<table>
<thead>
<tr>
<th>Title</th>
<th>Penicillium marneffei infection and impaired IFN-γ immunity in humans with autosomal-dominant gain-of-phosphorylation STAT1 mutations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Lee, PPW; Mao, H; Yang, W; Chan, KW; Ho, MHK; Lee, TL; Chan, JFW; Woo, PCY; Tu, W; Lau, YL</td>
</tr>
<tr>
<td>Citation</td>
<td>Journal of Allergy and Clinical Immunology, 2014, v. 133 n. 3, p. 894–896.e5</td>
</tr>
<tr>
<td>Issued Date</td>
<td>2014</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10722/194970</td>
</tr>
<tr>
<td>Rights</td>
<td>NOTICE: this is the author’s version of a work that was accepted for publication in Journal of Allergy and Clinical Immunology. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of Allergy and Clinical Immunology, 2014, v. 133 n. 3, p. 894–896.e5. DOI: 10.1016/j.jaci.2013.08.051; This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.</td>
</tr>
</tbody>
</table>
Penicillium marneffei infection and Impaired Interferon-gamma Immunity in humans with Autosomal Dominant Gain-of-phosphorylation STAT1 mutations

Pamela P.W. Lee, MBBS1*, Huawei Mao, PhD1*, Wanling Yang, PhD1, Koon-Wing Chan, MSc1, Marco H.K. Ho, MBBS1, Tsz-Leung Lee, MBBS1, Jasper F. W. Chan, MBBS2, Patrick C.Y. Woo, MD2, Wenwei Tu, PhD1, Yu-Lung Lau, MD1

1Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong;

2Department of Microbiology, LKS Faculty of Medicine, The University of Hong Kong

*Lee and Mao are co-first authors with equal contribution to the work

Short title: Penicilliosis in children without HIV

Keywords: Penicillium marneffei; penicilliosis; chronic mucocutaneous candidiasis; STAT1; interferon-gamma; primary immunodeficiency

Word count: 1085
Capsule summary: Penicillium marneffei is an AIDS-defining illness. We provide the first identification of autosomal dominant gain-of-phosphorylation \textit{STAT1} mutations causing defective interferon-gamma and Th17 immunity in patients with penicilliosis, an invasive mycosis endemic in Southeast Asia.
Penicillium marneffei (PM) is a pathogenic fungus endemic in Southeast Asia. PM was an extremely rare pathogen in human before the HIV epidemic, but following the exponential rise in HIV prevalence in Southeast Asia, penicilliosis emerged as a clinically significant opportunistic infection and is classified as an AIDS-defining illness. Less commonly, penicilliosis occurs in patients with other immunodeficiencies, such as severe combined immunodeficiency, common variable immunodeficiency, hyper-IgM syndrome, hyper-IgE syndrome, the presence of anti-IFNγ autoantibody, diabetes mellitus, immunosuppressive therapy, and solid organ or hematopoietic stem cell transplant. Affected individuals often have disseminated disease with rapid progression to multi-organ failure and death.

We previously reported 5 Chinese HIV-negative children and teenagers with disseminated penicilliosis. Four had co-existing chronic mucocutaneous candidiasis (CMC) since infancy, and one of them was genetically confirmed to have autosomal dominant hyper-IgE syndrome (AD-HIES). For the remaining 3 patients, a search for genetic defects in CARD9, AIRE, STAT3, IL12B, IL12RB1, IFNGR1 was unrevealing. The co-existence of CMC and systemic penicilliosis suggested a possible functional defect of Th17 immune response in these patients. Recently, AD gain-of-function
Lee et al

