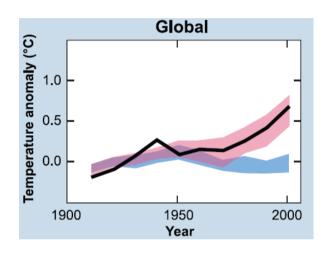
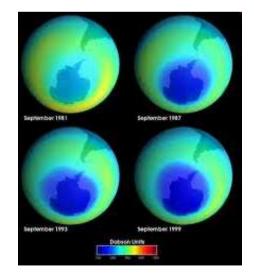

Outline

- Background
- Life cycle assessment
- Environmental modeling of construction (EMoC)
- Case study
- Summary


Sustainable development

Definition: The development that meets the needs of the present without compromising the ability of the future generations to meet their own needs



The Environment

Construction and the Environment

Positive environmental impacts

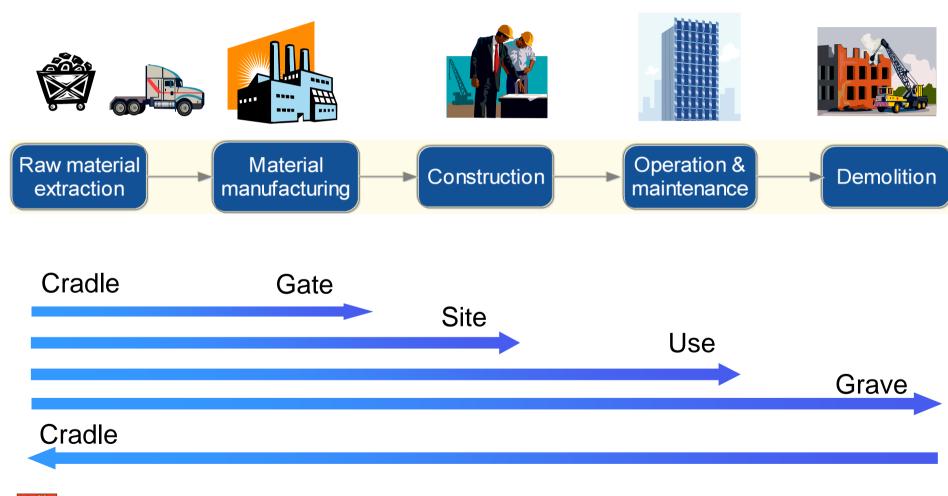
Improvement on the living environment, reclamation, landscape ecology ...

Negative environmental impacts

- Material consumption: limestone, wood, metal
- Fuel consumption: diesel, gasoline
- Water consumption: cleaning, temperature control
- CO₂ emission: cement manufacturing (5%), steel manufacturing (3%)
- Dust emission: on-site, transportation of material
- Waste generation: temporary materials
- Land occupation: landfill, transformation of natural land
- Other impacts

Green Actions in Construction Industry

Green Building Assessment Schemes	Region	Year
BREEAM	UK	1990
BEAM Plus	HK	1996/2010
LEED	USA	1998
CASBEE	Japan	2001
Green Star	Australia	2002
Green Mark	Singapore	2005
Green Building Label	China	2006
DGNB Certificate	Germany	2009

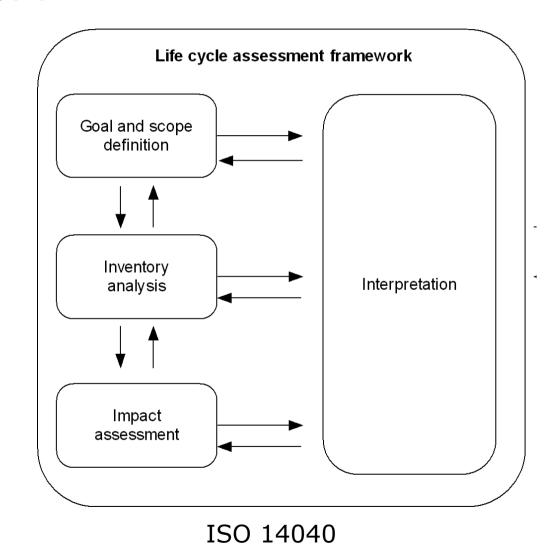


Outline

- Background
- Life cycle assessment
- Environmental modeling of construction (EMoC)
- Case study
- Summary

