<table>
<thead>
<tr>
<th>Title</th>
<th>Application of blueberry extracts to Alzheimer disease prevention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inventor(s)</td>
<td>ZHANG YANBO; LIU JINGYI; TONG YAO; SZE CHOWING</td>
</tr>
<tr>
<td>Citation</td>
<td>China Published Patent Application CN 102641351. Beijing, PRC: State Intellectual Property Office (SIPO) of the P.R.C., 2012</td>
</tr>
<tr>
<td>Issued Date</td>
<td>2012</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10722/195804</td>
</tr>
<tr>
<td>Rights</td>
<td>This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.</td>
</tr>
</tbody>
</table>
发明名称

蓝莓提取物用于预防阿尔茨海默病

摘要

本发明蓝莓提取物用于预防阿尔茨海默病，首次通过体外实验证明，含 25% 总花青素的蓝莓提取物可有效抑制 β-淀粉样蛋白及同型半胱氨酸引起的 PC12 细胞凋亡。蓝莓提取物可进一步开发用于预防阿尔茨海默病。
0. 本发明蓝莓提取物用于预防阿尔茨海默病，其特征在于：
1. 蓝莓提取物对β-淀粉样蛋白致PC12细胞损伤的保护作用。
2. 蓝莓提取物对同型半胱氨酸致PC12细胞损伤的保护作用。
3. 蓝莓提取物对β-淀粉样蛋白致PC12细胞凋亡的抑制作用。
4. 蓝莓提取物对β-淀粉样蛋白致caspase-3表达增强的抑制作用。
5. 蓝莓提取物对阿尔茨海默病的预防作用。
6. 如权利要求1-4任一项中的应用，其中所述的蓝莓提取物有效成分含25%的总花青素。
技术领域
[0001] 本发明属于药学领域。具体涉及蓝莓提取物对β－淀粉样蛋白及同型半胱氨酸诱导的PC12细胞损伤的保护作用。

背景技术
[0002] 阿尔茨海默病（Alzheimer’s Disease, AD）是一种神经退行性疾病。主要的临床表现为认知和记忆功能不断恶化，并伴随各种神经精神症状和行为障碍。在我国65岁以上老年人中患病率为约5%。AD的主要病理特征之一是在大脑皮层和海马区出现由β－淀粉样蛋白（Aβ）聚积形成的老年斑（SP）。大量研究已经表明，Aβ在AD的病中起着相当重要的作用。Aβ的神经毒性性能引起氧化应激，线粒体损伤，激活凋亡因子，启动细胞的凋亡。同时，临床研究证明血浆中同型半胱氨酸水平增高可增加AD的发病率。因此，减少Aβ的生成，抑制Aβ或同型半胱氨酸引起的神经损伤是研究AD治疗的热点之一。

[0003] 目前治疗AD的药物主要是神经营养药、拟胆碱药或胆碱酯酶抑制剂，均属对症治疗药物，不能缓解AD病情的发展。蓝莓（Vaccinium myrtillus L.）制剂现已广泛用于各种保健品，可预防眼科及心血管方面的疾病。然而蓝莓提取物对AD的预防作用还未见报道。

发明内容
[0004] 本发明的目的是为蓝莓提用于预防海默病提供细胞水平的依据。发明人经过多次药理学实验，发现含25%总花青素的蓝莓提取物可有效对抗Aβ25-35及同型半胱氨酸引起的细胞毒性，抑制细胞凋亡及凋亡蛋白caspase-3的表达。该药理作用在本发明以前尚无文献报道。

附图说明

[0006] 图2和对照组比较Aβ25-35处理后PC12细胞caspase-3的表达显著增高。蓝莓提取物预处理可有效降低caspase-3的表达。

[0007] 蓝莓提取物抑制Aβ25-35诱导的caspase-3表达增高。

具体实施方式
[0008] 细胞培养：PC12细胞于37℃、5%CO2培养箱培养。培养基为含8%胎牛血清，8%马血清的DMEM培养液。取对数生长期的细胞以1×10⁴/100μl接种于96孔板，37℃培养24h。

[0009] 药物处理：蓝莓提取物由香港东方保健品公司提供。细胞加入终浓度为0-50μM
的蓝莓提取物，培养24h以观察蓝莓提取物的细胞毒性。细胞先不同浓度的蓝莓提取物预处理1h，再加入0.5μM Aβ_{25-35}或5mM同型半胱氨酸继续培养24h以观察蓝莓提取物对Aβ_{25-35}及同型半胱氨酸毒性的对抗作用。

[0010] MTT细胞活力测定：药物处理后，去除培养液，每孔加入50μM MTT溶液（终浓度
0.5mg/ml），37℃培养4h后，每孔加入50μM MTT裂解液（20% SDS, 50% DMF, pH4.7），37℃反应过夜。酶标仪检测各组细胞570nm的OD值。将OD值转换为百分比（%）。未经药物处理的细胞 OD 值设为 100%。每组6空对照，结果用X±SD表示。

