<table>
<thead>
<tr>
<th>Title</th>
<th>Optimal Route Queries with Arbitrary Order Constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Li, J; Yang, Y; Mamoulis, N</td>
</tr>
<tr>
<td>Citation</td>
<td>IEEE Transactions on Knowledge and Data Engineering, 2013, v. 25 n. 5, p. 1097-1110</td>
</tr>
<tr>
<td>Issued Date</td>
<td>2013</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10722/190297</td>
</tr>
<tr>
<td>Rights</td>
<td>This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.</td>
</tr>
</tbody>
</table>
Optimal Route Queries with Arbitrary Order Constraints

Jing Li, Yin David Yang, and Nikos Mamoulis

Abstract—Given a set of spatial points DS, each of which is associated with categorical information, e.g., restaurant, pub, etc., the optimal route query finds the shortest path that starts from the query point (e.g., a home or hotel), and covers a user-specified set of categories (e.g., (pub, restaurant, museum)). The user may also specify partial order constraints between different categories, e.g., a restaurant must be visited before a pub. Previous work has focused on a special case where the query contains the total order of all categories to be visited (e.g., museum → restaurant → pub). For the general scenario without such a total order, the only known solution reduces the problem to multiple, total-order optimal route queries. As we show in this paper, this naïve approach incurs a significant amount of repeated computations, and, thus, is not scalable to large data sets. Motivated by this, we propose novel solutions to the general optimal route query, based on two different methodologies, namely backward search and forward search. In addition, we discuss how the proposed methods can be adapted to answer a variant of the optimal route queries, in which the route only needs to cover a subset of the given categories. Extensive experiments, using both real and synthetic data sets, confirm that the proposed solutions are efficient and practical, and outperform existing methods by large margins.

Index Terms—Query processing, spatial databases

1 INTRODUCTION

Consider a tourist who will have a free day to travel around Hong Kong. Without much knowledge about the city, she/he searches online maps to plan for a trip. Usually, she/he has a fixed starting point, e.g., her/his hotel, and certain objectives in mind, such as visiting a museum, dining at a certain restaurant, and enjoying a few drinks at a local pub. Meanwhile, some destinations may need to be visited in a certain order. For instance, the trip should have a pub after a restaurant. The ideal route should cover all the destinations, satisfy all order constraints, and minimize the total travel length. Searching for such a route is captured by the optimal route query [4], [10], [13], which usually has a vast search space, and, consequently, is too tedious to be done manually. Currently, major online map providers have already shown interest in tools that assist such trip planning tasks. For example, Google City Tours (citytours.googlelabs.com) provides suggested tours for a given starting address. However, these tours are predefined, and cannot be customized according to the user’s plans. Yahoo Travel (travel.yahoo.com) has a similar service that allows users to search and share trips, which, unfortunately, cannot answer optimal route queries either.

Fig. 1 illustrates an example optimal route query on a data set DS with six locations p1, p6. Each location is associated with one category C0, e.g., p1, p2 are museums; p3 and p4 are pubs; and p5 and p6 are restaurants. (If a location belongs to multiple categories, e.g., a restaurant and pub, we conceptually split it into multiple points with identical coordinates, each associated to a single category.) The query contains two parameters: a starting point q, and a directed acyclic graph GQ called the visit order graph. Each vertex in GQ corresponds to a category and each edge (C, C’) indicates that a point of category C must be visited before another of category C’. In our example, GQ signifies that a restaurant must be visited before a pub. We follow a common assumption that each category appears at most once in GQ [4], [10], [13]. In addition, to represent the fact that q must be the first point in the route, we create an artificial category Cq containing a single point q, and add an edge connecting Cq and every other vertex in GQ without an in-edge. The result of the query is the shortest route that visits all categories in GQ, while satisfying the visit order constraints. In our example, such a route is q → p1 → p5 → p3. In practice, the user may not have sufficient time to visit all the categories. In this situation, a reasonable compromise is to find a route that covers a subset of l categories from GQ, where l is a user-specified parameter. We call this variant the size-l optimal route query.

A Greedy algorithm [13] to answer the optimal route query first finds the nearest neighbor of q that is allowed to be visited right after q according to GQ. In the running example, Greedy chooses point p2 (note that p2 cannot be selected, since GQ requires that a pub is visited after a restaurant). Then, Greedy adds p2 to the current route, and continues to compute the nearest allowable point according to GQ to be added to the route, which is p5. After that, Greedy finds the nearest allowable point after p5, i.e., p3. Since all categories in GQ are visited, Greedy returns the route q → p2 → p5 → p3. Observe that this is longer than the optimal route q → p1 → p5 → p3. The reason is that although

• J. Li and N. Mamoulis are with the Department of Computer Science, University of Hong Kong, Pokfulam Road, Hong Kong 999077. E-mail: jji, nkos@cs.hku.hk.
• Y.D. Yang is with the Advanced Digital Sciences Center, 1 Fusionopolis Way, #08-10 Connexis North Tower, Singapore 138632. E-mail: yin.yang@adsc.com.sg.

Manuscript received 7 July 2012; revised 8 Dec. 2011; accepted 28 Dec. 2011; published online 13 Feb. 2012. Recommended for acceptance by X. Zhou.

For information on obtaining reprints of this article, please send e-mail to: tkde@computer.org, and reference IEEECS Log Number TKDE-2011-07-0392.
Digital Object Identifier no. 10.1109/TKDE.2012.36.
the quality of the results; these methods usually return suboptimal routes according to the experiments in [4]. Li et al. [10] study a variant of the optimal route query that specifies both a start point \(q_{\text{start}} \) and an end position \(q_{\text{end}} \) but no order constraint between the data categories. This is equivalent to a visit order graph \(G_Q \) that contains two artificial categories \(C_{\text{start}} = \{ q_{\text{start}} \} \) and \(C_{\text{end}} = \{ q_{\text{end}} \} \), and two edges \((C_{\text{start}}, C)\) and \((C, C_{\text{end}})\) for each category \(C \) in the data set. The solutions of [10] report approximate query results; on the other hand, this paper focuses on efficient, exact methods for the general optimal route problem.

Sharifzadeh et al. [13] propose R-LORD, the first exact solution for optimal route queries with a total order. In the example of Fig. 1, suppose that \(G_Q \) specifies total order \(q \to \) museum \(\to \) restaurant \(\to \) pub; then, R-LORD is directly applicable. Specifically, let \(r' \) be the optimal route; an important observation made in [13] is that any suffix of \(r' \) is also the shortest among all routes that 1) start at the first point of \(r \), and 2) visit the same categories as \(r \), in the same order. In our example, the best answer to the query is \(r' = q \to p_1 \to p_5 \to p_3 \). Its length-2 suffix \(p_5 \to p_3 \) is the shortest route that starts at \(p_5 \) and visits a restaurant followed by a pub. Similarly, its length-3 suffix \(p_1 \to p_5 \to p_3 \) is the shortest path that originates at \(p_1 \) and follows the category sequence museum \(\to \) restaurant \(\to \) pub. This fact enables dynamic programming, which gradually fills an optimal suffix table.

In particular, R-LORD first uses a greedy algorithm to compute a route that satisfies the query, as well as its length \(\theta \). Then, the method computes length-1 optimal suffixes, which are points from the last category in the visit order that are within \(\theta \)-distance to the query start position \(q \). In our example, R-LORD obtains pubs \(p_3 \) and \(p_4 \), and stores them in the optimal suffix table shown in Table 1. Next, R-LORD retrieves points from the second-to-last category that are no farther than \(\theta \) from \(q \), i.e., restaurants \(p_5 \) and \(p_6 \), and prepends them to the optimal length-1 suffixes to form optimal length-2 suffixes \(p_5 \to p_3 \) and \(p_6 \to p_4 \). Note that \(p_5 \to p_4 \) and \(p_6 \to p_3 \) are discarded, as they have the same starting points and category sequences as their shorter counterparts \(p_5 \to p_5 \) and \(p_6 \to p_6 \), respectively. In the third step, R-LORD retrieves museums \(p_1 \), \(p_2 \), combines them with the optimal length-2 suffixes, and obtains optimal length-3 suffixes \(p_1 \to p_5 \to p_3 \) and \(p_2 \to p_5 \to p_3 \). Finally, R-LORD connects them with \(q \), and selects the shortest one \(q \to p_1 \to p_5 \to p_3 \) as the answer to the query.

