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ABSTRACT 

Travel demand forecasting is subject to great uncertainties. A systematic uncertainty analysis 

can provide insights into the level of confidence on the model outputs, and also identify 

critical sources of uncertainty for enhancing the robustness of the travel demand model. In 

this paper, we develop a systematic framework for quantitative uncertainty analysis of a 

combined travel demand model (CTDM) using the analytical sensitivity-based method. The 

CTDM overcomes limitations of the sequential four-step procedure since it is based on a 

single unifying rationale. The analytical sensitivity-based method requires less computational 

effort than the sampling-based method. Meanwhile, the uncertainties stemming from inputs 

and parameters can be treated separately so that the individual and collective effects of 

uncertainty on the outputs can be clearly assessed and quantified. Numerical examples are 

finally used to demonstrate the proposed sensitivity-based uncertainty analysis method for the 

CTDM. 
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1. Introduction 

Transportation planning and project evaluation are both based on travel demand forecasting, 

which is subject to different types of uncertainties (de Jong et al., 2007; Rasouli and 

Timmermans, 2012). These uncertainties stem from the predicted socioeconomic inputs, 

calibrated parameters, and the travel demand model itself (i.e., model structure and 

assumptions). Without considering uncertainty in the travel demand model, transportation 

planning, project evaluation, and investment decision are likely to take on unnecessary risk 

and any decisions based on these forecasts may be inaccurate and misleading (Zhao and 

Kockelman, 2002). Although transportation planners and decision makers may realize the 

existence of uncertainty, the vast majority does not employ any particular technique or 

methodology to systematically quantify it in the planning process. One of the reasons is that 

most of the existing procedures in the travel demand forecasting are deterministic, and there 

lacks a systematic methodology to conduct the uncertainty analysis of a travel demand model.  

Planners usually use point estimates of traffic forecasts in practice. However, they are not 

aware of the reliability and/or risk of the point estimates.  Variance and confidence interval 

are typical ways used to quantify the reliability/risk of a point estimate.  Also, covariance or 

correlation analysis can inform planners the relationship between outputs and 

inputs/parameters that may not be apparent just from the model.  A systematic uncertainty 

analysis can provide insights into the level of confidence on the model outputs, and also 

identify critical sources of uncertainty for enhancing the robustness of the travel demand 

model. 

 

In the literature, Waller et al. (2001) studied the impact of demand uncertainty on the results 

of the traffic assignment model. They found that the traffic assignment results tend to 

overestimate the network performance when ignoring demand uncertainty.  Bowman et al. 

(2002) proposed a simplified method to estimate the probability distribution of a travel 

demand forecast.  Given a forecast of any variable of interest (e.g., revenue, ridership), this 

method identified independent sources of uncertainty, estimated a probability distribution of 

each source, estimated the sensitivity of the variable to each source, and then combined the 

effects of multiple sources.  Zhao and Kockelman (2002) addressed the uncertainty 

propagation issue of a sequential four-step procedure using Monte Carlo simulation, and 

concluded that the error of the model tends to amplify in the first three steps (i.e., trip 

generation, trip distribution and modal split) and reduces in the last step (i.e., traffic 
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assignment) of the sequential four-step procedure. Moreover, Pradhan and Kockelman (2002) 

and Krishnamurthy and Kockelman (2003) investigated the uncertainty propagation of an 

integrated land use-transportation model over time.  Along a different line, Ševčíková et al. 

(2007) developed a Bayesian melding method for assessing uncertainty about variables of 

interest using urban stochastic simulation models.  It combined all the available information 

about inputs and outputs (in terms of prior probability distributions and likelihoods) in a 

Bayesian approach to obtain the posterior distribution of variables as a function of inputs 

and/or outputs.  Recently, Rasouli and Timmermans (2012) provided a comprehensive review 

on the uncertainty analysis in travel demand forecasting, including four-step models, discrete 

choice models, and activity-based travel demand models.  

 

Typically, uncertainty analysis of a model consists of the following three steps: (1) 

characterization of input/parameter uncertainty, (2) uncertainty propagation, and (3) 

characterization of output uncertainty. The first step is to estimate the distribution 

characteristics (e.g., mean, variance, skewness, etc) of input/parameter uncertainty in the 

model. For the purpose of depicting their respective effect, we separate the input and 

parameter uncertainty in the analysis. Input uncertainty is a phenomenon that inherently exists 

in the real world. It can be measured, analyzed, and where appropriate explained. By contrast, 

parameter uncertainty is an aspect of knowledge which can (at least theoretically) be reduced 

by collecting more and better data (Brattin et al., 1996; Rai et al., 1996; Vose, 2000). 

However, the distinction between them is to a great extent a matter of convention since it may 

not be feasible to eliminate error in measurement (reducible uncertainty) beyond a certain 

level. In this paper, if not mentioned explicitly, the uncertainty refers to the combination of 

input and parameter uncertainty or the total uncertainty. The second step estimates the output 

uncertainty resulting from the input/parameter uncertainty. It is concerned with how the 

input/parameter uncertainty is converted or propagated by the model to the output uncertainty. 

The third step studies the characteristics of the output uncertainty, such as mean, variance, 

confidence level for a certain output, relationship between input and output (e.g., whether they 

are dependent or not, how strongly they are related if dependent) as well as between 

parameter and output.  

 

The purpose of this study is to develop a systematic and computationally efficient network 

equilibrium approach for quantitative uncertainty analysis of a combined travel demand 
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model (CTDM) using the analytical sensitivity-based method. Our approach has the following 

three key features: 

(1) Although the sequential four-step procedure has been widely employed by practitioners, 

it suffers from inconsistent consideration of travel times and congestion effects amongst 

various steps since it is not based on a single unifying rationale that would explain or 

legitimize all dimensions of travel demands jointly (Garret and Wachs, 1996). Further, 

the aforementioned inconsistency of the sequential approach may also introduce extra 

error into the uncertainty analysis. In this study, the combined travel-destination-mode-

route choice model originally proposed by Oppenheim (1995) is adopted to overcome the 

problems associated with the sequential four-step procedure. Thus, the combined travel 

demand model (CTDM) provides a viable avenue for modeling and predicting multi-

dimensional travel demands and equilibrium flows on congested networks, while 

overcoming the inconsistency issues associated with the sequential four-step procedure 

and behavioral inconsistency between different steps. This feature makes it possible to 

develop an analytical sensitivity-based uncertainty analysis for assessing the uncertainty 

associated with a combined travel demand model. 

(2) An analytical sensitivity-based method recently developed by Yang and Chen (2009) for 

the CTDM will be adopted to develop the uncertainty analysis methodology instead of 

the time-consuming sampling-based methods (e.g., Monte Carlo, Quasi- Monte Carlo, 

Latin Hypercube sampling, etc.). For the sampling-based methods, it is unclear how many 

samples are sufficient for conducting the uncertainty analysis of a travel demand model. 

In addition, the computational burden could be prohibitively expensive for practical 

applications. Since the CTDM is formulated as a nonlinear programming (NLP) problem 

and the uniqueness of solution can be guaranteed under the commonly adopted 

assumptions, the sensitivity analysis method of NLP can be employed and customized to 

derive the sensitivity expressions of the output variables (e.g., multi-dimensional travel 

demand, traffic flow, and travel cost) with respect to perturbations from various input 

variables (e.g., number of zonal potential travelers) and parameters (e.g., attractiveness of 

travel choices) in the combined model. In addition, the sensitivity analysis of the 

network-level performance measures such as the total system travel time and total vehicle 

mile traveled can also be obtained using matrix manipulation and differential chain rule. 

Based the above derivative information and a given variance-covariance matrix of 

inputs/parameters, we can estimate the variance-covariance matrix of outputs, the 

confidence intervals of outputs, and correlation between outputs and inputs/ parameters. 
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(3) Uncertainties stemming from input data and model parameters can be treated separately 

so that the individual and collective effects of uncertainty on the outputs can be clearly 

assessed and quantified. This capability provides valuable information on improving the 

quality of model estimation by reducing uncertainty. The approach allows analysis of 

input data and model parameter uncertainties in a systematic way for addressing the 

travel demand forecasts quality and the implications and significance of the relevant 

information for model improvement and infrastructure investment. 

 

The remainder of this paper is organized as follows. Travel demand models are discussed in 

Section 2. Section 3 provides the sensitivity analysis of the combined travel demand model, 

which is followed by an uncertainty analysis in Section 4. Section 5 presents some numerical 

examples to demonstrate the sensitivity-based uncertainty analysis of the combined travel 

demand model. Finally, some concluding remarks are given in Section 6. 

 

2. Travel demand forecasting models 

This section presents the travel demand forecasting models. Notation is listed first, which is 

followed by discussions on the sequential four-step and combined travel demand models, and 

the CTDM formulation. 

