1.

FIG. 7. Normalized integrated inten-

sities of A1g mode versus temperature

with 633 nm (a) and 532 nm (c) excita-

tions. The solid red lines in (a) and (c)

are the fitting curves using formula

(1a) in combination with (2) and (3).

The fittings give the parameters

E(0)¼ 2.038 eV, a¼ 0.949 meV/K, b
¼ 858 K, C(0)¼ 21.5 meV, Cph

¼ 137 meV, Hph¼ 532 K for A exci-

ton; E(0)¼ 2.607 eV, a¼ 1.210 meV/K,

b¼ 268 K, C0¼ 130 meV, Cph

¼ 488 meV, Hph¼ 969 K for B exciton.

Calculated temperature dependence of

transition energies and damping of A

exciton (b) and B exciton (d) in WS2

using (2) and (3). Parameters are taken

from the fittings in (a) & (c).
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Resonance Raman scattering in single-layer MoS2 is

shown in Fig. 9. Just like in the bulk, the resonance still

occurs at 633 nm (1.96 eV) and 594 nm (2.09 eV). It seems

that the resonance energy range is almost unaffected by the

transition from indirect to direct gap when reducing bulk

MoS2 to one layer. It suggests that the resonance is always

dominated by the excitonic excitations at K/K0 in both bulk

and single-layer MoS2. One difference between the reso-

nance spectra of the bulk and single-layer is the gradual

lift-up of background towards high frequencies in mono-

nlayer MoS2. Clearly it comes from the tail of extremely

strong photoluminescence in monolayer MoS2. A significant

difference between bulk and monolayer MoS2 in resonance

Raman spectra is that almost all the first-order and

multi-phonon modes are greatly broadened and their relative

intensities are substantially changed in the monolayer MoS2.

The sharp multi-phonon modes above 550 cm�1 in the reso-

nance spectra of the bulk are strongly suppressed and almost

invisible in the monolayer case. It seems that sample quality

is not the answer to the question because E2g
1 and A1g modes

remain very sharp under the non-resonance condition in

monolayer MoS2. Similar results were also reported in a

recent Raman paper.57

There are several possible reasons for the suppression of

Raman modes above 550 cm�1 in monolayer MoS2. One rea-

son could be the change of electronic band structures with

the transition from bulk to monolayer. As we mentioned ear-

lier, the resonance originates from the excitonic excitations

at K/K0 and is not sensitive to the subtle changes of band

structures in other k-points. In this scenario, the change of

electronic band structures may be just a minor factor causing

the suppression. Another possibility could be the change of

phonon band structures. It seems that this may provide a

direct explanation for the phonon anomaly in monolayer.

However, first-principles calculations indicate that phonon

dispersion only has a negligible discrepancy between bulk

and monolayer MoS2.39 The third possibility is that the

acoustic branches in monolayer are strongly affected by sub-

strate. In bulk case, the first layer in contact with the sub-

strate only consists of a tiny amount of atoms in the whole

sample and has little impact on the lattice vibrations.

However, in the monolayer, the situation is completely

changed. The long-range acoustic modes are easily affected

by additional forces provided by the substrate. Under the res-

onance conditions, the acoustic modes are involved in most

of the observed additional modes. In other words, the modifi-

cation of acoustic modes by the substrate causes the suppres-

sion of most multi-phonon process.

SUMMARY

In summary, we conducted a comparative resonance

Raman scattering study on bulk 2H-MX2 semiconductors

(M¼Mo, W; X¼S, Se) and single-layer MoS2. We found

that Raman resonance can be conveniently understood with

the excitonic excitations at K/K0 in bulk MoS2. In bulk WS2,

beyond A and B first-order excitonic states involved in the

resonance, some other intermediate process like higher-order

excitonic states, are needed to explain the resonance at

594 nm (2.09 eV), which is slightly away from A excitonic

energies. The resonance is fine tuned by varying tempera-

tures in MoS2 and WS2, which is consistent with the exci-

tonic picture. However, in WSe2, it is impossible to

understand the wide resonance energy range in terms of the

first-order energies of A and B excitons. The wide energy

range of resonance in WSe2 can be understood by consider-

ing the additional exciton states. The present resonance

Raman experiments reveal a general trend that 5d elements

in 2H-MX2 bring more complicated band features than 4d

elements. It raises some important issues on fine band struc-

tures in 2H-MX2 compounds. Raman resonance in

FIG. 8. (a) Raman spectra of bulk WSe2 at five excitation wavelengths.

(b) Same spectra as in (a) with magnified intensities.

FIG. 9. Room-temperature Raman spectra of monolayer MoS2 under differ-

ent excitation wavelengths. The inset shows the frequency separation

between E2g
1 and A1g modes, which demonstrates that the sample is a mono-

layer MoS2.
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single-layer MoS2 is similar to the bulk to some extent. But

most of the first-order and multi-phonon modes in monolayer

are greatly broadened or suppressed. We interpret the anom-

alous phonon change in terms of the modified acoustic

modes by the substrate. It suggests that one needs to take

into account the impact of the substrate when exploring the

physical properties of monolayer MoS2.
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