During the computation of the optimal suffix table, R-LORD uses a pruning technique to eliminate subroutes that cannot participate in the optimal solution. Fig. 2 illustrates this technique, which we call elliptic pruning. Suppose that at step \(i \), R-LORD has computed an optimal subroute \(r \) of...
length \(i\). Let \(p_i\) be the first point of \(r\), \(\text{length}(r)\) be the total length of \(r\), and \(\theta\) be the length of the greedy route. Then, at step \(i + 1\), R-LORD connects \(r\) only to points whose total distance to \(q\) and \(p_i\) is no larger than \(\theta - \text{length}(r)\). Thus, the range for points allowed to connect to \(r\) is an ellipse with foci \(q\) and \(p_i\) and major diameter \(\text{length}(r)\). For example, in Fig. 2a, point \(p_1\) is not connected to subroute \(r\), as the former falls outside the latter’s ellipse. This is true even when the combination of \(p_1\) and \(r\) leads to an optimal subroute of length \(i + 1\). Thus, elliptic pruning reduces the number of stored optimal sub-routes and, thus, improves both memory consumption and CPU time. Furthermore, to minimize I/O costs, R-LORD computes the minimum bounding rectangle (MBR) of all ellipses generated from length-\(i\) optimal sub-routes, as shown in Fig. 2b, and uses this MBR as a range query to retrieve points from the R-tree [9] that indexes the category to be examined during the \((i + 1)\)th step.

PLUB [11] decomposes a general optimal route query to multiple total-order queries and processes them individually, e.g., using R-LORD. For instance, the query in Fig. 1 is decomposed into three total-order queries: museum \(\rightarrow\) restaurant \(\rightarrow\) pub, restaurant \(\rightarrow\) museum \(\rightarrow\) pub, and restaurant \(\rightarrow\) pub \(\rightarrow\) museum. This incurs significant amounts of repeated computations for longer sequences. For example, assume that in the query of Fig. 1 there is an additional category (e.g., mall) that does not have any order constraints with other categories. The decomposition of this new query involves multiple total orders that share a common suffix, such as mall \(\rightarrow\) museum \(\rightarrow\) restaurant \(\rightarrow\) pub and museum \(\rightarrow\) mall \(\rightarrow\) restaurant \(\rightarrow\) pub. Consequently, the processing of both orders involves the computation of optimal subroutes that start at a restaurant and are followed by a pub. This problem is amplified, as the number of categories in \(G_Q\) increases, since the number of total orders that share a common suffix increases exponentially.

Finally, Chen et al. [6] study the \(k\) Best Connected Trajectories (\(k\)-BCT) query, which resembles the optimal route query in that a \(k\)-BCT query consists of a set of (ordered or unordered) spatial locations, and each of its results should cover all locations in the query set. However, unlike the optimal route query which constructs routes on the fly, \(k\)-BCT retrieves \(k\) existing trajectories from a database with the lowest aggregate distance to the query points. The focus of [6] is clearly different from our work, and its methods do not apply to the optimal route query.

2.2 Spatial Search with Categorical Information

Besides the optimal route query, categorical information has been used to identify locations with good surrounding facilities. Yiu et al. [15] study the spatial preference query, which contains a list of desired categories. Data points are then ranked by their total distances to nearest points of these categories and those with top-\(k\) best scores are returned to the user. Martinenghi and Tagliasacchi [12] introduce the proximity rank join operator, which searches for clusters of points that cover all categories specified by the user and are close to a given point and to each other.

Another class of related work concerns spatial keyword search in collections of documents, which are associated to spatial locations (e.g., derived from the content of the document [1]). The query contains both a spatial component (e.g., nearest neighbor search) and a set of keywords. A keyword set is similar to a category in that they are both nonspatial properties that can be used to select a set of points (i.e., document locations). However, the number of different keyword sets is significantly larger than the number of categories and, thus, the former require specialized data structures (e.g., inverted lists) and search techniques (e.g., inverted list intersection) to select relevant points. To accelerate spatial keyword search, a common approach is to combine a spatial index, e.g., R-tree with inverted lists or signature techniques, to form a composite index [8], [16], [7], [5]. The relevance of a document to a query is calculated by combining textual relevance with spatial distance; the top-\(k\) objects with the highest overall scores are returned to the user [7]. Besides simple similarity retrieval, the \(mCK\) query [17] identifies clusters of points with minimum diameters that match all query keywords. The top-\(k\) prestige query [3] retrieves points based on prestige scores, which originate from matching keywords and flows to nearby points. Finally, the continuous top-\(k\) spatial keyword query [14] returns a validity region to the user; as long as the query point stays in the validity region, the query results remain the same.

3 BACKWARD SEARCH SOLUTIONS

In this section, we present the first methodology for answering optimal route queries. Similar to R-LORD [13], the backward search methodology computes the optimal routes in reverse order of its points. Before explaining the methods that fit this framework in detail, we first present an important property of the general sub-route query, as follows:

Lemma 1 (Suffix optimality). Given a query \(\langle q, G_Q \rangle\) and its optimal solution \(r^*\), let \(r \subseteq r^*\) be any suffix of \(r^*\), \(p\) be the start point of \(r\), and \(V\) be the set of categories covered by \(r\). Meanwhile, let \(G \subseteq G_Q\) be the subgraph of \(G_Q\) that contains the set of categories \(V\) and all edges between these categories in \(G_Q\). Then, \(r\) is the optimal solution for query \(\langle p, G \rangle\).

Proof (By contradiction). Suppose that there is a better solution \(r'\) than \(r\) for the query \(\langle p, G \rangle\), i.e., \(\text{length}(r') < \text{length}(r)\). Since \(r\) and \(r'\) have the same starting point \(p\), we can replace the suffix \(r\) with \(r'\) in \(r^*\), and obtain a new route \(r''\) such that \(\text{length}(r'') = \text{length}(r^*) - \text{length}(r) + \text{length}(r') < \text{length}(r^*)\). Meanwhile, since \(r'\) is a valid solution to the query \(\langle p, G \rangle\), \(r''\) covers the same category set \(V\) as \(r\), and satisfies the visit orders in \(G \subseteq G_Q\). Because \(G\) contains all visit orders about \(V\), replacing...
TABLE 2
List of Common Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS, N</td>
<td>Dataset and its cardinality</td>
</tr>
<tr>
<td>q, G_Q</td>
<td>Query start point and visit order graph</td>
</tr>
<tr>
<td>M</td>
<td>Total number of categories in G_Q</td>
</tr>
<tr>
<td>$dist(p_1, p_2)$</td>
<td>Euclidean distance between points p_1 and p_2</td>
</tr>
<tr>
<td>$mindist(M_1, M_2)$</td>
<td>Minimum distance between MBIRs M_1, M_2</td>
</tr>
<tr>
<td>$length(r)$</td>
<td>Length of route r</td>
</tr>
<tr>
<td>$minden(K)$</td>
<td>Minimum length among the set K of routes</td>
</tr>
<tr>
<td>$p \rightarrow r$</td>
<td>A route that visits point p and follows route r</td>
</tr>
<tr>
<td>θ</td>
<td>Length of a known route that satisfies the query</td>
</tr>
<tr>
<td>CS</td>
<td>Set of points that may appear in the optimal route</td>
</tr>
<tr>
<td>$H_{p, \Pi}$</td>
<td>Set of points that start at point p and visits all categories in set Π</td>
</tr>
<tr>
<td>$\Pi_{p, \Pi'}$</td>
<td>Category of a point p and that of a set Π of points having the same category, respectively</td>
</tr>
<tr>
<td>$C_{\Pi, \Pi'}$</td>
<td>Category of a point p and that of a set Π of points having the same category, respectively</td>
</tr>
</tbody>
</table>

