<table>
<thead>
<tr>
<th>Title</th>
<th>A dual-memory permanent magnet brushless machine for automotive integrated starter-generator application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Li, W; Lee, HT; Liu, C</td>
</tr>
<tr>
<td>Issued Date</td>
<td>2012</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10722/192285</td>
</tr>
<tr>
<td>Rights</td>
<td>Annual Conference of Industrial Electronics Society Proceedings. Copyright © IEEE.; ©2012 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.; This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.</td>
</tr>
</tbody>
</table>
A Dual-memory Permanent Magnet Brushless Machine for Automotive Integrated Starter-Generator Application

Wenlong Li, Christopher H.T. Lee, and Chunhua Liu
Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong
wlli@eee.hku.hk, htle@eee.hku.hk, chualiu@eee.hku.hk

Abstract—This paper presents a dual-memory permanent magnet brushless machine for automotive integrated starter-generator (ISG) application. The key is that the proposed machine adopts two kinds of PM materials, namely NdFeB and AlNiCo for hybrid excitations. Due to the non-linear characteristic of demagnetization curve, AlNiCo can be regulated to operate at different magnetization levels via a magnetizing winding. With this distinct merit, AlNiCo can provide the assistance for online tuning the air-gap flux density. Firstly, the configuration of proposed machine is presented. Secondly, the finite element method (FEM) is applied for the field calculation and performance verification. Finally, both simulation and experimental results confirm that the proposed machine is very suitable for the ISG application.

1. Introduction

The integrated starter-generator (ISG) combines the starter motor for internal combustion engine (ICE) cranking and the on-board alternator for electricity generation into a single device [1]. By this integration, the vehicle power train system can be downsized and the efficiency can be improved accordingly. Nowadays, hybrid electric vehicles (HEVs) are accepted as an optimum choice for solving the energy crisis and environment deterioration in the next decades. By using an ISG in the HEV, the fuel economy and efficiency can be further enhanced. In HEVs, the ISG not only provides starting torque for ICE and produces electricity for battery pack, but also can help to enhance the output torque of the ICE.

Due to its multiple utilizations, a good electric machine candidate for the ISG should meet some basic requirements: the high starting torque and the good capability for a wide constant-power speed range. A higher starting torque for cranking the engine to the idle speed, a shorter dynamic process can be obtained. Then from the speed above the idle speed to the maximum speed, the ISG works as an alternator for charging the battery pack. Because voltage rating of the power network in most of vehicles is 42 V, a high output voltage of the ISG may damage the vehicle, thus the ISG should have a good capability of flux weakening. Based on literature review, several types of electric machines, namely induction machine (IM), switched reluctance machine (SRM), and permanent magnet synchronous machine (PMSM) etc. are studied and applied for the ISG application [2]. The IM has a simple structure, low cost and mature control scheme, but for high speed operation, its power factor decrease dramatically. The SRM has a robust structure which is very suitable for high speed application, but it suffers from electric penalty, noise and low efficiency. Compared with the above two types, the PMSM possesses a lot of merits, such as high efficiency, high power density, and high starting torque etc. However, uncontrollable flux deteriorates its wide speed operation capability. The PMSM with interior or surface-inset PMs can solve this problem to some extent [3]-[6]. By controlling the direct-axis current to reduce the air-gap flux density, thus its constant-power speed range can be extended.

The purpose of this paper is to present a dual-memory permanent magnet brushless machine for ISG application, which also has salient structure but do not need to control direct-axis current for flux weakening. The key is that it adopts AlNiCo and NdFeB PMs for hybrid excitations. By tuning magnetization level of the AlNiCo PMs via a DC current pulse, the air-gap flux density can be controlled. Compared to those hybrid PM machines, it only needs current pulse but not a continuously-fed current to realize the flux control. Therefore, its efficiency can be further improved. With this capability, the starting torque can be strengthened for the starting mode. In the high-speed operation mode, the output voltage can be maintained without controlling the direct-axis current.
II. MACHINE DESIGN

As stated before, the PM machines with saliency structure are more suitable for wide constant-power speed range applications due to the flux weakening capability. For high speed operation, the SRM is predominant due to its high robust, high reliable and low inertia characteristics. Thus, by combing the advantages of these two kinds of machines, the new machine is more favorable for the ISG application.