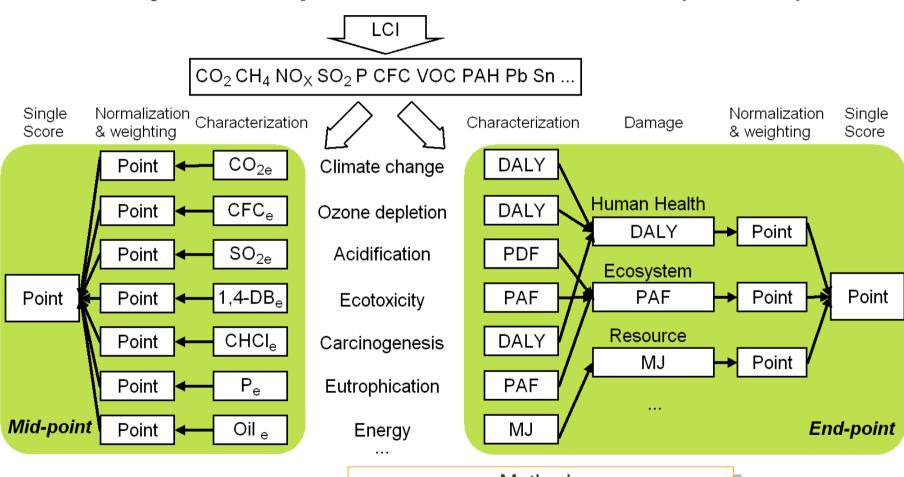
Life cycle of a building

LCA


Introduction to LCA

What is LCA?

compilation and evaluation of the inputs, outputs and the potential environmental impacts of a product system throughout its life cycle (ISO 14040)


History

1960s Coca-Cola 1990s Intensive development 1996 Int J LCA 1997/2006 ISO 14040 series

Life cycle impact assessment (LCIA)

Methods

- CML, Eco-indicator 99, TRACI 2, IMPACT 2002+, LIME, ReCiPe
- USEtox, IPCC, Ecological footprint

LCA in Construction - International

LCA analysis of construction materials

Software: SimaPro, GaBi, eBalance, BEES

LCA analysis of entire buildings

Software: Athena, Eco-Quantum, eQUEST

Life cycle inventory including building components

Database: Ecoinvent, US LCI, ICE, IVAM, ...

LCA analysis of construction stage

Software: CEDST, Bilec's Model

LCA in Construction – Hong Kong

- Life Cycle Assessment (LCA) and Life Cycle Costing (LCC) Study of Building Materials and Components (HKHA, 2005)
- Study on Life Cycle Energy Analysis of Building Construction (EMSD, 2006)
-
- Construction processes are simply included with few details or breakdowns. A holistic and up-to-date LCA model which can help evaluate the environmental performance of local construction processes is hence in lack.

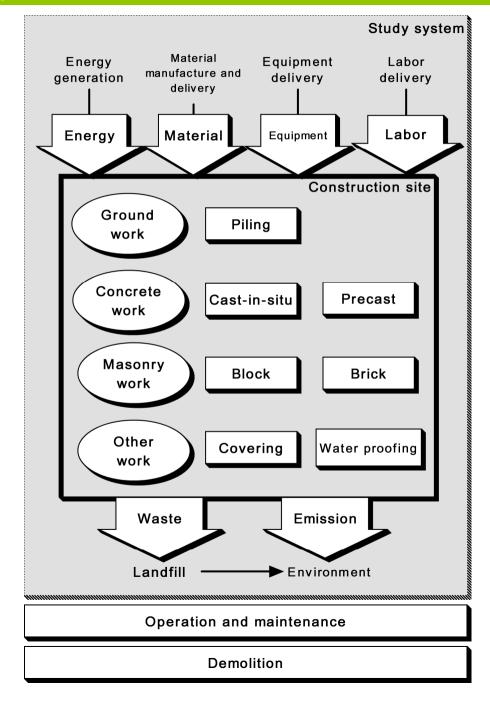
Outline

- Background
- Life cycle assessment
- Research objectives
- Environmental modeling of construction (EMoC)
- Case study
- Summary