Consider again the example in Fig. 1, where the optimal solution for the query $<q, G_Q>$ is $r^* = q \rightarrow p_1 \rightarrow p_3 \rightarrow p_4$. The length-2 suffix of the optimal route is $r_2 = p_3 \rightarrow p_4$, which starts at point p_3 and covers two categories $V_2 = \{restaurant, pub\}$. Clearly, r is the shortest route that starts at p_3 and covers V_2, since p_3 is the nearest pub with respect to p_3. Likewise, the length-3 suffix $r_3 = p_1 \rightarrow p_3 \rightarrow p_4$ of r^* is the optimal route that 1) starts at p_1, 2) covers set $V_3 = \{restaurant, pub\}$, and 3) satisfies the constraint that a restaurant must be visited before a pub. In general, all suffixes of the query result are also optimal routes for their respective starting point and categories visited and the idea of backward search is to enumerate all possible such suffixes. The suffix-optimality result in [13] is a special case of Lemma 1, with the limitation that a total order exists for suffixes. The suffix-optimality result in [13] is a special case of backward search is to enumerate all possible such suffixes of the query solution. According to Lemma 1, these suffixes must be the optimal routes for their respective start point and the set of categories covered. Table 3 lists all routes contained in R_{m} in our running example. Specifically, R_1 consists of 4 single-point routes: museums p_1 and p_2, and pubs p_3 and p_4. Restaurants are not included in R_1, since they must be visited before a pub and, thus, cannot be valid length-1 suffixes of the query solution. Route sets R_1-R_m are computed through backward joins, to be explained soon. Continuing the example, R_2 contains all optimal suffixes that cover two categories. Again, a route covering museums, restaurant cannot be a suffix of the query result, since it would place a pub before a restaurant, violating G_Q. Similarly, R_3 contains all suffixes containing all three query categories. After obtaining R_m (i.e., R_3 in the example), SBS connects the query point q with the start point of each route in R_m, and selects the route with shortest total length (lines 8-9) as the query answer. Here, we use the notation $p \rightarrow r$ to denote a route that starts at p and follows the sub-route r, e.g., when $r = p_2 \rightarrow p_3, p_1 \rightarrow r = p_1 \rightarrow p_2 \rightarrow p_3$.

It remains to clarify the backward join module BSJoin, shown in Algorithm 2 (also used in our other methods

Algorithm 1. Simple backward search algorithm

```
$SBS(q, G_Q)$ // SBS stands for simple backward search

// Input: $q, G_Q$: query start point and visit order graph respectively

// Output: the optimal route that satisfies the query

1: Use a greedy algorithm to obtain a route $r_0$
2: Initialize threshold $\theta$ to $length(r_0)$
3: Retrieve the set $CS$ of points within $\theta$ distance to $q$, whose categories appear in $G_Q$
4: Initialize route set $R_1$ to empty
5: for each point $p$ in $CS$ that can be the last point according to $G_Q$ do
6:   Add $(p)$ to $R_1$
7: for $i = 1$ to $m - 1$ do call $R_{i+1} = BSJoin(q, G_Q, \theta, R_i, CS)$
8: Select from $R_m$ sub-route $r^*$ that minimizes $length(q \rightarrow r^*)$
9: Return $q \rightarrow r^*$ as the query result
```

After loading all candidate points, SBS continues to compute the optimal route sets R_1-R_m (lines 4-7). In particular, route set R_i ($1 \leq i \leq m$) contains all possible length-i suffixes of the query solution. According to Lemma 1, these suffixes must be the optimal routes for their respective start point and the set of categories covered. Table 3 lists all routes contained in R_1-R_m in our running example. Specifically, R_1 consists of 4 single-point routes: museums p_1 and p_2, and pubs p_3 and p_4. Restaurants are not included in R_1, since they must be visited before a pub and, thus, cannot be valid length-1 suffixes of the query solution. Route sets R_1-R_m are computed through backward joins, to be explained soon. Continuing the example, R_2 contains all optimal suffixes that cover two categories. Again, a route covering {museum, restaurant} cannot be a suffix of the query result, since it would place a pub before a restaurant, violating G_Q. Similarly, R_3 contains all suffixes containing all three query categories. After obtaining R_m (i.e., R_3 in the example), SBS connects the query point q with the start point of each route in R_m, and selects the route with shortest total length (lines 8-9) as the query answer. Here, we use the notation $p \rightarrow r$ to denote a route that starts at p and follows the sub-route r, e.g., when $r = p_2 \rightarrow p_3, p_1 \rightarrow r = p_1 \rightarrow p_2 \rightarrow p_3$.
described later). Besides the query parameters, the main inputs are 1) a set of points \(P \), which is the entire candidate set \(CS \) in SBS and 2) a set of routes \(R \) (\(R_i \) in SBS), each of which is optimal for the combination of its start point and categories covered. The join results \((R_{i+1} \) in SBS) consist of routes of the form \(p \rightarrow r \), i.e., start point \(p \) followed by subroute \(r \), where \(p \in P \) and \(r \in R \). Note that in SBS, the computation of \(R_{i+1} \) (\(1 \leq i < m \)) only involves \(R_i \) and \(CS \), meaning that after obtaining \(R_{i+1}, R_{i+1} \) can be safely discarded to conserve memory.

Algorithm 2. Algorithm for backward join

\[
BSJoin(q, G_Q, \theta, R, P)
\]

// Input: \(q, G_Q \): query start point and visit order graph respectively
// \(\theta \): length of a known route that satisfies the query
// \(R, P \): a set of routes and points respectively
// Output: backward join results of \(P \) and \(R \\
1: Initialize route set \(R' \) to empty
2: Partition \(R \) based on the set of categories they cover
3: for each point \(p \in P \) do
4: for each partition \(R_V \) of \(R \) covering the same category set \(V \) do
5: if connecting \(p \) with a route in \(R_V \) satisfies \(G_Q \) then
6: Find the route \(r \in R_V \) that minimizes the length of \(p \rightarrow r \) among all routes in \(R_V \)
7: if \(\text{dist}(q, p) + \text{length}(p \rightarrow r) < \theta \) then add \(p \rightarrow r \) to \(R' \)
8: Return \(R' \)

\(BSJoin \) selects join results based on three criteria. The first concerns the visit order constraints \(G_Q \) (line 5). Specifically, the route \(p \rightarrow r \) itself must satisfy \(G_Q \) and not contain any duplicate categories. Meanwhile, since \(p \rightarrow r \) is expected to be the suffix of a solution to the query, \(G_Q \) must allow all categories not covered by \(p \rightarrow r \) to be visited before \(p \rightarrow r \). In the example of Fig. 1, \(BSJoin \) eliminates all join outputs that either has a pub before a restaurant (which directly violate \(G_Q \), and those that contains a restaurant, but not a pub (which cannot be suffixes of legal routes). Second, according to Lemma 2, \(p \rightarrow r \) should be the optimal among all routes that start at \(p \) and cover the same categories as \(p \rightarrow r \) (line 6). Finally, \(p \rightarrow r \) must survive elliptic pruning [13] (line 7), described in Section 2.1. Unlike R-LORD [13] which uses the MBR of the ellipses to prune, \(BSJoin \) directly applies elliptic pruning, which is more efficient according to our experiments. The reason is that the MBR usually covers a significantly larger area than the ellipses (e.g., in Fig. 2b), leading to poor pruning effectiveness; moreover, computing the MBR itself consumes considerable CPU time, sometimes defeating the purpose of pruning. The complexity of SBS is given by the following lemma.

Lemma 2. The SBS algorithm finds the optimal solution of the query using \(O(N \cdot 2^n \cdot m) \) memory, and \(O(N^2 \cdot 2^n) \) time.