 

2.1 Notation 

 Parameters in the combined travel demand model: rmdandt are positive 
parameters associated with the variances of the random components in the route, 
mode, destination and travel choices, respectively 


Rescaled parameters where 

1 1 1 1 1 1 1 1 1
;  ;  

' ' 'm m r d d m t t d        
       

Assume that r m d t      , so that the rescaled parameters are all positive 
ma

ijr  Link-route incidence indicator, 1 if link am is on route r from origin i to destination j 
on mode m, 0 otherwise 

 A scalar attached to travel time in the utility function (value of time) 
am Link index of mode m 

mac  Fixed travel cost on link a of mode m 

( )
mat   Travel time function for link a of mode m 

( )
mag   Generalized link travel cost function for link a of mode m, ( ) ( )

m m ma a ag t c     

ijmrg  Generalized cost of taking route r on mode m between origin i and destination j, 
m

mm

a
ijmr a ijra

g g   



 
 

  6

hx Constant term in the utility specification, which can be specified as a linear function 
of socioeconomic characteristics: hi is the traveling attractiveness of origin i; hij is 
the attractiveness of destination j from origin i; hijm is the attractiveness of mode m 
between i and j 

Ni Number of potential travelers from origin i 
Pxy (Unconditional) joint probability of x and y; for example, Pijmr is the probability that 

a traveler in origin i travels to destination j on mode m through route r 
Py|x Conditional probability of choosing y given x; for example, Pr|ijm is the probability 

of taking route r given that a traveler in origin i has chosen to travel to destination j 
on mode m 

Ti Number of travelers from origin i 
Ti0 Number of non-travelers in origin i 
Tij Number of travelers from origin i to destination j 
Tijm Number of travelers using mode m from origin i to destination j 
Tijmr Number of travelers taking route r on mode m from origin i to destination j for the 

travel purpose of interest 
U Direct utility of choices 
W  Expected received utility of choices 

 

2.2 Sequential four-step and combined travel demand models 

The conventional travel demand forecasting model uses a sequential four-step procedure: trip 

generation, trip distribution, mode choice, and traffic assignment (Ortuzar and Willumsen, 

2001). Alternatively, the four-step procedure can be viewed in two stages: 1) various 

characteristics of the travelers and land use (and, to a certain extent, the transportation system) 

are calibrated, validated, and evaluated to produce a non-equilibrated measure of travel 

demand (i.e., mode-specific trip tables), and 2) the trip tables are loaded onto the 

transportation network in the traffic assignment step to yield equilibrium flows and travel 

times (McNally, 2000a). In both stages, the results of one step (or stage) act as inputs to next 

step. However, it should be recognized that the sequential four-step procedure suffers from 

inconsistent consideration of travel times and congestion effects amongst various steps since 

it is not based on a single unifying rationale that would explain or legitimize all dimensions of 

travel demands jointly (Garret and Wachs, 1996; Oppenheim, 1995). The models used in 

different steps have different rationales along with different assumptions (e.g., Gravity model 

in the trip distribution step, Logit model in the modal split step, and user equilibrium (UE) 

model in the traffic assignment step). 

 

Although there are some efforts to remedy this inconsistency (e.g., by introducing a feedback 

mechanism to ensure the level of service is consistent between the trip distribution and traffic 

assignment steps), generally there is no guarantee that it will always converge to give stable 
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and accurate results.  Typically, the feedback is implemented by averaging (or weighing) 

successive four-step solutions.  As mentioned by Zhang and Boyce (2000), two issues need to 

be considered in the feedback:  

(a) Determination of the weight parameter: Since there is no objective function in the four-

step procedure, it is not possible to search for the optimal weight through the one-dimensional 

optimization. Usually, the method of successive averages (MSA) is adopted despite its known 

weakness of obtaining highly accurate solution due to its slow convergence characteristics; 

(b) Selection of variables for the feedback control: The feedback variable could be trip table, 

travel time, volume, or speed. The consistency can be achieved, but only if the feedback is 

performed in certain ways (Boyce et al., 1994; Boyce, 2002).   

 

With a carefully selected feedback variable and the MSA scheme, theoretically we may be 

able to guarantee the convergence/consistency.  However, it is well known that the MSA 

scheme suffers from the sub-linear convergence rate. The stepsizes are quite small after the 

first few iterations, slowing down the convergence significantly.  Hence, the feedback method 

with MSA will not be able to obtain stable and accurate solutions within an acceptable 

computational effort for real networks.  The inferior performance of the feedback procedure 

has also been demonstrated by Bar-Gera and Boyce (2003) in the comparison with the origin-

based algorithm and Evans algorithm for solving the combined distribution and assignment 

model.  In addition, Zhang and Boyce (2000) concluded that progresses in improving travel 

forecast may be neither adequate nor efficient with "feedback".  For other weaknesses and 

limitations of the conventional four-step procedure, interested readers may refer to McNally 

(2000b) and Boyce (2002). 

 

Motivated by the problems associated with the sequential four-step procedure, researchers 

proposed alternative models for travel demand forecasting. Such models are referred to as 

combined or integrated models. Evans (1976) formulated a combined model, which integrates 

trip distribution and traffic assignment, as a constrained convex optimization problem. Florian 

and Nguyen (1978) extended the model to include modal split using the fact that an entropy 

distribution model implies a logit modal-split model. Florian et al. (2002) provided a 

variational inequality formulation for a multi-class multi-mode travel demand model with 

hierarchical logit structure. Boyce et al. (1983) proposed a unified approach by using an 

entropy function as a general measure of the dispersion of choices across routes, modes, 

destinations, or locations. A family of combined models of location, destination, mode, and 
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route choices could be derived following this approach (see Boyce and Daskin (1997) for a 

travel forecasting model that integrates travelers’ route choice, mode choice and destination 

choice; Boyce and Bar-Gera (2001) for a nonlinear programming formulation that combines 

origin, destination, mode, and route choices without mode interactions; and Bar-Gera and 

Boyce (2003) for a fixed point formulation). Safwat and Magnanti (1988) proposed a 

simultaneous transportation equilibrium model (STEM), which can simultaneously predict the 

trip generation, distribution, modal split and trip assignment. The STEM can be formulated as 

an equivalent convex optimization problem, and it is behaviorally richer than other models. 

However, travelers’ route choice behavior (traffic assignment) was characterized by the UE 

model (i.e., a deterministic network equilibrium model), whereas the destination choice 

behavior (trip distribution) was governed by the logit model (i.e., a random utility model). 

There exist behavioral inconsistencies between these two travel choice dimensions.  Lam and 

Huang (1992) formulated a multi-class model by combining trip distribution and traffic 

assignment. Oppenheim (1995) proposed a combined travel demand model (CTDM), which 

combines the travel-destination-mode-route choice based on the random utility theory. The 

approaches to estimate the model parameters were also provided, so that it is possible for the 

model to be used in practice. Zhou et al. (2009) provided alternative formulations, including 

mathematical programming (MP) formulation and variational inequality (VI) formulations, for 

the CTDM that integrates trip generation, trip distribution, modal split, and traffic assignment 

using the random utility theory framework. Several algorithms have also been proposed in the 

literature for solving various combined travel demand model formulations (e.g., the partial 

linearization algorithm by Evans (1976) for solving the combined distribution and assignment 

(CDA) problem as a constrained convex optimization problem; the origin-based algorithm by 

Bar-Gera and Boyce (2003) for solving the CDA problem; the improved origin-based 

algorithm by Xu et al. (2008) by adopting the modified origin-destination flow update 

strategy proposed by Huang and Lam (1992) to enhance its computational efficiency; and the 

Block Gauss-Seidel decomposition approach coupled with the method of successive averages 

by Florian et al (2002) for solving the variational inequality formulation). 

 

In this paper, we employ the CTDM originally proposed by Oppenheim (1995) as the 

combined travel demand model for the sensitivity-based uncertainty analysis. The CTDM 

defines a traveler as a consumer of urban trip and reflects his/her budget constraint choices. 

The solution of the model is proved to correspond to individual as well as collective utility 

maximization. With its sound behavioral rationale, the CTDM is a viable avenue with 
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behavioral consistency for modeling and predicting multi-dimensional travel demands and 

equilibrium flows in transportation networks. It overcomes not only the inconsistency of the 

sequential four-step procedure but also the behavioral inconsistency between different 

models/approaches used in other combined travel demand model (i.e., deterministic and 

stochastic models).  More importantly, the logit-based probability expression for all travel 

choice dimensions ensures that the solution to CTDM is unique. This nice feature makes it 

possible to develop an analytical sensitivity-based uncertainty analysis approach.  To sum up, 

the motivations of adopting the CTDM in the uncertainty analysis include: (1) a single 

unifying rationale (i.e., utility maximization theory), and (2) elegant closed-form probability 

expressions for all travel choice dimensions and a unique solution to the CTDM formulation.  

However, the proposed framework of uncertainty analysis could also be applied to other 

combined demand models with an equivalent convex programming formulation. 

 

2.3 Combined travel demand model 

Following Oppenheim (1995), each traveler’s decision process is assumed to have the 

following top-down structure: 

 Given an individual at location i, a given time period (hour, day, etc.), and an activity 

(e.g., shopping, work, recreation, etc.), a potential traveler first decides whether to travel 

or not. Pt|i is the probability that a potential traveler makes a trip in the study time period. 