EMoC

Environmental Modeling of Construction (EMoC)

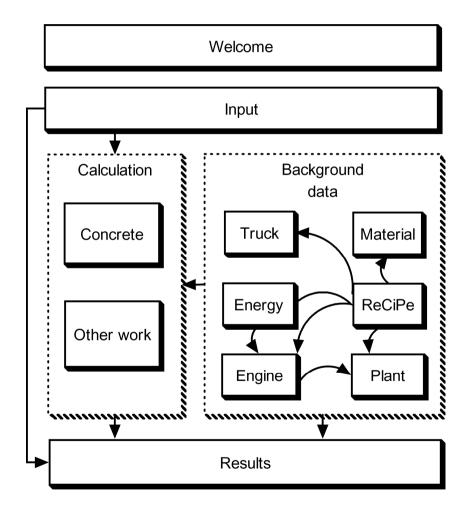
- Up-to-date datasets
- Involvement of construction materials accounting >80% environmental burden
- Involvement of the local concrete LCI data
- Evaluation of different concrete methods
- Capability to analyze 18 impact categories
- Analysis on both midpoint and endpoint levels
- Options of waste treatment methods
- Options of truck emission standards
-


EMoC Overview

Boundary: 'Cradle to site'

LCIA: ReCiPe 2008

UI: Microsoft Excel

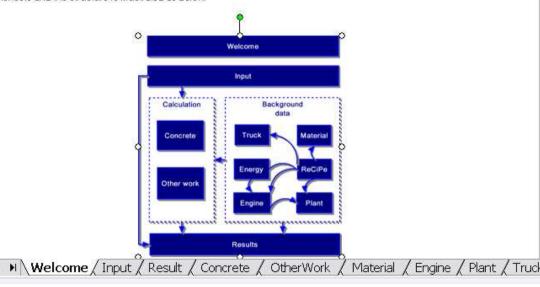

• Size: 30 MB

EMoC

Model Structure

*EMoC*Welcome

Environmental Modeling of Construction (EMoC)


香港 大學

THE UNIVERSITY OF HONG KONG

Environmental Modeling of Construction (EMoC) is a 'cradle-to-site' life cycle assessment (LCA) model to simulate the environmental impact in and before construction phase. Model results from EMoC can be used to compare the greeness between options of a project, so that a more environmental friendly alternative can be selected in design phase. The model can also be used to estimate the overall performance of a concrete structure building project.

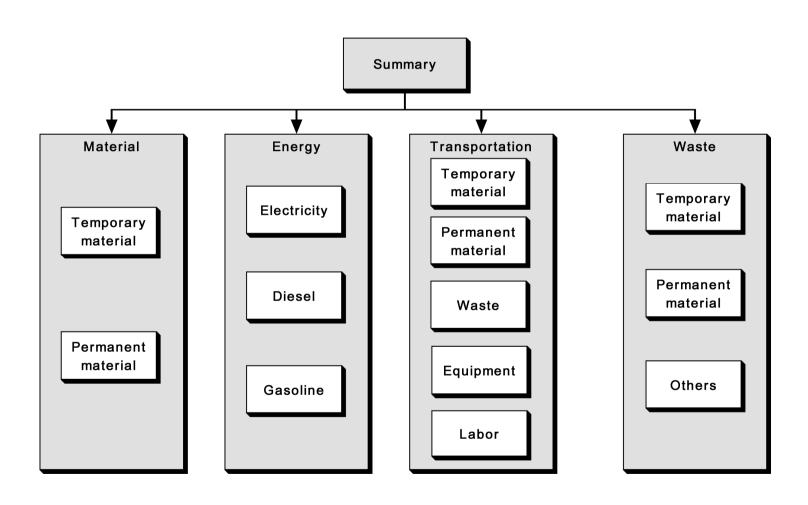
The model includes several important processes from raw material extraction, through manufacturing materials, to on-site construction activities. Precast and cast-in-situ methods can be estimated in EMoC. 'ReCiPe' is utilized as the life cycle impact assessment (LCIA) method. It provides assessment in 18 impact categories at both midpoint and endpoint levels.