Proof. During the \(i \)th backward join (line 7 of Algorithm 2), SBS maintains in memory the set \(R_i \) of optimal subroutes of length \(i \). Each subroute has length \(i \), and there are at most \(N \cdot \binom{n}{i} \) routes in \(R_i \), where \(N \) is total number of points in the data set and \(\binom{n}{i} \) is the number of category combinations of length \(i \), from a total of \(m \) categories. Because SBS also needs to compute \(R_{i+1} \), the total memory consumption at this step is \(O(N \cdot \binom{n}{i} \cdot i + N \cdot \binom{m}{i+1} \cdot (i+1)) \). At the \((i+1) \)th backward join, SBS releases the memory occupied by \(R_i \), since it no longer affects subsequent optimal subroute computations. Therefore, the peak memory usage of SBS is \(O(\max_{i=1}^m(N \cdot \binom{n}{i} \cdot i + N \cdot \binom{m}{i+1} \cdot (i+1))) = O(2^m \cdot N \cdot m) \). Backward joins dominate the runtime cost. In particular, at step \(i \), \(1 \leq i < m \), SBS joins \(O(N \cdot \binom{n}{i}) \) subroutes in \(R_i \) with \(O(N) \) points in the candidate set \(CS \). The time taken at this step is \(O(N^2 \cdot \binom{n}{i}) \). Summing up all \(m \) steps, we obtain the time complexity of SBS: \(O(\sum_{i=1}^m N^2 \cdot \binom{n}{i}) = O(N^2 \cdot 2^n) \) \(\square \)

SBS is easy to implement and it achieves the same worst case time complexity as more complex algorithms described later. The main drawback of SBS is that its effectiveness relies heavily on the bound \(\theta \) provided by the greedy algorithm. When \(\theta \) is loose (i.e., it is much longer than the optimal length), SBS retrieves a large number of candidate points, and joins them all with the current subroute set at every step. Moreover, the backward join in SBS is performed in a nested-loop fashion, which applies elliptic pruning on individual results. Consequently, SBS can be rather inefficient for large data sets with a skewed distribution.

3.2 Batch Backward Search (BBS)

The batch backward search method, shown in Algorithm 3, improves SBS by employing batch processing in the backward join operations. Specifically, both the candidate set \(CS \) and the route set \(R_i \) (\(1 \leq i \leq m \)) are partitioned into clusters before participating in a backward join (lines 2 and 4). The partitioning of \(CS \) first groups points by their category, and then for each group, the points are further partitioned into clusters based on their spatial proximity. The partitioning of route set \(R_i \) follows a similar strategy, by first grouping routes based on the categories they cover, and then clustering each group according to the locations of their start points. The clustering module in BBS must be highly efficient, since it is called during query time. In our implementations we tested two clustering algorithms, both of which employ the Hilbert curve [2]. The first method, which we call average gap (AG), sorts all points by their Hilbert values; then, for each pair of adjacent points, AG computes their gap (i.e., difference) in Hilbert values, and obtains the average value \(g \) of such gaps. After that, AG scans the sorted points again. When two adjacent points \(p \) and \(p' \) have a gap smaller than \(g \), AG places them in the same cluster; otherwise, AG creates a new cluster for \(p' \), and continues scanning. The second algorithm, called maximum area (MA), also sorts points by Hilbert values. Then, starting from the first point, MA keeps adding points to the current cluster \(c_i \) in increasing order of their Hilbert values, until the MBR of \(c_i \) has an area exceeding a predefined threshold, at which point MA starts a new cluster. In our implementation of MA, the above threshold is set to a percentage \(ma \% \) of the circular area centered at the query start point \(q \), with radius \(\theta \), which is the upper length bound of the optimal route.
Algorithm 3. Batch backward search algorithm
BBS(q, GQ) // BBS stands for batch backward search
// Input and Output: same as algorithm SBS
1: Same as lines 1-6 in algorithm SBS
2: Partition points in CS into clusters, such that points in the same cluster belong to the same category, and are close to each other
3: for i = 1 to m do
4: Partition the sub-routes in Ri into clusters, such that sub-routes in the same cluster cover the same set of categories, and that their start points are close to each other
5: Initialize set Ri+1 to empty
6: for each cluster R ⊂ Ri, do
7: for each cluster P ⊂ CS that satisfies GQ do
8: if mindist(q, MBRp) + mindist(MBRp, MBRr) + minlen(R) < θ then
9: Temporarily delete all routes r ∈ R satisfying mindist(q, MBRp) + mindist(MBRp, r) + length(r) ≥ θ.
10: Temporarily delete all points p ∈ P satisfying dist(q, P) + mindist(P, MBRr) + minlen(R) ≥ θ
11: Call R’ = BSJoin(q, GQ, θ, R, P)
12: Restore R and P by adding back all deleted elements
13: Merge R’ into Ri+1
14: Same as lines 8-9 in algorithm SBS

After the partitioning of CS and Ri, BBS proceeds to join them in order to obtain Ri+1. This is performed by joining on two levels: the cluster level and the individual point/route level. In the cluster level join, BBS tries to eliminate two participating clusters using a block elliptic pruning test, which is stated in Lemma 3 below.

Lemma 3 (Block elliptic pruning). Given query start point q, a set of points P, and a set R of subroutes, let MBRp and MBRr be the MBR of all points in P and all start points in R, respectively, and θ be a known upper bound for the length of the optimal solution to the query. Let minlen(R) be the length of the shortest route in R, and mindist() be the function that returns the minimum distance between objects and MBRs. If

\[
mindist(q, MBRp) + mindist(MBRp, MBRr) + \text{minlen}(R) \geq \theta,
\]

then, connecting any point in P with any route in R cannot possibly lead to a subroute of the optimal solution to the query.

Proof. For all p ∈ P and r ∈ R with start point p, dist(q, p) + dist(p, r) + length(r) ≥ mindist(q, MBRp) + mindist(MBRp, MBRr) + minlen(R) ≥ θ.

Following Lemma 2, (p, r) cannot be a subroute of the optimal solution.

Fig. 3 shows an example of block elliptic pruning, which involves a point cluster P and a route cluster R. Note that all points in P belong to the same category (i.e., Category 1), and all routes in R cover the same set of categories (Categories 2-4); meanwhile, the start points of R may belong to different categories. Clearly, the sum of 1) mindist(q, MBRp), i.e., the minimum distance between q to any point in P, 2) mindist(MBRp, MBRr), which is the minimum distance between any point in P and the start point of any route in R, and 3) minlen(R), the smallest route length in R, gives a lower bound of any path that starts at q, stops at a point in P, and finally reaches and subsequently follows a route in R. If this sum exceeds the upper bound θ obtained through a greedy algorithm, BBS prunes the combination of P and R, and saves the computations for joining them.

After two clusters pass block elliptic pruning, BBS proceeds to join their content on the point/route level. In particular, given a point cluster P ∈ CS and a route cluster R ∈ R, BBS first removes points and routes that cannot form valid join results, based on similar rules as block elliptic pruning (lines 9-10), and then joins the remaining objects using the same BSJoin algorithm as in SBS (line 11). For instance, a point p is removed, if the sum of the minimum route length in R, p’s distance to the query point q, and its minimum distance to MBRr reaches or exceeds the threshold θ. Such element eliminations further reduce the cost of backward joins. After obtaining the join results (let R’ be the result set R+1 as follows: for each route r in R’, BBS checks whether there exists a shorter route r’ in R+1 that starts at the same point and covers the same categories. If so, r is discarded; otherwise, r is inserted into R+1, possibly replacing an existing route in the latter with a longer length. Finally, BBS restores clusters R and P, by adding back all deleted points and routes, respectively.

The space and time complexity of BBS is the same as that of SBS; the proof is also similar to that of SBS, and is omitted for brevity. As our experiments demonstrate, BBS significantly improves the efficiency of SBS. In fact, when the greedy algorithm obtains a close approximation of the optimal route length, BBS can be highly efficient, sometimes even outperforming the more sophisticated techniques explained later. BBS, however, shares the same drawback of SBS: its efficiency depends largely upon the quality of the greedy bound θ. The forward search strategy, described next, removes this limitation, and achieves more stable performance.

4 Forward Search Solutions

The forward search approach traverses the search space in a depth-first manner, and incrementally improves the bound θ for optimal route length. As an additional benefit, forward search methods report results progressively, i.e., they first quickly produce one solution to the query, and then incrementally update it, until reaching the optimal one or being terminated by the user. Section 4.1 describes a simple solution SFS based on this idea. Section 4.2 presents an
improved BFS algorithm that integrates elements from the backward search methods to achieve more effective pruning.