 Given the choice made at the first level, the conditional probability that an individual will 

choose destination j to conduct the activity is Pj|i. 

 Given the outcomes from the first two decisions, the conditional probability that an 

individual will choose mode m (for traveling from i to j) to conduct the activity is Pm|ij. 

 Given the outcomes from the preceding decisions, the conditional probability that an 

individual will choose route r (for traveling from i to j on mode m) to conduct the activity 

is Pr|ijm. 

 

The above hierarchical structure can be represented as in Figure 1. Following the random 

utility theory, the probabilities at each stage are calculated by the multinomial logit choice 

function. This “nested” structure is the basis for constructing the combined travel-destination-

mode-route choice model as a mathematical programming given below. For example, at the 

first stage (i.e., decision to travel) the number of trips from origin i (Ti) is calculated by 
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multiplying the conditional probability (Pt|i) of making a trip with the number of potential 

travelers from origin i (Ni). The conditional probability (Pt|i) is calculated as follows: 

 /

/

( )

/ ( )
,

1

t i t i

t i t i

h W

t i h W

e
P i

e








 





 , (1)

where t is the parameter associated with travel choice; hi is the attractiveness of making a trip 

at origin i; and /t iW  is the expected received utility of traveling from origin i, which depends 

on the utility at the next stage (i.e., destination choice):  

 
/( )

/

1
ln ,d ij j ih W

t i i
jd

W b e i


  
 , (2)

where bi is the budget (i.e., time and money) of an individual spent on traveling from origin i; 

d is the parameter associated with destination choice; hij is the attractiveness of traveling 

from origin i to destination j. The expected received utility at the destination choice stage also 

depends on the utility at the mode choice stage, and so on until it reaches the last stage (i.e., 

route choice). 

 

 

Figure 1 Hierarchical structure of a combined travel demand model 
 

Hence, the probability that an individual takes route r on mode m from origin i to destination j 

can be obtained by multiplying the conditional probability at each stage in a “nested” 

structure starting from the route choice stage until the decision to travel stage as follows: 

 

| ||

| | |

| | | |

( ) ( )( )

( ) ( ) ( )
, , , ,

1

d ij j i m ijm mij r ijmrt i t i

r ijmrt i t i d ij j i m ijm mij

ijmr t i j i m ij r ijm

h W h W gh W

gh W h W h W

rj m

P P P P P

e e e e
i j m r

ee e e

  

  

  

  

   

 
  

 

  
. (3)
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It is worth noting that for keeping the notation system compact, we use the same index 

between the denominator and numerator for each probability expression.  The mathematical 

programming formulation for the combined travel-destination-mode-route choice model can 

be constructed as follows (Oppenheim, 1995): 

 

0 0

0 0

min ( , , , , ) ( )

1 1 1
ln ln ln

' '

1 1
ln ln

'

am
ijmr ijr

ijr
m

m

T

TDMR i i ij ijm ijmr a ijm ijm ij ij i i
m a ijm ij i

ijmr ijmr ijm ijm ij ij
ijmr ijm ijr m d

i i i i
i it t

U T T T T T g d h T h T hT

T T T T T T

T T T T


 

  

 

   

  

 

   

  

 

 (4)

subject to: 

 , , ,ijmr ijm
r

T T i j m  , (5)

 , ,ijm ij
m

T T i j  , (6)

 ,ij i
j

T T i  , (7)

 
0 ,i i iT T N i   , (8)

 
0 0, 0, 0, 0, 0, , , ,i i ij ijm ijmrT T T T T i j m r      , (9)

where TDMRU  is a modified negative direct utility of a representative traveler (R.T.), which is 

defined to represent the utility maximizing choices at the aggregated demand level. 

Conceptually, this objective function integrates the utility maximization of individual 

travelers and the congestion effect (i.e., multiple travelers) by combining multi-dimensional 

discrete choice concept into the network equilibrium problem. Structurally, this objective 

function is constructed using a similar way as Fisk (1980)’s model for the logit-based 

stochastic user equilibrium problem. The first four terms are related to the direct utility of 

route choice, mode choice, destination choice and travel choice, respectively. The remaining 

five terms are the “entropy” terms associated with the logit-based probabilistic choices (i.e., 

route choice, mode choice, destination choice, travel choice, and no travel choice). 

Constraints (5)–(8) are the conservation constraints. Constraint (9) ensures the solutions are 

positive. 

 

The Karush-Kuhn-Tucker (KKT) conditions for optimality with respect to Tijmr, Tijm, Tij, and 

Ti indeed give the probabilities of choosing route (Pr|ijm), mode (Pm|ij), destination (Pj|i), and 
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decision to travel (Pt|i), respectively, as given in Eq. (3). Hence, the above mathematical 

programming formulation indeed represents the structure of traveler decision process as 

illustrated in Figure 1.  In addition, the above formulation is a strictly convex programming, 

guaranteeing the solution uniqueness.  For the detailed proof on the existence, equivalency, 

and uniqueness of the solution to the above mathematical programming formulation, 

interested readers may refer to Oppenheim (1995) and Yang et al. (2013).  

 

2.4 Solution algorithm for solving CTDM 

In this section, we provide an algorithm for solving the CTDM given in Eqs (4) – (9). The 

algorithm is based on the partial linearization method (Evans, 1976), which is a descent 

algorithm for continuous optimization problems (Patriksson, 1994). A search direction is 

obtained from the solution of a convex auxiliary problem, which is defined by an 

approximation of the objective function in Eq. (4) through a first-order approximation of the 

first term (i.e., link cost integral term). A (possibly inexact) line search is made in the 

direction obtained with respect to the objective function, and the resulting step size defines a 

new solution with a reduced objective value. The search direction and line search steps are 

iteratively performed until some convergence criterion is reached. It is important to recognize 

that the demand of each stage in the CTDM is solved simultaneously by using the partial 

linearization algorithm. The traffic forecasts resulting from this multi-dimensional choice 

problem are consistent. That is, Ti, Ti0, Tij, Tijm, and Tijmr are consistent with the traveler’s 

expected received utility. By contrast, in the sequential four-step procedure, consistency is not 

always guaranteed even with a “feedback” mechanism. 

 

The key steps of the partial linearization algorithm for solving the CTDM are as follows. 

Step 0 Initialization: Set an initial solution T(0) with 0, , , ,n n n n n
i i ij ijm ijmrT T T T T  = 0, , , ,i j m r ; 

0
m

n
av  , , mm a ,  and let n=0. 

Step 1 Update link travel time  
m m m

n n
a a at t v , , mm a , and link generalized cost 

m m m

n n
a a ag c t  , , mm a . 

Step 2 Search Direction: Find the minimum cost route based on the generalized link cost; 

update the route set; calculate the route cost  m

m

m

nan n
ijmr a ijr

a

g g  , , , ,i j m r ; and then 
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solve a partially linearized subproblem to obtain an auxiliary solution H(n)= 

 0, , , ,n n n n n
i i ij ijm ijmrH H H H H . The resultant search direction is H(n) - T(n). 

Step 3 Line Search: Solve         
0 1

arg minn Z n n n


 
 

    T H T . 

Step 4 Update: Let          1n n n n n      T T H T . 

Step 5 Termination Criterion: If some termination criterion is satisfied, then terminate; 

otherwise, set n:=n+1 and go to Step 1. 

 

The main computational efforts in this algorithm are in Step 2 and Step 3. In Step 2, a column 

generation method is used to update the route sets for each origin-destination (O-D) pair on 

each mode after finding the shortest path. The expected received utilities and conditional 

probabilities are calculated from the bottom (the route choice stage) to the top (the travel 

choice stage) of the hierarchical structure of the CTDM while the auxiliary demand of each 

stage is calculated from the top to the bottom. The main difference of the partial linearization 

algorithm with the Frank-Wolfe algorithm (LeBlanc et al., 1975) is that the auxiliary demand 

is determined by the logit choice function instead of an all-or-nothing loading mechanism to 

determine the descent direction. For the line search in Step 3, the objective function is very 

complex. To find the optimal (exact) step size, objective function evaluations or its 

derivatives need to be computed multiple times via golden section method or bisection 

method. This is a time-consuming step due to the high dimension of solution variables. Also, 

the line search is conducted on an approximate descent direction. The exact line search on the 

approximate descent direction may not be so efficient. Instead, inexact line search methods 

are recommended. Detailed implementation steps are provided in Yang et al. (2013). 