A. Stator-PM machines

As illustrated by the name, the stator-PM machines equip the PMs and armature windings in the stator [7]. The rotor consists of iron lamination only. Thus, the high-speed operation can be achieved without any accessories. According to the PM position in the stator, they can be categorized into three classes, namely doubly-silent PM (DSPM) machine [8]-[15], flux reversal PM (FRPM) machine [16]-[19] and flux switching PM (FSPM) machine [20]-[23]. As shown in Fig. 1, the DSPM machine has PMs in its back-iron. The flux variation in each winding is unipolar in the operation. The FRPM machine has PMs on surface of stator teeth. Each stator tooth has a pair of magnets of different polarity mounted at its surface. The flux variation in each winding is bipolar in the operation. The FSPM machine has PMs in the stator teeth, and the stator consists of U-shaped segments with PMs sandwiched between them. The flux variation in each winding is also bipolar in the operation. It should be emphasized that although these machine has a similar structure as SRM, the developed torque is mainly due to the electromagnetic torque but not the reluctance one. Although, they are suitable for high-speed operation, the flux control capability is not very strong. In order to enable the full flux control capability, flux controllable PM machine (FCPM) was proposed and it was also successfully applied in ISG for HEVs [24]. The flux control capability of FCPM machine is that using a direct-current (DC) field windings for assisting the air-gap flux control [25]-[28], as shown in Fig. 2(a). One drawback of this machine is that the DC field current should be continuously maintained for flux control, which inevitably incurs copper losses. In order to solve this problem, the novel FCPM machine called memory machine was proposed, as shown in Fig. 2(b). The memory machine adopts AlNiCo PMs for field excitation [29]-[34]. AlNiCo alloy has a nonlinear relative permeability. By using a DC current pulse to magnetize or demagnetize AlNiCo, different magnetization levels can be memorized. Thus, different flux densities in the air-gap can be achieved.
Proposed machine

The proposed machine is based on the aforementioned memory machine. Fig. 3(a) depicts the configuration of the proposed machine. The key of the proposed machine is to implement two kinds of PM materials for hybrid excitations. As shown in Fig. 3(a), the AlNiCo PMs are sandwiched by the NdFeB PMs. The NdFeB PMs provide the main air-gap flux, and the AlNiCo PMs assist the NdFeB PMs for regulating the air-gap flux density.

The proposed machine adopts an inner stator and outer rotor design. The armature windings are placed in the stator outer slot, the magnetizing windings are placed in the stator inner slot, and the PMs are placed between the two sets of windings. By placing the PMs in the back-iron, the PMs can avoid demagnetization by the armature reaction. This machine has 5 phases, and winding of phase A is shown in Fig. 3(b). The multi-phase design provides high fault tolerance capability. With even 2 phases are open circuited, the machine can still maintain an average output torque [35]. The magnetizing winding provides the magnetization or demagnetization of AlNiCo PMs. By applying a positive or negative DC current pulse to the magnetizing winding, the operating point of the AlNiCo PM is changed. After removing this DC pulse, the magnetization level of AlNiCo PM has been memorized. Thus, the air-gap flux density can be regulated.

Table I

<table>
<thead>
<tr>
<th>Key Design Data of Proposed Machine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated power</td>
</tr>
<tr>
<td>Rated torque</td>
</tr>
<tr>
<td>Speed range</td>
</tr>
<tr>
<td>No. of turns per armature coil</td>
</tr>
<tr>
<td>No. of turns per DC coil</td>
</tr>
<tr>
<td>Outer-rotor outside diameter</td>
</tr>
<tr>
<td>Outer-rotor inside diameter</td>
</tr>
<tr>
<td>Stator outside diameter</td>
</tr>
<tr>
<td>Stack length</td>
</tr>
<tr>
<td>AlNiCo PM dimensions (width x thickness)</td>
</tr>
<tr>
<td>AlNiCo PM remanence and coercivity</td>
</tr>
<tr>
<td>NdFeB PM dimensions (width x thickness)</td>
</tr>
<tr>
<td>NdFeB PM remanence and coercivity</td>
</tr>
</tbody>
</table>

III. Machine Analysis

In order to access performances of the proposed TSG, the finite element method (FEM) is applied for the field calculation and performances verification. Due to the nonlinear characteristics of AlNiCo PMs, a parallelogram hysteresis model is adopted to fit its hysteresis loop which gives satisfactory results [36]. The key design data is listed in Table I.