4.1 Simple Forward Search (SFS)

Recall from Section 1 that algorithm Greedy computes a route by repeatedly connecting the current location (starting from the query point \(q \)) to the nearest point belonging to an unvisited category permitted by \(G_Q \). The simple forward search method resembles Greedy in that it also extends the current path by adding the nearest point from an unvisited category. A major difference between the two is that SFS backtracks after it obtains a complete route. In the running example of Fig. 1, after SFS reaches the same route \(q \rightarrow p_2 \rightarrow p_5 \rightarrow p_3 \) as Greedy, the former backtracks to point \(p_5 \), connects it to its next nearest pub \(p_4 \), and checks whether the new route \(q \rightarrow p_2 \rightarrow p_5 \rightarrow p_4 \) is shorter than the current best one \(q \rightarrow p_2 \rightarrow p_5 \rightarrow p_3 \). After that, SFS backtracks to \(p_5 \) again. Since it has tested all pubs, and all other categories are already covered by the current path \(q \rightarrow p_2 \rightarrow p_5 \rightarrow p_3 \), SFS backtracks once more to \(p_2 \). It then connects \(p_2 \) to its next nearest permissible neighbor \(p_6 \) (note that pubs \(p_5 \) and \(p_4 \) cannot be connected due to order constraints), and continues with the prefix \(q \rightarrow p_2 \rightarrow p_6 \). The process terminates when all feasible routes are examined, and the shortest route is reported as the query result.

A naïve implementation of forward search clearly takes time exponential to the number of points in the data set. SFS (shown in Algorithm 4) avoids this by utilizing the suffix optimality property stated in Lemma 1, and incrementally building the optimal suffix table (denoted by \(\Omega \)), as in the backward search methods. SFS differs from the backward search solutions in that it fills \(\Omega \) in a different order. Specifically, in SFS all cells of \(\Omega \) are initialized to a special token Unknown (line 2 in function \(\text{InitSFS} \)), which indicates that the corresponding optimal suffix has not been computed yet. Then, whenever SFS backtracks from a point \(p \), the algorithm guarantees that it has obtained the optimal suffix that starts at \(p \), and covers the set of categories \(V \) that are not visited by the current path from the query point \(q \) to \(p \). Thus, SFS stores this optimal suffix in the corresponding cell in \(\Omega \) (denoted by \(\Omega_{p,V} \)), replacing the Unknown token (line 9 in function SFS). If later SFS needs to compute the same suffix, i.e., when it traverses to \(p \) again with the same set of visited categories, it directly appends \(\Omega_{p,V} \) to the current path and backtracks, eliminating repeated computations (line 3 in function SFS).

Algorithm 4. Simple forward search algorithm

\(\text{InitSFS}(q,G_Q) \)

// Input and Output: same as algorithm SBS
1: Same as lines 1-4 in algorithm SBS
2: Initialize all elements of \(\Omega \) to Unknown
3: Call SFS(\(q,G_Q,q_0,0,\theta \)), and return its result as the query answer

\(\text{SFS}(q,G,p,l,\theta) \) // SFS stands for simple forward search

// Input: \(q \): query start point
// \(G \): sub-graph of \(G_Q \) containing only unvisited categories

Fig. 4. Pruning in SFS.

\[\begin{align*}
\text{shorter alternative} \\
\text{path to } p_2 \\
\text{current path to } p_3 \\
\text{dist}(q,p) \rightarrow d_{max} \rightarrow p_4 \\
&& p_5
\end{align*} \]

1. In our presentation, the set \(V \) includes the category \(C_0 \) of the last point \(p \) of the current prefix path.
categories (i.e., categories 2-4). Note that there is no guarantee on prefix optimality; hence, there can be a shorter path connecting \(q \) and \(p_1 \) that covers exactly the same categories.

A simple idea for pruning is to backtrack whenever the length of the current prefix reaches or exceeds the upper bound \(\theta \), since subsequent searches based on this prefix cannot possibly lead to the optimal solution to the query. However, with such early backtracking, SFS no longer obtains the optimal suffixes, and, consequently, may perform repeated computations in later steps. In the example of Fig. 4, suppose that SFS extends the prefix from \(p_1 \) to \(p_3 \), and then to \(p_4 \), and at this point, the length of the current path exceeds \(\theta \). If SFS backtracks, it cannot obtain the optimal suffix starting at \(p_4 \) and visiting categories 3-4. Furthermore, when the method later backtracks to \(p_4 \), it has not computed the optimal suffix starting at \(p_3 \) and covering categories 2-4 either. The problem propagates to \(p_1 \) as well, and to all points preceding \(p_1 \). Assume that SFS reaches \(p_1 \) with a shorter prefix covering the same categories, it cannot reuse the computations performed before (i.e., extending \(p_1 \) to \(p_3 \) and \(p_4 \)), and instead must perform these computations from scratch. In general, all pruning strategies based on the prefix length suffer from the same problem. Instead, SFS uses a weaker pruning method, as follows:

Lemma 4 (SFS pruning). Given a query \((q, G_Q) \), a data point \(p \), and a category \(C \in G_Q \) such that \(p \notin C \), let \(p_C \) be the nearest point of \(p \) in \(C \), and \(\theta \) be an upper bound for the length of the optimal solution to the query. If \(\text{dist}(q, p) + \text{dist}(p, p_C) \geq \theta \), then, any route that starts at \(p \) and covers \(C \) cannot possibly be a subroute of the optimal solution.

Proof. Let \(r \) be a route that starts at \(p \) and covers \(C \). The length of \(r \) is at least \(\text{dist}(p, p_C) \), due to triangular inequality and the fact that \(p_C \) is the nearest neighbor of \(p \) in \(C \). Similarly, the length of the route that connects \(q \) to \(p \) is at least \(\text{dist}(q, p) \). Therefore, any route that starts at \(q \) and has \(r \) as a subroute must have length at least \(\text{dist}(q, p) + \text{dist}(p, p_C) > \theta \), which exceeds the upper bound \(\theta \) for the optimal solution. Hence, \(r \) cannot be a subroute of the optimal solution.

In Fig. 4, SFS compares \(\theta \) with the sum of the distance between \(q \) and \(p_1 \) and that between \(p_1 \) and the farthest point \(p_4 \) from an unvisited category. If the latter reaches or exceeds \(\theta \), SFS safely backtracks, and marks the cell corresponding to the optimal suffix starting at \(p_1 \) with a special token Invalid (line 6 in function SFS). This pruning technique does not involve prefix length, so it avoids the repeated-work problem described above. SFS has the same worst case space and time complexity as the backward search methods, as shown below.

Lemma 5. SFS finds the optimal solution of the query using \(O(N \cdot 2^m \cdot m) \) memory, and \(O(N^2 \cdot 2^m \cdot m) \) time.

Proof. In the worst case, SFS stores all possible optimal subroutes in \(\Omega \). Similar to the proof of Lemma 2, the number of unique optimal length-\(i \) subroutes is \(N(m) \). In the worst case, SFS will occupy \(O(N \cdot (m) \cdot i) \) memory. Summing up sub-routes of all different lengths, the peak memory usage of SFS is \(O(\sum_{i=1}^{m} N \cdot (m) \cdot i) = O(2^m \cdot N \cdot m) \). The analysis for time complexity is more tricky, as SFS is a recursive procedure. To avoid double counting, for each invocation of function SFS (Algorithm 4), we count only the time for performing simple operations, and exclude the time spent for recursively calling itself. The dominant cost of each call to SFS is the loop that enumerates all possible points to be appended to the current route starting from \(q \), bounded by \(O(N) \). Next, we derive the number of times such a loop is performed. For each combination of a start point \(q \) and category set \(V \), SFS performs the expensive loop only once, because the next call with the same parameters simply returns the route stored in \(\Omega_{p,V} \). Since the number of start points is bounded by \(O(N) \) and the number of unique category sets is \(O(2^m) \), the total time spent by all invocations of SFS is \(O(N \cdot N \cdot 2^m) \).}

Compared with backward search methods, SFS gradually tightens the upper length bound \(\theta \) and shrinks the candidate set \(CS \) accordingly. Therefore, when the initial value of \(\theta \) (as well as the initial size of \(CS \)) is large, SFS can be significantly more efficient than SBS and BBS, due to the elimination of a large portion of candidate points early. On the other hand, SFS is rather weak in partial route pruning and it has to examine each partial route individually. Batch forward search (BFS), presented next, addresses these issues by integrating elements of backward search.