58 missense mutations of STAT1 have been identified in several multiplex kindreds
59 displaying CMC, autoimmunity and squamous cell carcinoma.4-9 We hypothesized
60 STAT1 as a candidate gene, and we sought to determine the cellular response to STAT1
61 activation in these patients. Consent for genetic diagnosis and functional studies was
62 obtained from parents, and the study was approved by The Institutional Review Board
63 of The University of Hong Kong / Hospital Authority Hong Kong West Cluster.
64
65 P1, P2 and P3 were 3 unrelated Chinese children, and their clinical presentations and
66 immunological profile were previously reported in detail.3 The core features and genetic
67 findings of the patients and their parents are listed in Table 1 and Fig E1 (Online
68 Repository). Heterozygous missense mutation in STAT1 was identified by Sanger
69 sequencing in P1 (c.800C>T, p.A267V) and P3 (c.863C>T, p.T288I), and total exome
70 sequencing in P2 (c.1074G>T, p.L358F; Online Repository). p.A267V is a known
71 mutation while p.T288I and p.L358F are novel, but missense mutations involving the
72 same amino acid residues (p.T288A and p.L358W) were reported in patients with
73 CMC.4-6 Multiple sequence alignment of STAT1 orthologs (HomoloGene, NCBI)
74 showed that all residues are highly conserved in animals except zebrafish for A267 and
75 T288, and chicken for L358.
Missense mutations affecting the STAT1 coiled-coil domain identified in patients with AD-CMC have been demonstrated to be gain-of-function mutants with increased tyrosine-701 residue phosphorylation and enhanced γ-activated sequence (GAS) promoter binding activity. We compared the level of STAT1 phosphorylation in patients with healthy controls by flow cytometric analysis of intracellular phosphorylated STAT1 (pSTAT1). PBMC from patients and controls were stimulated with recombinant human IFNα (40,000 IU/ml) or IFNγ (5,000 IU/ml) for 20 min. Compared with normal controls, lymphocytes from all patients demonstrated significantly higher percentage of pSTAT1+ cells and increased phosphorylation intensity in response to IFNα and IFNγ stimulation (Fig 1 A and B, Fig E2 in the Online Repository). The kinetics of STAT1 dephosphorylation was studied in P1. When treated with tyrosine kinase inhibitor, almost all STAT1 in control cells was dephosphorylated by 30 min; whereas about 50% and 25% of STAT1 in patient cells remained phosphorylated at 30 and 60 min respectively, indicating prolonged STAT1 phosphorylation in patient cells (Fig 1C). A missense mutant affecting residue L358 was previously shown to cause delayed dephosphorylation as well.

Next, we determined the proportion of IFNγ and IL17A-expressing T-cells in PMBCs activated by overnight incubation with PMA (100 ng/ml) and ionomycin (1 µg/ml) in the
presence of Brefeldin A. Patients had significantly lower CD3+/IFNγ+ T-cells
(14.8±1.5% vs 43.3±12.8%, p<0.01) and CD3+/IL17A+ T-cells (0.30±0.11% vs
2.15±1.41%, p=0.01; Fig. 1D) compared to normal controls. Finally, we evaluated the
capacity of IFNγ production towards fungal stimulation in P1 and P2. PBMCs were
co-cultured with Candida albicans or PM for 2 days, and supernatants were collected
for IFNγ assay (FlowCytomix, Bender MedSystems). Compared with normal controls,
P1 and P2 produced much lower IFNγ towards both fungi (Fig. 1E). Production of other
cytokines (IL1β, IL6, TNFα and MIP1α) was studied in P1, and was comparable with
normal controls. (Fig E3, Online Repository).
Previous studies demonstrated that patients with CMC caused by

gain-of-phosphorylation STAT1 mutations had impaired Th1 and Th17 response as a
result of defective signaling through the IL12 and IL23 pathways.4-7, 10 Majority of these
gain-of-phosphorylation mutants are located in the coiled-coil domain and two in the
DNA-binding domain.6, 7 Impaired dephosphorylation of STAT1 enhances
gamma-interferon activation factor (GAF)-dependent cellular response to IFNα/β, IFNγ,
and IL27, which are repressors of Th17 development from naïve T-cells. The enhanced
response mediated by STAT1 probably impairs Th17 immunity.5

The identification of STAT1 and STAT3 mutations in patients with systemic penicilliosis
suggests the importance of Th1 and Th17 immune response against PM. It is generally believed that PM establishes diseases in the lungs following inhalation of conidia, and disseminates in the form of intracellular yeast via the reticuloendothelial system. The activation of macrophages by IFNγ is essential for their fungicidal activity against PM through the production of nitric oxide. While PM infection was self-limiting in wild-type mice, all IFNγ-knockout mice died of systemic mycosis.\textsuperscript{\textit{11}} In humans, individuals with anti-IFNγ autoantibody suffered from disseminated penicilliosis.\textsuperscript{\textit{2}} Our experiments showed that lymphocytes of P1 and P2 exhibited defective IFNγ production to PM in vitro. To our knowledge, this study shows for the first time that a primary defect in IFNγ and IL17 immune response may be accountable for human PM infection. Penicilliosis should be regarded as an indicator of underlying primary immunodeficiency in HIV-negative individuals after excluding secondary causes.