Fig. 4(a)-(c) shows the flux distributions of the proposed machine under different magnetization levels of AlNiCo PMs, namely non-magnetized (NM), outward-magnetized (OM) or flux strengthened, and inward-magnetized (IM) or flux weakened, respectively. It can be observed by OM, the flux lines are denser than the NM condition; by IM, the flux lines are sparser than the NM condition. It confirms the proposed machine has the capability for flux strengthening and weakening. Fig. 4(d) which illustrates the flux distribution due to armature excitation only shows that the armature reaction has limited influence on PMs. Most of the flux is shorted by the back-iron, which confirms that this
machine has a good immune to the armature reaction. After qualitatively studying its flux control capability, Fig. 5 quantitatively compares its flux regulation capability via the induced electromotive force (EMF) when the machine runs at 600 rpm under no-load condition. It can be seen that seen that the air-gap flux density can be controlled over 8 times between flux strengthening and weakening.

IV. CONTROL SCHEME

In order to evaluate the proposed machine for ISG operation, the dynamic and flux weakening control were carried out.

![Control block diagram]

Fig. 6. Control block diagram.

![Starting torque and starting current under NM condition](a)starting torque. (b) Armature current.

Fig. 7. Starting torque and starting current under NM condition. (a) Starting torque. (b) Armature current.

![Starting torque and starting current under OM condition](a)starting torque. (b) Armature current.

Fig. 8. Starting torque and starting current under OM condition. (a) Starting torque. (b) Armature current.

![Speed response characteristics](a)speed response characteristics.

Fig. 9. Speed response characteristics.

Fig. 6 shows the control block diagram of the proposed machine for ISG operation. It consists of a dual-closed-loop control module and a flux control module. The dual-closed-loop control module is similar as that for the conventional permanent magnet brushless motor drives, namely a current loop and a speed loop. In the outer speed loop, the reference speed signal is compared with the feedback speed signal, and then the error information is input to the PID control unit to generate a current reference signal for the current control unit.
The signal from the current control unit along with the rotor position signal, are input to the 5-phase inverter to drive the motor. In the inner current loop control, the feedback current signal is compared with the current reference signal from the speed control unit, and then the error information is input to the current control unit to form the current loop control. The flux control unit serves as a stand-by unit to improve the TSG performance. In the engine cranking mode, a positive DC current pulse is applied to increase the air-gap flux density for strengthening the starting torque. For high-speed operation, a negative DC current pulse is applied to decrease the air-gap flux density. The DC current pulse is generated by a full bridge inverter. The amplitude of this current pulse is calculated from a look-up table.

Electricity production is another important utilization of the TSG, since a lot of automobile consumer electronics are installed on board, the automobile electrification becomes a trend in recent several decades. In order to maintain a constant charging voltage, the flux should be weakened along with the engine speed. For verifying the flux weakening capability of the proposed machine, the experimentation is carried out. Fig. 10 shows the machine prototype and its test bed. As shown in the figure, a DC dynamometer is connected to the proposed machine via the same shaft. The DC dynamometer serves as a prime mover, while the proposed machine operates as a generator. The no-load electromotive force (EMF) waveforms under different speeds are measured. Fig. 11 (a) and (b) show the no-load EMF waveforms under different speeds without flux control. Fig. 11 (c) and (d) show the no-load EMF waveforms under the same speeds with flux control. Without flux control, the amplitude of no-load EMF depends on the rotor speed. A higher speed, a larger amplitude of EMF can be obtained. With flux control, the amplitudes of the EMF waveforms can be kept unchanged. It can be observed that with flux control the amplitude of EMF can be maintain at about 60 V. Therefore, the output voltage at rectifier terminal can be kept constant.

CONCLUSION

A dual-memory permanent magnet brushless machine for automotive ISG application is proposed and implemented in this paper. The key feature of the proposed machine is that it consists of AlNiCo and NdFeB PMs for hybrid excitations. The NdFeB PMs are engaged for providing main air-gap flux, while the AlNiCo PMs are used for regulating the flux density, and the armature current are kept unchanged. Therefore, a shorter starting time can be achieved as shown in Fig. 9.
density via a temporary current pulse. Therefore, the proposed machine can achieve a high starting torque for engine cranking and wide constant-power speed range for electricity generation. Both the simulation and experimental results confirm that the proposed machine is very competent for ISG application.

ACKNOWLEDGEMENT

This work was supported by a grant (Project No. HKU710710E) from the Hong Kong Research Grants Council, Hong Kong Special Administrative Region, China.

REFERENCES