4.2 Batch Forward Search

BFS follows the same depth-first search paradigm as SFS. However, instead of enumerating individual routes, BFS searches for sequences of clusters, which we call cluster paths. Specifically, in a preprocessing step, BFS partitions the candidate set into clusters as in BBS, i.e., the points in each cluster belong to the same category, and are close to each other in space. Fig. 5 illustrates BFS on our running example, which involves three clusters \(p_1-p_3 \), \(p_4-p_5 \), and \(p_6-p_7 \), respectively. In general, a category may have multiple clusters. A cluster path is a sequence of clusters, e.g., \(cp = q \rightarrow P_1 \rightarrow P_3 \rightarrow P_2 \). Since each cluster is associated with a single category, we can check whether a cluster path satisfies the visit order graph \(G_Q \) similarly to routes. For instance, \(q \rightarrow P_1 \rightarrow P_2 \rightarrow P_3 \) violates \(G_Q \) since it contains a pub cluster before a restaurant cluster.

Given a cluster path \(cp \), we can form a route by taking a point from each cluster, and connect them according to the order of their corresponding clusters in \(cp \). We call such a route an instance of \(cp \). In our example, route \(q \rightarrow p_1 \rightarrow p_5 \rightarrow p_3 \) is an instance of cluster path \(cp_1 \). Clearly, a cluster path satisfies \(G_Q \), if and only if all its instances satisfy \(G_Q \). The main idea of BFS is to enumerate all cluster paths that
cover all query categories, while satisfying G_Q; for each such cluster path cp, BFS applies backward search to select its shortest instance, and the best one among all these instances is returned as the query result. Continuing the example, BFS computes the shortest instance of cp_1 by backward joining (described in Section 3.1) P_2 with P_3, and then the results with P_1, and finally with $\{q\}$. This resulting instance, i.e., $q \rightarrow P_1 \rightarrow P_3 \rightarrow P_3$, is compared with the best instance of other cluster paths, e.g., $q \rightarrow P_1 \rightarrow P_2$. Since it is the shortest among all such instances, BFS returns it as the query answer.

Akin to SFS, BFS eliminates repeated computations by materializing optimal suffixes on the cluster path level, into an optimal cluster path suffix table Ω. In particular, each row in Ω corresponds to a cluster P, and every column a category set V. The cell $\Omega_{P;V}$ contains the set of routes, such that for each point $p \in P$, $\Omega_{P;V}$ includes the shortest route that starts at p, and covers all categories in V. For instance, in our running example, $\Omega_{P_1;\{restaurant, pub\}}$ consists of two shortest routes $p_5 \rightarrow p_3$ and $p_6 \rightarrow p_4$ that start at p_5, $p_6 \in P_3$ respectively, and visit a restaurant and a pub. BFS gradually fills Ω as it performs the search; when the method needs the same optimal suffix information again later, it directly retrieves it from Ω. For instance, imagine that there is a fourth category “mall” in our example without any order constraint, and a cluster P_4 of such points. Suppose that BFS has traversed cluster path $q \rightarrow P_1 \rightarrow P_1 \rightarrow P_3 \rightarrow P_3$, and materialized $\Omega_{P_4;\{restaurant, pub\}}$. Later, when BFS traverses to another prefix cluster path $q \rightarrow P_1 \rightarrow P_1 \rightarrow P_3$, instead of searching for a pub cluster again, BFS directly backward-joins $\Omega_{P_4;\{restaurant, pub\}}$ with P_1, then the results with P_1, and finally with q, obtaining the shortest instance of any cluster path with prefix $q \rightarrow P_1 \rightarrow P_1 \rightarrow P_3$.

Algorithm 5 shows the pseudocode of BFS, which closely resembles that of SFS (Algorithm 4), with cluster paths replacing concrete routes. Specifically, the recursive function BFS takes as input a current prefix cluster path with end cluster P, and a subgraph $G \rightarrow G_Q$ that involves a category set V. The function computes and materializes $\Omega_{P;V}$. To do that, each invocation of BFS appends a cluster to the current prefix cluster path, and recursively calls itself with the longer prefix and one less category to visit (lines 7-14). The order of new clusters to be added to the current prefix path is based on their MBRs’ minimum distances to the MBR of the current last cluster P (line 7). After searching with such a new cluster P', BFS backtracks, and continues to test other new clusters. The optimal suffixes starting from a point in P' are combined with P through a backward join (line 11), whose results are used to update the optimal suffix set $\Omega_{P;V}$. In our running example, after testing cluster path $q \rightarrow P_1 \rightarrow P_3 \rightarrow P_3$, BFS backtracks to P_3, backward joins P_3 with P_3, and uses the result to update $\Omega_{P_3;\{restaurant, pub\}}$, i.e., the set of optimal suffixes starting at a point in P_3, and covering a restaurant and a pub. At this point, since P_3 is the only permissible cluster to be added after P_3, BFS finally materializes $\Omega_{P_3;\{restaurant, pub\}}$ backtracks again to P_1, and backward joins $\Omega_{P_3;\{restaurant, pub\}}$ with P_1. The results contribute to $\Omega_{P_1;\{museum, restaurant, pub\}}$. After that, as P_3 is also the only permissible cluster to append to P_1, BFS backtracks for a third time to q, and continues to test the next cluster (i.e., P_2) after q, starting a new branch for searching that eventually leads to $\Omega_{P_2;\{museum, restaurant, pub\}}$.

Finally, the query result is computed based on $\Omega_{P_3;\{museum, restaurant, pub\}}$ and $\Omega_{P_2;\{museum, restaurant, pub\}}$.