This is the first worksheet of EMoC with the general description of the model structure. The model is composed of 11 worksheets and the structure is illustrated as below:

EMoC

Input Worksheet — How to use the model?

	III P G C	11011		110 11	- 400					
	Input Workshe	ot								
2	iliput Workshe		I (6 I-		1.)					
3	Discription of items Input here (if no data, leave as blank) Respondent									
4	nespondent	Contact person			<u> </u>		l			
5		Position								
6		Address								
7		Phone No.								
8		Fax No.								
9	Date infor	mation collected (dd / mm / yyyy)								
10	General project information									
11	acriciai project information	Project name								
12		Project region								
13		Project location								
14		Total gross floor area (m2)								
15		Total site area (m2)								
16		No. of blocks								
17		No. of units								
18	P	Project start date (dd / mm / yyyy)								
19		Project end date (dd / mm / yyyy)								
20	Total resource consumptio									
21	Total Todour of Camput	Electricity consumption (kWh)								
22		Diesel consumption (L)								
23		Water consumption (L)								
24		Petrol consumption (L)								
25		Rebar consumption (tonne)								
26		Concrete consumption (m3)								
27	Concrete									
28		C20 (m3)								
29		C30 (m3)								
30	Concrete type	C35 (m3)								
31		C40 (m3)								
32		C45 (m3)								
33		Wood (kg)								
34	Formwork	Steel (tonne)								
35		Steel formwork: Recycle or not								
36	C									
37	Cast-in-situ concrete	aste percentage of concrete (%)								
38	Cast-III-situ concrete	Hecycle or not								
39	Rebar	Waste percentage of rebar (%)								
40	nebai	Recycle or not								
41		Item	percent(%)	Туре	Concrete amount (n	Rebar amount (ko	No. of elements			
42		Column			Ì	` -				
	4 5 51 502 1 5 -	nut / Daquit / Concrete 7 Off	\0/I.	1 / / .	N / T 1 / T-	/ D CD)			


EMoC

Input Worksheet — How to use the model?

	Α	В	С	D	Е	F	G
43		Beam					
44		Façade					
45		Semi-precast slab					
46		Staircase					
47	Concrete element	Partition wall					
48	Concrete cicinent	Balcony					
49		Bathroom					
50		Refuse chute					
51		Hanger wall					
52		Others					
53		Advantage of precast concrete					
54		Disadvantage of precast concrete					
55	Transportation						
56			One way (km)	Truck model	Emission Standard	1	
57		Ready mix					
58		Precast					
59 60		Formwork Rebar					
61	Environmental protection	Hebar					
62	Environmental protection	Dust control level					
63	Other work	Dast control level					
64	CATION WORK	Concrete for piling (m3)					
65	Ground work	Rebar (tonne)					
66	4.54.14.1151.1	Excavated soil (tonne)					
67			Applied area (m2)	Item size (L*W*)	Density (ka/m2)	Waste (%)	Oneway distance (I
68	Masonry	Brick					
69		Block					
70			Area (m2)	Amount (kg)	Waste (%)	Oneway distance	Utilization
71		Aluminium window frame	` '	, 27	` ,	,	
72		inium (excluding window frame)					
73		Cement					
74	C	Door (wood)					
75	Surface work and external	Glass					
76		Mortar					
77		Plaster					
78		PVC window frame					
79		Tile					
80	Equipment						
81	Machine		Operation Hours	Number of equip	ments		
82	_	Small excavator					
83	Excavator	Medium excavator					
84	E 1125	Large excavator					
85 86	Forklift	N.A.					
I ∢	4 ▶ N Welcome \ In	put / Result / Concrete / Ot	herWork / Materi	ial / Engine / D	Plant / Truck / Fr	neray / ReCiPe /	,
1 4	A NEW MARKOLLE YILL	park result & condete & Ot	ncivion & Mater	ar / rights / F	ансд ниск д Ш	icidiy X Kecire /	

EMoC

Result Worksheet — How to use the model?

EMoC

Result Worksheet — How to use the model?