 

3. Sensitivity analysis 

Sensitivity analysis is an effective way to quantitatively analyze the behavior of demand and 

flow pattern with respect to the perturbations of network characteristics. Dafermos and 

Nagurney (1984) performed sensitivity analysis for the asymmetric network equilibrium 

problem to predict the change of traffic pattern upon the change in the traffic demand and link 

cost function. Tobin and Friesz (1988) proposed a sensitivity analysis method for the fixed-

demand network equilibrium problem. Since the path flow solution of the user equilibrium 

problem is not unique, the standard sensitivity analysis method for either nonlinear 
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programming problem (Fiacco, 1983) or variational inequality problem (Tobin, 1986) cannot 

be used directly to derive the sensitivity information. A restricted problem, which is 

equivalent to the traffic equilibrium problem, was developed. The restricted problem has the 

uniqueness properties, so that the existing sensitivity analysis method can be applied. Yang 

(1997) extended Tobin and Friesz’s (1988) approach for the elastic-demand network 

equilibrium problem. Qiu and Magnanti (1989) proposed a general approach for the 

sensitivity analysis for variational inequalities and demonstrated the approach for traffic 

assignment problems. Yang and Bell (2007) revisited the gradient-based sensitivity analysis 

approach of user equilibrium and developed a simple but general approach for calculating the 

derivatives of equilibrium link flows.  The sensitivity analysis of stochastic user equilibrium 

(SUE) was also derived for both logit-based SUE (Ying and Miyagi, 2001) and probit-based 

SUE (Clark and Watling, 2000; 2002). Yang et al. (2001) derived the explicit derivative 

expressions of the logit-based SUE and applied them to solve the simultaneous estimation of 

O-D matrix and travel-cost coefficients. Davis (1994) developed exact local solution based on 

the derivatives of the logit-based SUE problem for solving the continuous network design 

problem. Liu et al. (2010) developed a dimension-reduced sensitivity analysis method for the 

SUE problem with smooth or non-smooth cost functions. Boyles (2012) developed bush-

based sensitivity analysis for subnetwork diversion, while Du et al. (2012) derived the 

sensitivity expressions for the equilibrium trip distribution-assignment model with variable 

destination costs. Recently, Yang and Chen (2009) studied the sensitivity analysis for the 

CTDM using the standard sensitivity analysis method for nonlinear programming problem 

due to the uniqueness of solution. 

 

In this section, we present the key results of sensitivity analysis for the CTDM developed by 

Yang and Chen (2009) for the purpose of uncertainty analysis. Let   denote the vector of 

perturbations associated with the attractiveness of choices, link cost function, and number of 

potential travelers. After formulating the Lagrangian function L for the CTDM (4)-(9), we can 

derive its Hessian matrix as well as the gradient vector. Under some commonly-used 

assumptions for guaranteeing the perturbed problem is regular or M(ε) is non-singular (see 

Fiacco (1983), Yang and Chen (2009) on how the CTDM satisfies these conditions), we have: 

 1( ) ( ) ( )y M N      , (10)

where 0( , , , , , , , , )i i ij ijm ijmr ijm ij i iy T T T T T     ; , , ,ijm ij i i     are the Lagrange multipliers 

associated with constraints (5)–(8); 
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0, , , , ,( ) 0 0 0

i i ij ijm ijmr

T

T T T T T iN L L L L L N               , (12)

whereis the path/O-D mode incidence matrix;  is the mode/O-D incidence matrix;is 

the O-D/origin incidence matrix. Note that the first entropy term in Eq. (4) makes 2

ijmrT L  

positive definite (the sum of a positive semi-definite matrix and a positive definite matrix is a 

positive definite matrix). This is different from the UE case, where the Hessian matrix with 

respect to route flow is positive semi-definite.  In addition, 2

iT L , 
0

2

iT L , 2

ijT L , and 2

ijmT L  are 

all diagonal and positive definite matrices. Hence, the whole Hessian matrix of L is positive 

definite. Also, the large matrix at the top right corner (above the zero matrices) contains 

linearly independent columns.  Then, it is easy to prove that M is non-singular or invertible.  

For demonstration purposes, an invertibility proof is provided in the appendix for a simple 

case with one O-D pair (no destination choice) and one single car mode (no mode choice). 

The CTDM under this case then reduces to the Logit-based SUE model. This proof follows 

the approach of Yang and Bell (2007) and it is different from the one provided in Yang and 

Chen (2009). 

 

For a given perturbation  , we may estimate ( )y   using the first-order Taylor series 

approximation:  

      0
T

y y y       . (13)

From Eq. (10), we can obtain the derivatives of decision variables 

0( , , , , , , , , )i i ij ijm ijmr ijm ij i iy T T T T T      with respect to a given perturbation  .  For other 

outputs, such as link flows, total travel time, total vehicle miles traveled, etc., the derivatives 

can be calculated using matrix manipulation and differential chain rule.  
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, (15)

where ijmr iT    can be obtained from Eq. (10);  
m

am
a v

t  is the derivative of explicit link cost 

function with respect to link flow, which can be calculated given the link cost function;  
m

i
at 

 

is the derivative of explicit link cost function with respect to perturbation, which can be either 

an input or a parameter.  
m

i
at 

 is an “apparent” derivative, while 
ma it    is the “true” 

partial derivative (Ying and Miyagi, 2001). The derivatives of network performance indices, 

such as total travel time (TTT) and total vehicle mileage (TVM), w.r.t. perturbations can also 

be calculated as: 

 
m m

m m

m

a a
a a

m ai i i

v tTTT
t v

  
  

     
 , (16)

 
m
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a
a

m ai i

vTVM
h

 
 

    
 , (17)

where 
mah  is the length of link a on mode m. These derivatives provide useful information for 

different applications (Yang and Chen, 2009). 

 

Note that the above sensitivity analysis method is conducted in the route domain based on a 

pre-generated or pre-enumerated route set. It has both disadvantage and advantage. The 

disadvantage is that it requires enumeration of a set of routes and it can pose a problem for 

large networks. Using Dial’s link-based stochastic loading method without route enumeration 

would be an advantage in conducting the sensitivity analysis. However, route enumeration has 

its own appeal as more behaviorally realistic routes could be generated according to recent 

advances in route generation strategies (Bekhor et al., 2006; Bovy et al., 2007; Prato and 

Bekhor, 2006, 2007). These pre-generated or pre-enumerated routes explicitly account for the 

route overlapping problem, which is not considered in Dial’s stochastic loading method 

(Bekhor et al., 2008; Cascetta et al., 1996, 1997). Hence, the link-based stochastic loading 

method may give biased results if the routes are not truly independent. 
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To reduce the computational burden, we may substitute the route-based sensitivity analysis by 

the link-based sensitivity analysis for the general unconstrained formulation of CTDM (Zhou 

et al., 2009). The work by Ying and Miyagi (2001) for the logit-based SUE and Ying and 

Yang (2005) for the bi-modal logit-based SUE can be extended to the sensitivity analysis for 

the general unconstrained formulation of CTDM. However, this substitution does not change 

the uncertainty analysis framework to be presented in Section 4.  

 

4. Uncertainty analysis 

In this section, we present an analytical uncertainty analysis method based on the sensitivity 

analysis of the CTDM. As mentioned in the introduction, there are three steps in the 

uncertainty analysis. In this paper, we focus on the last two steps while assuming the 

characteristics of model inputs/parameters are given. The second step, i.e., uncertainty 

propagation, is to estimate the probability distributions of outputs given that of model 

inputs/parameters. The third step, i.e., characterization of output uncertainty, is to investigate 

the confidence level of outputs, the relationship between the outputs and inputs as well as the 

relationship between the outputs and parameters.  

 

 

Figure 2 Propagation of uncertainties 

 

Figure 2 graphically depicts the concept of uncertainty propagation. Each point of output 1 is 

characterized by a probability density function (PDF), which depends on the PDFs of input 1 

and input 2. Two possible approaches to investigate the uncertainty propagation are the 
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sampling based methods and the analytical sensitivity-based method. Sampling based 

methods (e.g., Monte Carlo sampling, Latin Hypercube sampling, etc.) are a flexible approach 

that can be used to simulate any systems. However, these methods require a relatively high 

computational effort and are limited to investigate a small number of perturbations. Also, the 

simulation adds an element of non-reproducibility (Bell et al., 1999). On the other hand, 

studies have addressed the importance of sensitivity analysis in identifying the possible errors 

in the travel demand model (Robbins, 1978; Bonsall et al, 1977). Leurent (1998) conducted 

the sensitivity and error analysis for the dual criteria traffic assignment model. The sensitivity 

analysis is more effective and can investigate the uncertainty stemming from inputs and 

parameters simultaneously or separately. However, since sensitivity analysis is locally valid 

for minor perturbations of inputs and parameters, its application is limited to the problems that 

satisfy the necessary conditions to conduct the sensitivity analysis. 

 

In Zhao and Kockelman (2002), the Monte Carlo sampling method was employed to perform 

the uncertainty analysis in the sequential four-step procedure. The aforementioned 

inconsistency of the sequential four-step procedure introduces extra uncertainty of the model. 

Since there is no unified mathematical formulation for the four-step procedure, the sensitivity 

analysis method cannot be used. In the numerical example, the authors identified 118 inputs 

and parameters for the case study. However, due to the heavy computational burden of 

repeatedly solving the sequential four-step procedure, only 100 samples were generated in the 

Monte Carlo simulation for the uncertainty analysis. It is not clear whether the number of 

samples is sufficient for conducting the uncertainty analysis of the sequential four-step 

procedure. In addition, to investigate the relationship between inputs and outputs, they 

conducted a linear regression analysis to obtain the correlation between inputs and outputs. 