It is worth noting that impaired IFNγ and Th17 response in patients with gain-of-phosphorylation \textit{STAT1} mutations can predispose them to invasive mycosis as well as a range of bacterial and viral infections. Apart from penicilliosis, disseminated aspergillosis, candidemia, disseminated histoplasmosis and recalcitrant cutaneous fusariosis were reported.\textsuperscript{\textit{6,\textit{12}}} P2 and P3 had recurrent sinopulmonary infections caused by respiratory viruses and encapsulated bacteria, which was also similarly described by
Of note, P3 had tuberculous lymphadenitis, recurrent herpes zoster and EBV-associated hemophagocytosis, supporting previous observation that AD gain-of-phosphorylation STAT1 mutations are associated with susceptibility to mycobacterial and herpes virus infections. Autoimmunity such as hypothyroidism, autoimmune hepatitis, systemic lupus erythematosus and type I diabetes mellitus, as well as malignancy such as esophageal carcinoma can lead to significant morbidities to this group of patients. The infectious disease susceptibility and phenotypic spectrum of AD-CMC caused by STAT1 mutations are wider than previously believed, revealing the divergent roles of STAT1 in host-pathogen interaction, immune tolerance and carcinogenesis.

Pamela P.W. Lee, MBBS1*
Huawei Mao, PhD1*
Wanling Yang, PhD1
Koon-Wing Chan, MSc1
Marco H.K. Ho, MBBS1
Tsz-Leung Lee, MBBS1
Jasper F. W. Chan, MBBS2
Patrick C.Y. Woo, MD2
Wenwei Tu, PhD
Yu-Lung Lau, MD

From 1Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong; 2Department of Microbiology, LKS Faculty of Medicine, The University of Hong Kong

*These authors contributed equally to this work.

Funding support: The Hong Kong Society for the Relief of Disabled Children

Disclosure of potential conflict of interest: The authors declare that they have no relevant conflicts of interest.
REFERENCES

Table 1 Core clinical features of 3 patients with systemic *P. marneffei* infection and *STAT1* mutations.

<table>
<thead>
<tr>
<th></th>
<th>P1</th>
<th>P2</th>
<th>P3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td>M</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>Age of presentation</td>
<td>Infancy</td>
<td>Infancy</td>
<td>infancy</td>
</tr>
<tr>
<td>Family history</td>
<td>Nil of significance</td>
<td>Nil of significance</td>
<td>Nil of significance</td>
</tr>
<tr>
<td>Infections</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fungus</td>
<td>CMC, disseminated</td>
<td>CMC, C. albicans and C. tropicalis otitis externa, disseminated PM</td>
<td>CMC, disseminated PM, disseminated aspergillosis</td>
</tr>
<tr>
<td>Bacteria</td>
<td>Nil documented</td>
<td>Recurrent sinopulmonary infections</td>
<td>Recurrent sinopulmonary infections</td>
</tr>
<tr>
<td>Mycobacteria</td>
<td>Nil documented</td>
<td>Nil documented</td>
<td>M. tuberculosis lymphadenopathy</td>
</tr>
<tr>
<td>Virus</td>
<td>Nil documented</td>
<td>H1N1 influenza A respiratory infection with prolonged carriage, CMV pneumonitis</td>
<td>Recurrent herpes zoster reactivation, EBV-associated hemophagocytosis</td>
</tr>
<tr>
<td>Mutation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nucleotide change</td>
<td>c.800C>t</td>
<td>c.1074G>T</td>
<td>c.863C>T</td>
</tr>
<tr>
<td>Domain</td>
<td>Coiled-coil domain</td>
<td>DNA binding domain</td>
<td>Coiled-coil domain</td>
</tr>
<tr>
<td>Carrier status of parents</td>
<td>Not carrier</td>
<td>Not carrier</td>
<td>Mother - not carrier (father not checked)</td>
</tr>
</tbody>
</table>
Figure 1. Gain-of-phosphorylation STAT1 mutations impaired IFNγ and IL17 responses.

A, PBMCs were stimulated with IFNα or **B,** IFNγ and analyzed for intracellular pSTAT1 expression by gating on lymphocytes. The increase in %pSTAT1+ population in stimulated cells relative to unstimulated cells was calculated. Representative histograms are shown for P1 and a normal control. **C,** PBMCs from P1 were stimulated by IFNγ followed by treatment with staurosporine for 30 or 60 minutes. The percentage of intracellular pSTAT1 expression and mean fluorescence intensity (MFI) were determined in monocytes by flow cytometry. **D,** PBMCs were stimulated with PMA plus ionomycin and intracellular expression of IFNγ and IL17A in CD3+ T-cells was analyzed by flow cytometry. **E,** PBMCs were co-cultured with *C. albicans* (MOI of 5) or *P. marneffei* conidia (MOI of 1) for 48 hours, and IFNγ in the supernatant was quantified.