	A B C	D	Е	F	G	Н	l J	K	L
1	Result								
2		Midpoint Char	acterization						
3	Summary	Climate change	Ozone depletion	Human toxicity	Photochemic al oxidant formation	Particulate matter formation	lonising Terrestrial radiation acidification	and the second second second	Mar ropl r
4		kg CO2 eq	kg CFC-11 eq	kg 1,4-DB eq	kg NMVOC	kg PM10 eq	kg U235 eq kg SO2 eq		kg N
5	Material								
6	Total	0	0	0	0	0	0	0 0	
7	Per unit	0	0	0	0	0	0	0 0	
8	Per GFA (m2)	0	0	0	0	0	0	0 0	
9	Energy								
10	Total	0	0	0	0	0	0	0 0	
11	Per unit	0	0	0	0	0	0	0 0	
	Per GFA (m2)	0	0	0	0	0	0	0 0	
13	Transportation								
14	Total	0	0	0	0	0	0	0 0	
15	Per unit	0	0	0	0	0	0	0 0	
16	Per GFA (m2)	0	0	0	0	0	0	0 0	
17	Waste								
18	Total	0	0	0	0	0	0	0 0	
19	Per unit	0	0	0	0	0	0	0 0	
20		0	0	0	0	0	0	0 0	
21	Dust emission								
22	Total	0	0	0	0	0	0	0 0	
	Per unit	0			0	0	0	0 0	
	Per GFA (m2)	0	0	0	0	0	0	0 0	
25	Total performance								
26	Total	0	_		_	0	0	0 0	
27	Per unit	0	_		0	0	0	0 0	
28	Per GFA (m2)	0	0	0	0	0	0	0 0	
29									
30		Midpoint Char	acterization		Dhatashania	Dartinulata		Englander A	
	Material Amount Unit	Climate	Ozone	Human	Photochemic	Particulate	lonising Terrestrial	Freshwater M	Mari

EMoC

Result Worksheet — How to use the model?

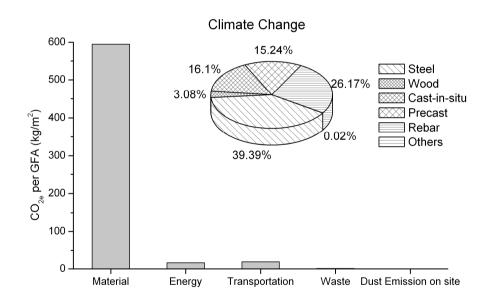
31	Material	Amount	Unit	Climate change	Ozone depletion	Human toxicity	Photochemical oxidant formation	Particulate matter formation	lonising radiation
32				kg CO2 eq	kg CFC-11 eq	kg 1,4-DB eq	kg NMVOC	kg PM10 eq	kg U235 eq
33	Material: Temporary materia	d							
34	Steel	0	tonne	0	0	0	0	0	
35	Water	0	L	0	0	0	0	0	
36	Wood	0	kg	0	0	0	0	0	
	Total temporary material			0	0	0	0	0	
38									
39	Material: Permenant materia	d							
40	Cast in situ concrete								
41	Column	0	m3	0	0	0	0	0	
42	Beam	0	m3	0	0	0	0	0	
	Façade	0	m3	0	0	0	0	0	
-	Semi-precast slab	0	m3	0	0		0	0	
-	Staircase	0	m3	0			0	0	
	Partition wall	0	m3	0	<u> </u>		0	0	
-	Balcony	0	m3	0	0		0	0	
_	Bathroom	0	m3	0			0	0	
	Refuse chute	0	m3	0			0	0	
	Hanger wall	0	m3	0	_		0	0	
-	Pile	0	m3	0			0	0	
	Others	0	m3	0	_		0	0	
-	Total cast in situ concrete	0	m3	0	0	0	0	0	
	Precast concrete	To	I 0	_	_		51	<u></u>	
_	Column	0	m3	0	_		0	0	
	Beam	0	m3	0	0		0	0	
	Façade	0	m3 m3	0	_		0	0	
	Semi-precast slab	+		_					
	Staircase	0	m3	0	_		0	0	
bU	Partition wall	0	m3	0	0	0	0	0	