However, it is difficult to separate the impact of inputs and the model inconsistencies on the 

outputs. Pradhan and Kockelman (2002) and Krishnamurthy and Kockelman (2003) also used 

the same sampling-based approach to examine the uncertainty propagation of an integrated 

land use-transportation model. To investigate the sensitivity of outputs and inputs, they 

standardized the coefficients obtained from the regression as follows: 

 
, ,

std o
o i o i

i

 


  , (18)

where ,
std
o i  is the standardized coefficient between output o and input i; ,o i  is the coefficient 

between output o and input i by linear regression; o  is the standard deviation of output o 
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obtained from simulation; i  is the standard deviation of input i. The standardized coefficient 

represents the change in the output variable caused by a change in the input variable. The 

accuracy of estimating the standardized coefficient depends on the accuracy of the sampling 

method ( i ) and the linear regression ( ,o i ). 

 

In this paper, we use the analytical sensitivity-based uncertainty analysis for investigating the 

uncertainty propagation of the combined travel demand model proposed by Oppenheim 

(1995). Using the derivative information and Eq. (13), we can estimate the variance-

covariance matrix of outputs given the inputs variance as follows: 

  Toutput inputS y S y      , (19)

where inputS  is the given variance-covariance matrix of inputs. By assuming the normality of 

outputs, we can also estimate the confidence intervals of outputs. Furthermore, the covariance 

of outputs and inputs is 

 
,output input inputS y S   . (20)

 

Let is  be the i-th diagonal element of outputS , which is the variance of output i; js  be the j-th 

diagonal element of inputS , which is the variance of input j; ijs  be the element of ,output inputS  at 

row i and column j, which is the covariance of output i and input j. The correlation of output i 

and input j can be obtained as follows: 

 
ij

ij

i j

s
r

s s
 . (21)

The correlation of outputs and inputs provides useful information for the critical input 

analysis. Different from the sampling-based method, the correlation is obtained analytically 

and directly from the CTDM without the need to conduct a post analysis using linear 

regression equations. The same analysis can also be conducted for model parameters (separate 

from input uncertainty). 

 

Remark 1: In Section 2, we assume transit and car networks are independent, and all links in 

each network have no interaction (i.e., separable link travel time functions) in the CTDM. 

This assumption is used to construct an equivalent convex programming formulation of the 

CTDM, which is more computationally and theoretically tractable compared to other 

advanced demand modeling tools.  However, this is not a limitation of the uncertainty 



 
 

  20

analysis framework proposed in this paper. The framework is still applicable for travel 

demand models using non-separable link travel time functions with asymmetric interactions. 

The CTDM with link or mode interactions can be formulated as a variational inequality (VI) 

problem or a fixed point problem. Accordingly, the sensitivity analysis method for VI 

problem could be adopted and then embedded into the uncertainty analysis framework.  

Therefore, the proposed framework of uncertainty analysis is general, which is not limited to 

separable link travel time functions.  

 

Remark 2: The sampling-based methods (e.g., Monte Carlo simulation) are indeed capable of 

providing the full probability distribution of output uncertainty, rather than the variance and 

coefficient of variation only.  However, it is difficult to determine a suitable sample size for 

the simulation method to yield stable solution. In addition, its computational burden could be 

prohibitively expensive for practical applications. From this viewpoint, we may consider the 

relationship between the sampling-based methods and the analytical method as a tradeoff 

between information richness and computational burden. 

 

5. Numerical examples 

In this section, we present numerical examples to demonstrate the features of the sensitivity-

based uncertainty analysis method for the CTDM.  The example network shown in Figure 3 is 

used to illustrate the equilibrium solution, sensitivity analysis, and uncertainty analysis of the 

CTDM in detail.  This network consists of five nodes, seven links and two O-D pairs (from 1 

to 4 and from 1 to 5). There are two modes in the network, i.e., car and transit (subscription 

‘ c ’ for car and ‘ t ’ for transit). The transit network has the same topology as the car network 

while they are assumed to be independent. The number of potential travelers (N1) and 

attractiveness of zone 1 ( 1h ) are 200 and 5.0, respectively. Other attractiveness parameters are 

as follows: h14=3.5, h15=3.8, h14c=3.5, h14t=3.6, h15c=3.8, h15t=3.4. Parameters associated with 

the route, mode, destination and travel choices, i.e., r , m , d , and t , are set as 2.0, 1.0, 

0.5, and 0.2, respectively.  The fixed monetary cost of traveling on link a of mode m (
mac ) is 

set at zero for all links in both networks, and the value of time ( is set at 1.0. Thus, the 

general link cost equals the link travel time. The link travel time function for both car and 

transit networks are as follows: 
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  0( ) 1
c

c c c c ca a a c a at v t v C


    
, (22)

  0( )
t

t t t t ta a a t a at v t v C


  , (23)

where 
cav  and 

tav  are link flows for car and transit; 0

cat  and 0

tat  are free-flow travel times for 

car and transit; 
caC  and 

taC  are link capacities for car and transit. Here, c  and c  are set at 

0.15 and 4.0, and t  and t  are set at 0.06 and 2.0. The free-flow travel time and capacity of 

each link are given in Table 1.  For simplicity, we set the values of link lengths equal to the 

values of free-flow link travel times. 

 

O-D pair Route Link sequences 
1 1-4 
2 1-3-6 (1, 4) 
3 2-6 
4 1-5 
5 1-3-7 (1, 5) 
6 2-7 

 

Figure 3 Example network 

 

Table 1 Link performance parameters 

Link 0

cat  
caC  

0

tat  
taC  

1 4.0 25.0 4.0 25.0 
2 5.2 25.0 5.2 25.0 
3 1.0 15.0 1.0 15.0 
4 5.0 15.0 5.0 15.0 
5 5.0 15.0 5.0 15.0 
6 4.0 15.0 4.0 15.0 
7 4.0 15.0 4.0 15.0 

 

5.1 Equilibrium solution 

Figure 4 shows the choice probability, demand, and expected received utility (i.e., the log-

sum term) at different choice levels. As expected, the equilibrium solution pattern satisfies the 

logit-type choice probability in Eq. (3). For example, 
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In addition, all demand variables are positive and the conservation constraints are satisfied at 

all levels as shown in Figure 4(b).  

|


m ij
W

|


j i
W

|


t i
W

 

(a) Choice probability and expected received utility 
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(b) Equilibrium demand 

Figure 4 Multi-dimensional equilibrium demand and choice probability pattern 

 

We should point out that the above multi-dimensional demand patterns are consistent along 

with the tree structure. In other words, Ti, Ti0, Tij, Tijm, and Tijmr are consistent with the 

traveler’s expected received utility at the corresponding choice stage. In contrast, consistency 

may not always be guaranteed even with a “feedback” mechanism in the sequential four-step 

forecasting procedure. 

 

5.2 Sensitivity analysis results 

For demonstration purposes, we concentrate the analysis on twelve outputs, i.e., x=[T1, T10, 

T14, T14c, T14t, T14c1, T14c2, T14c3, v1c, v1t, TTT, TVM]T, which are the production from zone 1, 

the number of non-travelers from zone 1, O-D demand from zone 1 to zone 4, O-D demands 

from zone 1 to zone 4 by car and by transit, flows on three routes between O-D pair (1, 4) 

using car network, flows on link 1 in car and transit networks, total travel time (TTT), and 

total vehicle miles (TVM) traveled, respectively.  

 

Sensitivity analysis is an effective way to quantitatively analyze the behavior of demand and 

flow pattern with respect to (w.r.t.) perturbations of model inputs and parameters. Table 2 

presents the derivatives of the twelve selected outputs w.r.t. eight selected inputs (i.e., the 

number of potential travelers from zone 1, and the link capacities in car network). We can 

observe that the sum of the derivatives of T1 and T10 w.r.t. inputs is equal to zero except for 

N1, which is equal to 1.0. This is consistent with the conservation constraint T1+T10=N1.  Also, 
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the sum of the derivatives of T14c and T14t w.r.t. inputs is equal to that of T14 due to the 

conservation constraint T14c + T14t = T14.  This sensitivity conservation also happens for the 

route choice conservation constraint T14c1 + T14c2 + T14c3= T14c.  Additionally, the number of 

potential travelers of zone 1 (i.e., N1) has a more significant impact on the trip production of 

this zone (i.e., T1 and T10), the travel demand between zone 1 and zone 4 (i.e., T14), as well as 

the two network-wide performance measures.  The link capacities in car network have more 

influences on the O-D demand by car (i.e., T14c) compared with that by transit (i.e., T14t).  The 

car flow on link 1 is substantially impacted by this link capacity. 