Algorithm 5. Batch forward search algorithm

```plaintext
InitBFS(q, G_Q) // Input and Output: same as algorithm SBS
1: Same as lines 1-4 in algorithm SBS
2: Initialize all elements of $\Omega$ to Unknown
3: Partition points in $CS$ into clusters, such that points in the same cluster belong to the same category, and are close to each other
4: Call BFS(q, G_Q, $\{q\}$, $\{q\}$, $\theta$), and return the only route in its result set
BFS(q, G, $P$, $R$, $\theta$) // BFS stands for Batch forward search
// Input: $q$, $G$, $\theta$: same as in algorithm SFS
// $P$: tail cluster of the current cluster-route
// $R$: set of shortest routes from $q$ to each point in $P$,
// only includes routes with length shorter than $\theta$
// Output: the set of all optimal routes that starts at a point
// in $P$, and covers all categories in $G$
1: Let $V$ be the set of categories in $G$, category $C_P$ be the category of all points in $P$, and set $V' = V \setminus \{C_P\}$
2: Construct new sub-graph $G'$ by removing $C_P$ and all related edges from $G$
3: if $\Omega_{P,V} \neq Unknown$ then return $\Omega_{P,V}$
4: if $V$ contains a single category $C_P$ then return a set of routes, each containing a single point in $P$
5: Compute the minimum distance from $P$ to its nearest cluster of each category $C \in V$, and set $d_{max}$ to the maximum value of these distances
6: if $mindist(q, MBR_P) + d_{max} \geq \theta$ then set $\Omega_{P,V}$ to Invalid, and return Invalid
7: for each cluster $P' \in CS$ in increasing order of $mindist(MBR_P, MBR_{P'})$
8: if adding $P'$ to the current cluster route violates $G$ then Continue
9: Call $R' = FSJoin(q, G, R, P', \theta)$
10: Recursively call $\Omega_{P',V'} = BFS(q, G', P', R', \theta)$
11: Call $BSJoin(q, G, P, V', P)$ and merge results to $\Omega_{P,V}$
12: if $R \neq \emptyset$ then
13: Compute routes $r_1 \in R, r_2 \in \Omega_{P,V}$ such that the end point of $r_1$ is the start point of $r_2$, and length($r_1 \in R$) + length($r_2$) is minimized
14: if length($r_1$) + length($r_2$) < $\theta$ then Update $\theta$ and $CS$
BFS integrates pruning strategies from both backward and forward search methods; the backward join steps apply elliptic pruning and the extension of the prefix cluster paths uses a variant of SFS pruning, based on the following lemma.

**Lemma 6 (BFS pruning).** Given a query (q, G_Q), a point set P, and a category C \in G_Q such that P \n C, let P_C the nearest point cluster of P in C, and $\theta$ be a known upper bound for the length of the optimal solution to the query. If mindist(q, P + mindist(P, P_C)) \geq $\theta$, then, any route that starts at a point p \in P and covers C cannot possibly be a subroute of the optimal solution to the query.
Proof. Let \( p_C \) be any point in \( P_C \). Then, \( \text{dist}(q,p) + \text{dist}(p,p_C) \geq \text{mindist}(q,P) + \text{mindist}(P,p_C) \geq \theta \). Following Lemma 4, any route that starts at \( p \) and covers \( C \) cannot be a subroute of the optimal solution. \( \square \)

BFS pruning differs from SFS pruning in that the former applies to the cluster level, rather than individual point/route level. The usage of BFS pruning is also similar to that of SFS pruning; i.e., BFS finds the nearest cluster \( C \) of the furthest uncovered category, and tests whether the sum of distances from the current cluster \( P \) to the query point \( q \) and \( C \) (lines 5-6).

Finally, we clarify how BFS updates the upper bound \( \theta \). Recall that SFS adds the length \( l \) of the current prefix and the length of the optimal suffix, and compares the result with the current \( \theta \). In BFS, the current prefix is a cluster path and the algorithm computes the length of its shortest instance through forward joins (line 9), and uses it in place of \( l \) (lines 13-14). Algorithm 6 illustrates the forward join algorithm (FSJoin), which resembles backward join (Algorithm 2), with two important differences. First, FSJoin always adds a point to the end of a route, rather than the beginning as in BSJoin. Second and more importantly, the elliptic pruning used in BSJoin does not apply to FSJoin. Instead, the only pruning condition is that the resulting routes must have length shorter than the current threshold \( \theta \). This test is sufficient given the fact that the sole purpose of forward join is to improve the bound \( \theta \), and a prefix with length reaching or exceeding \( \theta \) cannot possibly lead to a route with length shorter than \( \theta \).

**Algorithm 6.** Algorithm for forward search join 
FSJoin\((q,G,R,P,\theta)\)

// Input: \( q, G \): same as in algorithm BFS
// \( R, P \): a set of routes and points respectively
// \( \theta \): length of a known route the satisfies the query
// Output: forward-join results of \( R \) and \( P \)

1: Initialize route set \( R' \) to empty
2: Partition \( R \) based on the set of categories they cover
3: for each point \( p \in P \) do
4: for each partition \( R_V \) of \( R' \) covering the same category set \( V \) do
5: Find the route \( r_V \in R_V \) that minimizes the length of \( r_V \rightarrow p \) among all routes in \( R_V \)
6: if \( \text{length}(r_V \rightarrow p) < \theta \) then add \( r_V \rightarrow p \) to \( R' \)

The space and time complexity of BFS is the same as the other proposed methods, since the former basically integrates the general forward search framework with the backward join module. The proof follows directly from the proofs of SBS and SFS, and is omitted for brevity. BFS combines the effective pruning of backward search and incremental bound tightening of forward methods, and, thus, enjoys the merits of both frameworks, while avoiding their drawbacks.

### 5 Size-\( l \) Optimal Route Processing

This section studies the size-\( l \) optimal route query. The objective is to retrieve shortest routes that cover an arbitrary subset of \( l \) categories from the given category set, where \( l \leq m \) is a query parameter. All proposed methods SBS, BBS, SFS, and BFS can be easily adapted to answer size-\( l \) optimal route queries. In particular, SBS and BBS are modified in two aspects. First, since the optimal route now has a length of \( l \), the optimal suffix table now contains suffixes of length up to \( l \), rather than \( m \) as in the original algorithms. Second, pruning of suffixes using partial order constraints becomes more complex, as not all categories are covered by the resulting route.

Table 4 shows the optimal suffix table for a size-2 optimal route query using the data set and query graph of Fig. 1. Comparing Tables 4 with 3, the former includes only suffixes of lengths 1 and 2. Meanwhile, Table 4 contains suffixes covering category sets \{restaurant\} and \{museum, restaurant\} respectively. Such subroutes are pruned in SBS and BBS for the original optimal route query, since they can only lead to complete routes (i.e., those covering all three categories) that visit a pub before a restaurant, violating \( G_Q \). On the other hand, they are valid suffixes for size-2 routes that do not visit a pub at all. In general, pruning of suffixes based on \( G_Q \) must consider that the resulting route may omit an arbitrary combination of \( m - l \) categories. Enumerating all such combinations may consume excessive CPU time, and, consequently, defeat the purpose of pruning. Hence, our implementation of SBS and BBS only eliminate suffixes that directly violate \( G_Q \), e.g., those that contain a pub before a restaurant in our running example.

The forward search methods are modified in a similar way to answer size-\( l \) optimal route queries. Specifically, both SFS and BFS now backtrack when the current path (cluster path in BFS) reaches length \( l \); additionally, both methods only detect direct violations of partial order constraints and backtrack accordingly. Finally, the worst case complexity analyses of all methods are almost the same as for the original query, except that the length of an optimal suffix is now bounded by \( l \) rather than \( m \). Thus, the space complexity of all four methods decreases to \( O(N \cdot 2^m \cdot l) \), whereas their time complexity remains the same. In practice, however, a smaller value of \( l \) usually reduces computational costs considerably, as we demonstrate experimentally.
6 Experimental Evaluation

We implemented all four algorithms SBS, BBS, SFS, and BFS in C++ and ran our experiments on an Intel Xeon X5400 3.16 GHz CPU with 32 GBytes of RAM. In each experiment, we issue 1,000 queries, and report their average response time. We do not report I/O cost separately, because for all methods in all settings, the I/O time is no more than a few milliseconds; i.e., at least an order of magnitude lower than the total response time. All queries are generated randomly, with their start points uniformly distributed in the entire space.