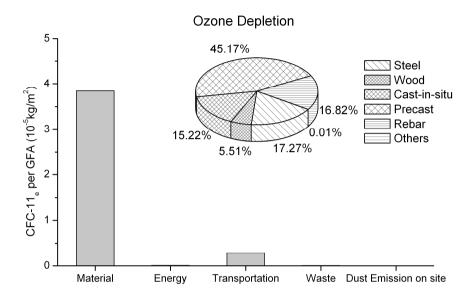
Outline

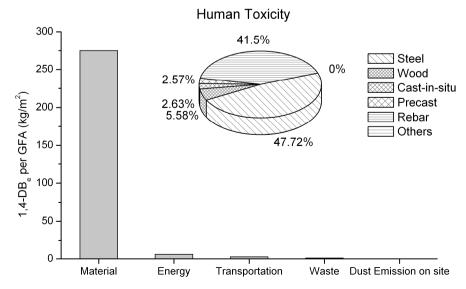
- Background
- Life cycle assessment
- Environmental modeling of construction (EMoC)
- Case study
- Summary

Case Study Description

 A public housing project (PRH) in Hong Kong Precast concrete accounts for 35% of total concrete volume, including façade, bathroom, semi-precast slab, etc. The input data is collected via questionnaire survey

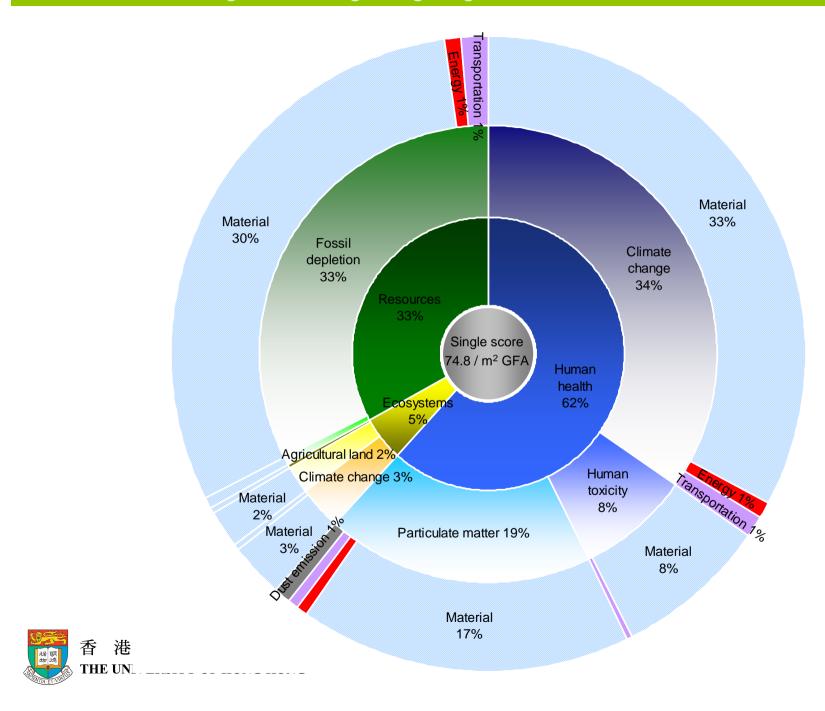



Case Study Midpoint results


544 kg CO_{2eq}

Impact category	Unit per GFA (m²)	Characterization	Normalization
Climate change	kg CO ₂ eq	631.23	0.092
Ozone depletion	kg CFC-11 eq	4.15E-05	0.001
Human toxicity	kg 1,4-DB eq	284.84	2.427
Photochemical oxidant formation	kg NMVOC	2.24	0.046
Particulate matter formation	kg PM10 eq	1.84	0.131
Ionizing radiation	kg U235 eq	88.64	0.067
Terrestrial acidification	kg SO ₂ eq	2.10	0.055
Freshwater eutrophication	kg P eq	0.27	0.919
Marine eutrophication	kg N eq	0.13	0.018
Terrestrial ecotoxicity	kg 1,4-DB eq	0.12	0.019
Freshwater ecotoxicity	kg 1,4-DB eq	9.68	2.235
Marine ecotoxicity	kg 1,4-DB eq	9.96	4.128
Agricultural land occupation	m²a	273.70	0.050
Urban land occupation	m²a	7.78	0.010
Natural land transformation	m ²	0.10	0.008
Water depletion	m ³	6.31	0.000
Metal depletion	kg Fe eq	648.42	1.456
Fossil depletion	kg oil eq	168.56	0.123