 

Table 2 Derivatives of outputs with respect to inputs 
 N1 C1c C2c C3c C4c C5c C6c C7c 

T1 0.676 0.085 0.043 0.000 0.007 0.022 0.035 0.051 
T10 0.324 -0.085 -0.043 0.000 -0.007 -0.022 -0.035 -0.051 
T14 0.334 0.070 0.034 -0.001 0.046 -0.144 0.171 -0.222 
T14c 0.058 0.341 0.172 -0.002 0.088 -0.155 0.352 -0.190 
T14t 0.276 -0.271 -0.138 0.001 -0.042 0.010 -0.181 -0.032 
T14c1 0.031 0.295 0.047 -0.011 0.122 -0.130 -0.198 -0.076 
T14c2 -0.003 0.154 -0.078 0.013 -0.030 -0.064 0.215 0.039 
T14c3 0.031 -0.108 0.203 -0.004 -0.004 0.040 0.335 -0.154 
v1c 0.046 0.844 -0.093 0.009 0.035 0.104 0.033 0.059 
v1t 0.306 -0.280 -0.144 0.002 -0.023 -0.071 -0.116 -0.165 

TTT 7.462 -0.169 -0.260 0.046 -0.054 -0.103 -0.078 0.053 
TVM 6.158 0.669 0.443 0.016 0.062 0.196 0.348 0.481 

 
 

Similarly, we can also obtain the derivatives of outputs w.r.t. parameters. Here, for 

demonstration purposes, we only consider the uncertainty of twelve selected parameters as 

listed in Table 3. The first four parameters are the attractiveness of zone 1, O-D pair (1, 4), 

and O-D pair (1, 4) by car and transit, respectively; the next four parameters are associated 

with the travel, destination, mode, and route choices; and the last four parameters are related 

to the link cost functions. Table 3 presents the derivatives of the selected outputs w.r.t. the 

selected parameters. 

 
Among the above twelve selected parameters, the critical parameters are βt, βd, αc and αt. 

Interestingly, γc and γt are not critical parameters in this example even though they are the 

exponent parameters in the polynomial link cost functions. The critical parameter for both 

TTT and TVM is βt. One percent perturbation of βt will lead to a change of 20 and 16.5 units 

in TTT and TVM, respectively. Based on these derivatives, we need to put more efforts and 
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resources to enhance the calibration and validation of parameters βt, βd, αc and αt. It is worth 

pointing out that these results are only applicable to this example setting.  In addition, among 

the four attractiveness parameters, T1 is more sensitive to h1, T14 is more sensitive to h14, T14c 

and T14t are more sensitive to h14c and h14t, respectively. Also, the derivatives of T1 w.r.t. h1, 

T14 w.r.t. h14, T14c w.r.t. h14c, and T14t w.r.t. h14t are all positive.  These can be explained by the 

hierarchical tree-structure of the CTDM. When it goes down from the top (i.e., travel choice 

stage) of the hierarchical structure to the mode choice stage, the demand pattern becomes 

more sensitive to the attractiveness at the corresponding choice stage.  

 
Table 3 Derivatives of outputs with respect to parameters 

 h1 h14 h14c h14t βt βd βm βr αc γc αt γt 

T1 7.346 3.627 0.630 2.997 181.851 -20.381 -3.860 -1.809 -8.207 -0.006 -44.079 -1.781

T10 -7.346 -3.627 -0.630 -2.997 -181.851 20.381 3.860 1.809 8.207 0.006 44.079 1.781

T14 3.627 16.138 3.769 12.369 89.788 -14.927 -1.781 -0.898 -0.608 0.048 -18.625 -0.740

T14c 0.630 3.769 7.386 -3.616 15.590 -2.920 -4.046 0.054 -23.790 0.057 27.822 1.122

T14t 2.997 12.369 -3.616 15.985 74.198 -12.007 2.264 -0.953 23.182 -0.009 -46.448 -1.862

T14c1 0.335 2.323 4.403 -2.081 8.295 -1.661 -2.232 0.456 -6.953 -0.131 14.822 0.598

T14c2 -0.038 0.296 0.336 -0.041 -0.935 -0.002 0.112 -0.677 -7.465 -0.254 -1.637 -0.066

T14c3 0.332 1.151 2.646 -1.495 8.230 -1.257 -1.926 0.275 -9.371 0.442 14.638 0.591

v1c 0.496 0.41 1.995 -1.586 12.283 -1.433 -2.546 -0.477 -37.325 -0.681 21.767 0.881
v1t 3.322 1.45 -2.104 3.556 82.261 -9.155 1.075 -1.565 27.112 0.017 -136.973 -7.393
TTT 80.944 36.860 18.608 18.261 2004.097-223.570-63.076-23.585 22.114 -0.323 405.862 16.340
TVM 66.810 32.996 5.818 27.188 1654.130-185.397-35.218-16.253-73.453 0.087 -382.486 -15.074
 

 

Note that the sensitivity information can be used to estimate the equilibrium solutions without 

the need to resolve the CTDM. Specifically, we can use the above derivatives and the first-

order Taylor series approximation to estimate the equilibrium solutions under small 

perturbations of inputs or parameters. For demonstration purposes, Table 4 shows the exact 

and estimated solutions for the perturbations of δN1=10 and δβt=0.01. Recall that N1 and βt 

have a large derivative value as shown in Table 2 and Table 3. The exact solutions are 

obtained by resolving the perturbed CTDM. From Table 4, we can see that the estimated 

solutions are fairly close to the exact solutions even with 5%-perturbations.  
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Table 4 Estimated and exact solutions for perturbed input and parameter 

Solution 
variable 

Unperturbed
solution 

δN1=10 (i.e., 200×5%) δβt=0.01 (i.e., 0.2×5%) 

Exact Estimated
Difference 

(Exact-Estimated)
Exact Estimated

Difference 
(Exact-Estimated)

T1 145.827 152.575 152.585 -0.010 147.621 147.645 -0.024 
T10 54.173 57.425 57.415 0.010 52.379 52.355 0.024 
T14 69.829 73.182 73.165 0.016 70.720 70.726 -0.007 
T14c 22.358 22.918 22.938 -0.019 22.509 22.514 -0.005 
T14t 47.470 50.263 50.228 0.035 48.211 48.212 -0.002 
T14c1 8.455 8.755 8.763 -0.008 8.535 8.538 -0.003 
T14c2 3.936 3.899 3.901 -0.002 3.926 3.926 0.000 
T14c3 9.967 10.264 10.273 -0.009 10.048 10.050 -0.002 
v1c 28.896 29.343 29.356 -0.014 29.017 29.019 -0.003 
v1t 61.560 64.607 64.620 -0.012 62.371 62.382 -0.011 

TTT 1432.011 1506.850 1506.632 0.218 1451.807 1452.052 -0.245 
TVM 1323.514 1384.904 1385.094 -0.191 1339.834 1340.056 -0.222 
 

5.3 Uncertainty analysis results 

(1) Uncertainty from Inputs 

We assume the inputs are independently and normally distributed in order to simplify the 

characterization of inputs uncertainty. The mean of each input is the value given in the 

unperturbed condition (=0). The coefficient of variation (CoV) of inputs is set at 0.30. By 

setting CoV at 0.30, one can obtain statistically significant results (Zhao and Kockelman, 

2002). Again, for demonstration purposes, we consider the eight inputs in Table 2.  

 

Using Eq. (19), we can obtain the variance-covariance matrix of outputs, from which we can 

further calculate their standard deviation (SD) and CoV. One of the advantages of using the 

analytical sensitivity-based uncertainty analysis method is that the complex CTDM only 

needs to be solved once; while in the sampling-based method, the complex CTDM needs to 

be repeatedly solved many times according to the required sample size.  Table 5 lists the 

estimated SD and CoV of selected outputs.  One can see that the CoVs of most outputs are 

similar to that of inputs (i.e., 0.30). This is different from the results in Zhao and Kockelman 

(2002). In Table 5, we only consider the uncertainty stemming from the selected inputs. Also, 

the structure of the CTDM is different from the sequential four-step procedure. The sequential 

four-step procedure could be one reason that amplifies the uncertainty while the CTDM 

solves the multi-dimensional choice problem simultaneously.  On the other hand, the CoV of 

link flows is not larger than that of the inputs. This is consistent with the results reported in 
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Zhao and Kockelman (2002) and Leurent (1998) due to the equilibrium nature of the traffic 

assignment step. The traffic assignment in the CTDM is equivalent to the logit-based 

stochastic user equilibrium (SUE). Due to the perceived error in the SUE model, the 

magnitude of uncertainty reduction of the SUE model is less than that of the user equilibrium 

(UE) model.  In addition, since the CoV of a weighted sum of all independent random 

variables is less than the weighted average CoV of such variables, the CoV of TVM (i.e., 0.28) 

is less than the weighted average of link flow CoVs (i.e., 0.32).  However, TTT is the sum of 

the product of link flows and link costs. The CoV of TTT is larger than that of TVM. 