[0011]荧光显微镜检测细胞凋亡：将生长良好的PC12细胞接种于6孔板，37℃孵育24h。分组及药物处理同上。弃除培养液，用4%多聚甲醛于4℃固定30min。用磷酸缓冲液（0.1M PBS, pH7.4）漂洗后，加入终浓度为5μg/ml的Hoechst33258避光染色10min，PBS漂洗后封片，荧光显微镜观察细胞核凋亡。

[0012] Western blot检测caspase-3的表达

[0013] 方法：将生长良好的PC12细胞接种于6孔板，37℃孵育24h。分组及药物处理同上。用RIPA裂解液提取细胞总蛋白，BCA法测定蛋白质浓度。用12% SDS-聚丙烯酰胺凝胶电泳分离蛋白。电泳后蛋白转移至PVDF膜，用含5%脱脂牛奶的TBST缓冲液（含0.05% Tween20的TBS缓冲液）室温封闭1h。将膜与溶解于TBST缓冲液的caspase-3一抗4℃孵育过夜。TBST洗涤5min×3次后，将膜与溶解于TBST缓冲液的辣根过氧化物酶标记的二抗室温孵育1h。TBST洗涤5min×3次，用ECL化学发光法检测蛋白表达。

[0014] 附图1说明：

[0015] 和对照组比较，经Aβ_{25-35}处理后细胞核出现凋亡特征：表现为细胞核变小或破碎，荧光增强。蓝莓提取物预处理可有效抑制Aβ_{25-35}诱导的细胞凋亡。

[0016] 蓝莓提取物对Aβ_{25-35}诱导的PC12细胞凋亡的影响（A为对照组，B：Aβ_{25-35}处理组，C：25μM蓝莓提取物预处理组，D：50μM蓝莓提取物预处理组）

[0017] 附图2说明：

[0018] 和对照组比较Aβ_{25-35}处理后PC12细胞caspase-3的表达显著提高。蓝莓提取物预处理可有效降低caspase-3的表达。

[0019] ！

<table>
<thead>
<tr>
<th>蓝莓提取物浓度(μM)</th>
<th>0</th>
<th>1</th>
<th>5</th>
<th>10</th>
<th>25</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>细胞活力(%)</td>
<td>100.0±10.2</td>
<td>102.6±7.2</td>
<td>104.7±5.7</td>
<td>102.9±9.5</td>
<td>109.1±5.1</td>
<td>114.4±4.6</td>
</tr>
</tbody>
</table>

[0020] 表1

<table>
<thead>
<tr>
<th>蓝莓提取物浓度(μM)</th>
<th>0</th>
<th>0</th>
<th>10</th>
<th>25</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aβ_{25-35}浓度(μM)</td>
<td>0</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>细胞活力(%)</td>
<td>100.0±1.7</td>
<td>68.6±1.2*</td>
<td>73.0±1.2</td>
<td>76.1±2.4*</td>
<td>90.0±1.4*</td>
</tr>
</tbody>
</table>

[0022] 表2

[0023]
表 3

<table>
<thead>
<tr>
<th>提取物浓度 (μM)</th>
<th>0</th>
<th>0</th>
<th>10</th>
<th>25</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>同型半胱氨酸浓度 (mM)</td>
<td>0</td>
<td></td>
<td></td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>细胞活力 (%)</td>
<td>100.0±2.9</td>
<td>79.6±1.5</td>
<td>82.7±6.3</td>
<td>90.7±3.0*</td>
<td>90.6±2.8*</td>
</tr>
</tbody>
</table>

表 3 说明：

蓝莓提取物在 0-50 μM 浓度范围对 PC12 细胞无明显毒性。50 μM 蓝莓提取物可一定程度促进细胞增殖 (114.4±4.6 %)。

蓝莓提取物对 PC12 细胞活力的影响。

表 2 说明：

蓝莓提取物有效对抗 Aβ25-35 诱导的 PC12 细胞活力下降。细胞用 0.5 μM Aβ25-35 处理 24h 后，活力显著下降 (68.6±1.2 %)。蓝莓提取物处理可明显对抗 Aβ25-35 的细胞毒性。50 μM 蓝莓提取物可恢复细胞活力至 90% 左右。

蓝莓提取物对 Aβ25-35 致细胞损伤的保护作用。

结果：*P < 0.05 *P < 0.05

表 3 说明：

蓝莓提取物有效对抗同型半胱氨酸诱导的 PC12 细胞活力下降。细胞用 5 mM 同型半胱氨酸处理 24h 后，活力显著下降 (79.6±1.4 %)。蓝莓提取物处理可明显降低同型半胱氨酸诱导的细胞损伤。蓝莓提取物 (25, 50 μM) 可恢复细胞活力至 90% 左右。

蓝莓提取物对同型半胱氨酸致细胞损伤的保护作用。

结果：*P < 0.05 *P < 0.05

综上所述，本发明首次通过体外实验证明，含 25% 总花青素的蓝莓提取物可有效抑制 β-淀粉样蛋白及同型半胱氨酸引起的 PC12 细胞凋亡。蓝莓提取物可进一步开发用于预防海默病。
图 1

图 2

<table>
<thead>
<tr>
<th>蓝莓提取物(μM)</th>
<th>0</th>
<th>0</th>
<th>25</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aβ_{25,35} (μM)</td>
<td>0</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Caspase-3
β-actin