Case Study Midpoint results



Case Study Endpoint results

Damage category	Unit / m2	Amount	Impact category	Amount												
			Climate change Human Health	0.00088												
			Ozone depletion	1.06E-07												
Human health	DALY	0.0045	Human toxicity	0.00020												
Human nealth	DALT	0.0015	Photochemical oxidant formation	8.71E-08												
			Particulate matter formation	0.00048												
			Ionising radiation	1.44E-06												
	species.yr		Climate change Ecosystems	4.98E-06												
			Terrestrial acidification	1.21E-08												
			Freshwater eutrophication	1.17E-08												
															Terrestrial ecotoxicity	1.53E-08
Ecosystems		8.38E-06	Freshwater ecotoxicity	2.52E-09												
					Marine ecotoxicity	7.97E-12										
					Agricultural land occupation	3.07E-06										
			Urban land occupation	1.5E-07												
			Natural land transformation	1.51E-07												
Resources	\$	2741.5	Metal depletion	46.4												
I/G200ICG2	Ψ	2/41.5	Fossil depletion	2695.1												

Outline

- Background
- Life cycle assessment
- Environmental modeling of construction (EMoC)
- Case study
- Summary

Summary The advantages of EMoC

- its ability to estimate the environmental impact of the precast and cast-in-situ concrete methods;
- the possibility to consider several waste treatment approaches;
- *a separate estimation on manufacturing and combustion of fuels;
- an utilization of local concrete inventory;
- *a comprehensive coverage on construction materials;
- an analysis on eighteen impact categories;
- the implementation of both midpoint and endpoint methods;
- the implementation of newly developed LCIA method 'ReCiPe'; and
- *a detailed breakdown of results.

Summary Implementation of EMoC

- Location: HKSAR, mainland China, other areas (further development needed).
- Early design stage: to compare the environmental impact of alternatives for the selection on a more environmental friendly design option.
- Detail design and construction stage: to control the on-site environmental performance of construction processes.
- Integration with other energy or LCA models to evaluate the entire life cycle impact of a building construction projects.

Summary The Way Forward

- Data collection of more building construction projects;
- Integration with other LCA models to facilitate the evaluation for the entire life cycle of buildings;

References

- Page 1: http://www.wallpaperpin.com/imageres/1366x768-wallpapers-nature-leaf-wet-forest-desktop-miriadna
- Page 3: http://www.unep.org/Documents.Multilingual/Default.asp?DocumentID=287
- Page 4: Daily interesting facts (deforestation); planetearthakki.blogspot.com (ozone); http://madamenoire.com
 (ecosystem damage); eutrophication.yolasite.com (eutrophication); nation.com.pk (energy); IPCC, 2007. The Physical Science Basis. Cambridge University Press, Cambridge.Page 9: ISO, 2006. International Standard. In: Environmental Management Life Cycle Assessment Requirements and Guidelines. Geneva, Switzerland: International Organisation for Standardisation.
- Page 5: Huntzinger, D. N. and Eatmon, T. D., 2009. A life-cycle assessment of Portland cement manufacturing: comparing the traditional process with alternative technologies. Journal of Cleaner Production, 17, 668-675.
- Page 10: Dong, Y. H., Ng, S. T. and Kumaraswamy, M. M., 2013a. Critical analysis of the life cycle impact assessment methods. *Environmental Engineering and Management Journal*. (*In press*)
- Page 12: EMSD, 2006. Consultancy Study on Life Cycle Energy Analysis of Building Construction. HKHA, 2005. Life Cycle Assessment (LCA) and Life Cycle Costing (LCC) Study of Building Materials and Components.
- Page 25: http://zh.wikipedia.org/wiki/File:Hong Kong Island Skyline 2009.jpg

Thank you