 

Table 5 Uncertainty of outputs due to inputs uncertainty 
Solution 
variable 

Mean SD CoV 
90% confidence interval 
5% 95% 

T1 145.83 40.56 0.28 79.11 212.54 
T10 54.17 19.47 0.36 22.15 86.19 
T14 69.83 20.08 0.29 36.80 102.86 
T14c 22.36 4.92 0.22 14.27 30.45 
T14t 47.47 16.72 0.35 19.96 74.98 
T14c1 8.46 3.16 0.37 3.26 13.65 
T14c2 3.94 1.67 0.42 1.19 6.69 
T14c3 9.97 3.02 0.30 5.00 14.94 
v1c 28.90 6.96 0.24 17.44 40.35 
v1t 61.56 18.54 0.30 31.07 92.05 
TTT 1432.01 447.73 0.31 695.49 2168.53 
TVM 1323.51 369.54 0.28 715.62 1931.41 
 

By using the above estimated SD and further assuming the normality condition, the 

confidence intervals of outputs are easily calculated. The 90% confidence intervals of the 

selected outputs are also provided in Table 5. Again, these confidence intervals are obtained 

from the sensitivity-based approximation while avoiding the computationally demanding 

simulations.  Considering the existence of inputs or parameters uncertainty, using the mean, 

SD, and confidence interval simultaneously provides a more complete uncertainty 

characterization of model outputs.  With the standard deviations and confidence intervals of 

outputs, we can conduct hypothesis tests to obtain a statistically significant evaluation of 

network enhancement schemes. 

 

With the sensitivity of performance measures w.r.t. link capacities and also the estimated 

variances of performance measures, we can identify the critical links in the studied network.  
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From Eq. (19), the variance of performance measures explicitly includes both the uncertainty 

of each link capacity and the partial derivatives of performance measures w.r.t. link 

capacities.  Thus, it can be used to identify the most critical link that affects the system 

performance. Note that a weak link with higher capacity variability may not necessarily be the 

critical link. In contrast, a critical link must be one that is both important (i.e., substantial 

impact on system performance) and weak (i.e., large capacity variability) (Nicholson and Du, 

1997). The critical links should be the prime candidates for strengthening, rather than those 

that are merely weak.  Specifically, we can define the critical index of a link as follows: 

 2 2
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a m
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
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

 
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. (24)

 

The critical index indicates the proportion of overall uncertainty of performance measure M 

contributed by the uncertainty of link capacity am
C .  For demonstration purposes, we use the 

TTT and TVM as the system performance measures.  To eliminate the effect of N1, we 

recalculate the variance of TTT and TVM by only considering the uncertainty of seven link 

capacities in car network. The critical index values w.r.t. TTT and TVM are shown in Figure 5.  

We can see link 1 and link 2 are more critical for both TTT and TVM.  Note that both link 

capacities have the same standard deviation (i.e., 25×0.30).  The critical index of different 

links only differs in the partial derivatives.  From Table 2, link 1 and link 2 have larger partial 

derivatives w.r.t. both TTT and TVM.  However, their ranking is different when using different 

system performance measures.  From this viewpoint, it is necessary to explicitly consider 

multiple performance measures in critical link identification, especially for conflicting 

performance measures.   

 

Furthermore, we can identify the critical inputs relative to the output uncertainty by the 

correlation of inputs and outputs. From Eq. (21), we can obtain the correlation of inputs and 

outputs as shown in Table 6.  One can see that most selected outputs (e.g., trip production of 

zone 1, demand of O-D pair (1, 4), TTT, and TVM) are strongly correlated to the number of 

potential travelers of zone 1 (i.e., N1).  Compared to N1, the link capacities in car network 

have a weaker correlation with the selected outputs. Among others, link 1 and link 2 are more 

correlated with the outputs, especially for those associated with mode choice and route choice.  

This result further verifies the importance of these two links as shown in Figure 5.  In 

conclusion, the correlation results in Table 6 provide the model users insights into the 
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relationship between the model inputs and outputs, regardless of whether they are dependent 

or not, and how positively or negatively correlated if they are dependent. 
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Figure 5 Critical index values of car network links with respect to TTT and TVM 

 

Table 6 Correlation of outputs with inputs 
Correlation N1 C1c C2c C3c C4c C5c C6c C7c 
T1 1.000 0.016 0.008 0.000 0.001 0.002 0.004 0.006 
T10 0.999 -0.033 -0.017 0.000 -0.002 -0.005 -0.008 -0.012 
T14 0.997 0.026 0.013 0.000 0.010 -0.032 0.038 -0.050 
T14c 0.707 0.520 0.262 -0.002 0.081 -0.141 0.322 -0.174 
T14t 0.989 -0.122 -0.062 0.000 -0.011 0.003 -0.049 -0.009 
T14c1 0.585 0.699 0.112 -0.016 0.173 -0.185 -0.282 -0.108 
T14c2 -0.125 0.692 -0.351 0.034 -0.080 -0.173 0.578 0.105 
T14c3 0.608 -0.267 0.503 -0.006 -0.006 0.059 0.500 -0.229 
v1c 0.396 0.909 -0.100 0.006 0.023 0.067 0.021 0.038 
v1t 0.990 -0.113 -0.058 0.000 -0.006 -0.017 -0.028 -0.040 
TTT 1.000 -0.003 -0.004 0.000 -0.001 -0.001 -0.001 0.001 
TVM 1.000 0.014 0.009 0.000 0.001 0.002 0.004 0.006 
 

(2) Uncertainty from Parameters 

For the uncertainty analysis from parameters, we assume the parameters are also 

independently and normally distributed. The mean of each parameter is the value given in the 

unperturbed condition (=0). We also set the CoV of all parameters at 0.30.  Given the partial 
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derivatives of selected outputs w.r.t. parameters (in Table 3), we can estimate the SD, CoV, 

and 90% confidence interval of outputs as shown in Table 7.  Since T1+ T10 =N1, the variances 

of T1 and T10 are exactly equal. From the travel choice stage to the mode choice stage, the 

CoV seems to increase, while the CoV of link flows drops due to the equilibrium nature of the 

traffic assignment step. Also, due to the different network-wide aggregation manners, the 

CoV of TVM is smaller than that of TTT. 

Table 7 Uncertainty of outputs due to parameters uncertainty 
Solution 
variable 

Mean SD CoV 
90% confidence interval 
5% 95% 

T1 145.83 16.72 0.11 118.32 173.34 
T10 54.17 16.72 0.31 26.66 81.68 
T14 69.83 23.36 0.33 31.40 108.26 
T14c 22.36 9.82 0.44 6.21 38.50 
T14t 47.47 22.98 0.48 9.66 85.28 
T14c1 8.46 5.81 0.69 0.00* 18.02 
T14c2 3.94 0.78 0.20 2.66 5.21 
T14c3 9.97 3.65 0.37 3.96 15.97 
v1c 28.90 3.64 0.13 22.91 34.88 
v1t 61.56 10.06 0.16 45.01 78.11 
TTT 1432.01 182.49 0.13 1131.81 1732.21 
TVM 1323.51 152.03 0.11 1073.42 1573.60 
*: The actual value is -1.11 due to the normality assumption and the large CoV. We truncate negative flows to 
zero.  
 

We compare the CoVs of outputs due to the input uncertainty (in Table 5) and due to the 

parameter uncertainty (in Table 7).  Except for the travel choice step, the impact of parameter 

uncertainty on output uncertainty of each choice step is generally higher than that of input 

uncertainty.  In other words, to improve the confidence level of the estimated outputs of each 

choice step, improving the accuracy of parameter estimation is more effective than that of 

improving input estimation.  We can also use the proposed approach to quantify the possible 

benefit of improving the quality of parameter estimation.  We vary the CoVs of parameters 

from 0.10 to 0.50 with an interval of 0.20.  The CoVs of outputs are recalculated using the 

same sensitivity information but with different CoVs of parameters.  From Figure 6, we can 

observe that when the accuracy of parameter estimation increases, the accuracy of output 

estimation will also increase.   
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Parameter CoV = 0.1
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Figure 6 CoV of outputs due to parameter uncertainty with different CoVs 

 

Similar to the input uncertainty analysis, we can examine the correlation of outputs with 

parameters as shown in Table 8.  T1 is strongly correlated to h1, T14 is strongly correlated to 

h14, T14c and T14t are strongly correlated to h14c and h14t, respectively.  Also, the correlations of 

T14c with h14c and h14t and T14t with h14c and h14t indicate the mode choice competition between 

car and transit connecting this O-D pair.  In addition, the mode-specific link flows are 

correlated with the corresponding mode-specific parameters in the link cost functions.  The 

correlation matrix can help the model users to identify the critical parameters for 

improvement.  

 

Table 8 Correlation of outputs with parameters 
 h1 h14 h14c h14t βt βd βm βr αc γc αt γt 
T1 0.659 0.228 0.040 0.194 0.652 -0.183 -0.069 -0.065 -0.022 0.000 -0.047 -0.064
T10 -0.659 -0.228 -0.040 -0.194 -0.652 0.183 0.069 0.065 0.022 0.000 0.047 0.064
T14 0.233 0.725 0.169 0.572 0.231 -0.096 -0.023 -0.023 -0.001 0.002 -0.014 -0.019
T14c 0.096 0.403 0.790 -0.398 0.095 -0.045 -0.124 0.003 -0.109 0.007 0.051 0.069
T14t 0.196 0.565 -0.165 0.751 0.194 -0.078 0.030 -0.025 0.045 0.000 -0.036 -0.049
T14c1 0.086 0.420 0.795 -0.387 0.086 -0.043 -0.115 0.047 -0.054 -0.027 0.046 0.062
T14c2 -0.073 0.399 0.454 -0.056 -0.072 0.000 0.043 -0.523 -0.432 -0.393 -0.038 -0.051
T14c3 0.137 0.331 0.761 -0.442 0.135 -0.052 -0.158 0.045 -0.115 0.145 0.072 0.097
v1c 0.204 0.118 0.576 -0.471 0.203 -0.059 -0.210 -0.079 -0.462 -0.225 0.108 0.145
v1t 0.495 0.151 -0.220 0.382 0.490 -0.136 0.032 -0.093 0.121 0.002 -0.245 -0.441
TTT 0.665 0.212 0.107 0.108 0.659 -0.184 -0.104 -0.078 0.005 -0.002 0.040 0.054
TVM 0.659 0.228 0.040 0.193 0.653 -0.183 -0.069 -0.064 -0.022 0.001 -0.045 -0.059
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 (3) Total Uncertainty 

The total uncertainty analysis is used to investigate the combined impact of inputs and 

parameters uncertainty on the outputs uncertainty. The CoV of both inputs and parameters is 

set at 0.3.  Following the same approach as in the previous two sections, the CoVs of outputs 

are listed in Table 9.  By comparing with Table 5 and Table 7, we can find that the uncertainty 

(in terms of both SD and CoV) of outputs stemming from both inputs and parameters 

uncertainty is not simply the sum of uncertainties from inputs and parameters individually.  In 

addition, compared to the TTT, TVM has a smaller CoV.  TVM seems to be a more reliable 

system performance metric given the uncertainty of both inputs and parameters.  

Table 9 Uncertainty of outputs due to both input and parameter uncertainty 
Solution 
variable 

Mean SD CoV 
90% confidence interval 
5% 95% 

T1 145.83 43.87  0.30  73.66  217.99  
T10 54.17 25.66  0.47  11.96  96.39  
T14 69.83 30.81  0.44  19.15  120.51  
T14c 22.36 10.98  0.49  4.30  40.42  
T14t 47.47 28.42  0.60  0.71  94.23  
T14c1 8.46 6.62  0.78  0.00* 19.34  
T14c2 3.94 1.84  0.47  0.90  6.97  
T14c3 9.97 4.74  0.48  2.17  17.76  
v1c 28.90 7.86  0.27  15.97  41.82  
v1t 61.56 21.09  0.34  26.86  96.26  
TTT 1432.01 483.49  0.34  636.66  2227.36  
TVM 1323.51 399.59  0.30  666.19  1980.84  
*: The actual value is -2.43 due to the normality assumption and the large CoV. We truncate 
negative flows to zero.  
 

To investigate the output uncertainty at each travel choice step of the CTDM, we calculate the 

average CoV of outputs at each step using the derivatives of all outputs w.r.t. the eight 

selected inputs (Table 2) and twelve parameters (Table 3). The results are graphically 

depicted in Figure 7.  The average CoV of outputs at each step is increasing as the choice step 

moves from the top to the bottom according to the hierarchical structure of the CTDM shown 

in Figure 4.  However, the average CoV of link flows is smaller than that of mode-specific O-

D demands.  This is consistent with the results reported in Zhao and Kockelman (2002) and 

Leurent (1998) due to the equilibrium nature of the traffic assignment step. The traffic 

assignment in the CTDM is equivalent to the logit-based stochastic user equilibrium (SUE). 

Due to the perceived error in the SUE model, the magnitude of uncertainty reduction of the 

SUE model is less than that of the user equilibrium (UE) model, which is used in Zhao and 
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Kockelman (2002).  We should point out that the average CoV values at different travel 

choice steps are not the same as the uncertainty propagation in the sequential four-step 

procedure (Zhao and Kockelman, 2002).  In the CTDM, the results of each step are calculated 

simultaneously. There is essentially no uncertainty propagation due to the integrated travel 

choice steps. The figure is only used to illustrate the relative uncertainty magnitudes at 

different aggregate levels due to the input and parameter uncertainty. 
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Figure 7 Output uncertainty at each travel choice step 

 

6. Conclusions 

In this paper, we proposed a systematic framework for the uncertainty analysis of a combined 

travel demand model (CTDM). The CTDM is based on the random utility theory of user 

behavior, which is behaviorally richer than the sequential four-step procedure. The CTDM 

can be formulated as an equivalent convex optimization problem, which makes it possible to 

conduct the sensitivity analysis.  We employed the analytical sensitivity-based method for the 

uncertainty analysis of the CTDM, which requires significantly less computational efforts 

than the sampling-based methods.  Furthermore, uncertainties stemming from inputs and 

parameters can be treated separately so that the individual and collective effects of uncertainty 

on the outputs can be clearly assessed and quantified.  The numerical results indicated that at 

each disaggregate choice step except for the travel choice step, the impact of parameter 

uncertainty on the output uncertainty is generally more important than that of input 

uncertainty. This information enables planners to effectively allocate the limited resources for 
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input data collection and parameter estimation of key variables.  Using the sensitivity-based 

uncertainty analysis, we can also estimate the possible benefits of improving the parameter 

accuracy. 

 

In this paper, we only used the mean and variance to characterize the input uncertainty. This 

is justified for normal distribution.  However, for asymmetric distributions (e.g., lognormal 

distribution), we need higher-order moment information (e.g., skewness and kurtosis) to 

enrich the characterization.  How to make use of higher-order moment information to enhance 

the quality of uncertainty analysis will be a valuable future research direction.  In addition, the 

semi-deviation measure could also be used to quantify uncertainty since variance is a 

symmetric statistic and gives equal weight to deviations below and above the mean without 

considering the risks associated with extreme outcomes (Li et al., 2012). These uncertainty 

analysis methods in turn could be used in evaluating transportation network reliability, 

vulnerability, and flexibility measures (Chen et al., 1999, 2002, 2007b, 2013; Chen and 

Kasikitwiwat, 2011), modeling network equilibrium under uncertainty (Zhou and Chen, 2008; 

Chen and Zhou, 2010; Chen et al., 2011b; Xu et al., 2013), and developing network design 

under uncertainty (Chootinan et al., 2005; Chen et al., 2007a, 2010, 2011a; Yim et al., 2011; 

Chen and Xu, 2012). 

 

 

Acknowledgements 

The authors are grateful to three anonymous referees for their constructive comments and 

suggestions to improve the quality and clarity of the paper.  The authors also wish to express 

their thanks to Professor Hai Yang for his valuable comments on the sensitivity analysis 

formulation. This research was supported by the Oriental Scholar Professorship Program 

sponsored by the Shanghai Ministry of Education in China to Tongji University, National 

Natural Science Foundation of China (71171147), Fundamental Research Funds for the 

Central Universities, and the China Scholarship Council. 

 

 

 

 



 
 

  35

Appendix: Invertibility Proof 

For the Logit-based SUE model, 
2

w
k

T

f
L 

  
  

Λ
M

Λ 0
, where 2

w
kf

L  is the Hessian matrix of 

Lagrangian function L with respect to route flow w
kf  (route k between O-D pair w), and Λ  is 

the OD-route incidence matrix.  2 1
1w

k

T w
kf

L diag f


     vt  is positive definite, since the 

sum of a positive semi-definite matrix (i.e., T  vt ) and a positive definite matrix (i.e., 

 1 w
kdiag f ) is a positive definite matrix.  

 

To prove M is non-singular (or invertible), it suffices to prove that all columns of M are 

linearly independent.  Consider a nonzero vector ˆ,
T

T T   λ λ λ 0 , where λ  is a column 

vector with the number of elements equal to the number of routes and λ̂  is a column vector 

with the number of elements equal to the number of O-D pairs.  

 

Let Mλ 0 , we have 

 2 ˆ
w

k

T

f
L  λ Λ λ 0 , (A1)

Λλ 0 . (A2)

Multiplying both sides of Eq. (A1) (from the left side) by Tλ  yields: 

     2 2ˆ ˆ 0w w
k k

T
T T T T

f f
L L     λ λ λ Λ λ λ λ Λλ λ      . (A3)

Substituting Eq. (A2) into Eq. (A3) yields: 

 2 0w
k

T

f
L λ λ  . (A4)

Since 2
w

kf
L  is positive definite, Eq. (A4) implies that λ 0 . 

 

From λ 0  and Eq. (A1), we have ˆT Λ λ 0 . Since TΛ (i.e., OD-route incidence matrix) 

contains linearly independent columns and is of full column rank equal to the number of O-D 

pairs, we thus conclude ˆ λ 0 .  To sum up, we have λ 0  and ˆ λ 0 . These results contradict 

our assumption of a nonzero vector ˆ,
T

T T   λ λ λ 0 .  Therefore, matrix M is invertible.  
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