Table 5 summarizes the parameters under investigation, with their default values in bold. Specifically, \( m \) is the total number of categories to be visited. The visit order graph \( G_Q \) is another parameter. Since the properties of \( G_Q \) are rather difficult to quantify, we consider three specific types of visit order graphs: one without any order constraints between data categories, one with a complete order of all categories, and a bipartite graph that requires half (i.e., \( m/2 \)) of the categories be visited before the remaining ones. Zero-order and total-order graphs are common definitions used in previous studies on the optimal route query, e.g., [11], [13], and the bipartite graph has properties between the two extremes. In addition, we classify queries based on the effectiveness of the greedy algorithm. In particular, let \( a\% \) be the ratio between the length of the optimal route and that obtained by the greedy algorithm. We partition the queries into four groups based on their values of \( a\% \), and report the average response time for each group of queries. Finally, for the synthetic data set, there are two additional parameters: the total number \( N \) of points in all categories and the ratio \( c\% = n_s/n_l \) between the number of points in a larger category to that of a smaller category (see Section 6.1 for details). For each set of experiments, we vary the value of one parameter, and fix other parameters to their default values.

### Table 5
Parameter Values in the Experiments

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Range &amp; Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>( m )</td>
<td>4, 6, 8, 10</td>
</tr>
<tr>
<td>Type of ( G_Q )</td>
<td>No order, bipartite graph, total order</td>
</tr>
<tr>
<td>( a% )</td>
<td>0%-25%, 25%-50%, 50%-75%, 75%-100%</td>
</tr>
<tr>
<td>( N ) (synthetic data)</td>
<td>500k, 100k, 1500k, 200k</td>
</tr>
<tr>
<td>( c% ) (synthetic data)</td>
<td>1%, 10%, 100%</td>
</tr>
</tbody>
</table>

6.1 Experimental Data

Two real data sets were retrieved from their websites in January 2011. The complete Pocket (from www.pocketgpsworld.com) and GeoName (from www.geonames.org) data sets contain 168,197 points in 39 categories, and 2,060,001 points in 222 categories, respectively. We randomly selected 10 larger categories from each data set. Table 6 summarizes the categories in Pocket and GeoName used in our experiments.

The synthetic data set uses real locations from the California Road data set (available at www.rtreeportal.org) and categorical information generated as follows: First, we randomly selected \( N \) points from the California Road data set. Then, we decide the number of points in each cluster. Specifically, half (i.e., \( m/2 \)) of the categories are assigned a larger cardinality \( n_l \) while the remaining ones have a smaller cardinality \( n_s \). The ratio \( c\% = n_s/n_l \) is a parameter under investigation. Finally, for each category \( C \), we select a random set of points among those that have not been assigned to any categories before. This process ensures that all categories in Synthetic follow the same distribution as the underlying point set.

Table 7 shows statistics on the greedy bound quality in the three data sets. For instance, in the Pocket data set, 203 out of 1,000 queries have \( a\% \) value below 25 percent; i.e., the greedy route is at least four times as long as the optimal route. Observe that queries in Pocket tend to yield good greedy bounds; those in GeoName are more likely to have the poor bounds; and the quality of greedy bounds in the synthetic data lies between the other two data sets. This is reflected in the experimental results.

### Table 6
Categories Used in Real Data Sets

<table>
<thead>
<tr>
<th>Pocket categories</th>
<th># points</th>
<th>GeoName categories</th>
<th># points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Association</td>
<td>3,539</td>
<td>Hospital</td>
<td>15,286</td>
</tr>
<tr>
<td>Commercial Site</td>
<td>4,897</td>
<td>Mall</td>
<td>15,789</td>
</tr>
<tr>
<td>Hospital</td>
<td>5,691</td>
<td>Campus</td>
<td>17,018</td>
</tr>
<tr>
<td>Bank</td>
<td>7,116</td>
<td>Airport</td>
<td>19,545</td>
</tr>
<tr>
<td>Supermarket</td>
<td>8,109</td>
<td>Post Office</td>
<td>25,423</td>
</tr>
<tr>
<td>Wi-Fi Hotspot</td>
<td>9,543</td>
<td>Park</td>
<td>66,002</td>
</tr>
<tr>
<td>Car Services</td>
<td>10,079</td>
<td>Building</td>
<td>70,037</td>
</tr>
<tr>
<td>Fuel</td>
<td>10,649</td>
<td>Cemetery</td>
<td>129,595</td>
</tr>
<tr>
<td>ATM</td>
<td>12,573</td>
<td>Popular Place</td>
<td>181,535</td>
</tr>
<tr>
<td>Food &amp;Drink</td>
<td>21,287</td>
<td>School</td>
<td>197,991</td>
</tr>
<tr>
<td>Total</td>
<td>93,431</td>
<td>Total</td>
<td>744,216</td>
</tr>
</tbody>
</table>

### Table 7
Quality of the Greedy Bound

<table>
<thead>
<tr>
<th></th>
<th>Pocket</th>
<th>GeoName</th>
<th>Synthetic</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 &lt; ( a% ) &lt; 25%</td>
<td>203 queries</td>
<td>234 queries</td>
<td>133 queries</td>
</tr>
<tr>
<td>25% &lt; ( a% ) &lt; 50%</td>
<td>347 queries</td>
<td>312 queries</td>
<td>297 queries</td>
</tr>
<tr>
<td>50% &lt; ( a% ) &lt; 75%</td>
<td>201 queries</td>
<td>205 queries</td>
<td>285 queries</td>
</tr>
<tr>
<td>75% &lt; ( a% ) &lt; 100%</td>
<td>345 queries</td>
<td>252 queries</td>
<td>283 queries</td>
</tr>
</tbody>
</table>

### Table 8
Speedup of SBS with Respect to PLUB

<table>
<thead>
<tr>
<th>Dataset</th>
<th>m=4</th>
<th>m=6</th>
<th>m=8</th>
<th>m=10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pocket</td>
<td>5.0</td>
<td>4.6</td>
<td>2.3</td>
<td>1.3</td>
</tr>
<tr>
<td>GeoName</td>
<td>6.4</td>
<td>1.6</td>
<td>2.0</td>
<td>1.6</td>
</tr>
</tbody>
</table>

6.2 Experiments Using Real Data Sets

We first compare SBS with PLUB [11], which decomposes an optimal route query into multiple total orders (see Section 2.1). Table 8 shows the speedup of SBS compared to PLUB with varying values of \( m \), e.g., the value 5.0 indicates that SBS is five times faster than PLUB. SBS is always faster than PLUB, with at least 30 percent speedup. The advantage of SBS is more pronounced when \( m \) is smaller. The main reason is that SBS prunes with only the bound \( \theta \) obtained by the greedy algorithm, whereas PLUB tightens the bound whenever a total-ordered subquery returns a better result. As \( m \) grows, the accuracy of the greedy method worsens, and, consequently, the performance gap between SBS and
PLUB gradually closes. Nevertheless, in all settings of our experiments, SBS always outperforms PLUB; additionally, SBS is usually the least efficient among the proposed methods. Hence, in the next experiments, we exclude the results for PLUB.

Fig. 6 illustrates the effects of varying number of categories \( m \) in the query. Figs. 6a and 6b plot the total response time as a function of \( m \) for the Pocket and GeoName data sets, respectively. The response time of all methods increases exponentially with \( m \), reflecting their exponential time complexity with respect to \( m \). Nevertheless, in practice, queries that cover a large number of categories are expected to be rare. Among all methods, BFS is consistently the most efficient one. Meanwhile, both batch methods consistently beat their simple counterparts in all settings. Comparing BBS and SFS, the former is faster for low values of \( m \). As \( m \) grows, however, the performance gap between the two diminishes, and SFS starts to outperform BBS when \( m \geq 8 \). The main reason is that with increasing \( m \), the optimal route becomes longer and more complex; consequently, the difference in length between the optimal route and the greedy one becomes higher. Since backward search methods prune based solely on the greedy bound, they tend to maintain and process a large number of useless sub-routes. On the other hand, the forward search strategy incrementally improves the bound \( \theta \) during search, which helps prune more of the search space. The high overhead of SFS for low values of \( m \) is due to its weaker pruning condition, which is remedied in BFS, as the latter integrates backward search components.

Regarding main memory consumption, we found that SFS consumes a very large amount of RAM; the remaining three methods incur similar RAM usage, as shown in Figs. 6c and 6d. The main reason is that SFS has poor pruning power, requiring the storage of a large number of intermediate sub-routes. The memory consumption of all methods grows with \( m \), since a query with more categories to visit involves a larger number of materialized sub-routes. Comparing SBS, BBS and BFS, SBS consumes slightly less memory than BBS and BFS, since the latter two use more sophisticated pruning, which requires more memory for bookkeeping. Nevertheless, this increased memory usage is more than compensated by the good runtime performance of BBS and BFS as described above. Note that memory usage increases at a significantly slower pace than running time; meanwhile, with the single exception of SFS, all methods use less than 1 MBytes of RAM, even for relatively large values of \( m \), e.g., 10. These facts suggest that running time is the bottleneck of the query. Thus, we only compare the runtimes of the four methods, next.

Fig. 7 investigates the impact of the visit order graph \( G_Q \), after setting \( m = 6 \). As expected, \( G_Q \) with no order constraint leads to the highest computational costs, since there are an exponential number of category permutations, enlarging the search space for possible routes. As the amount of order constraints increases, the response times of all methods drop. BFS is the winner for all settings without a total order. In the case of totally ordered queries, the response times of SBS, SFS, and BFS range in milliseconds, and are very close to each other. Consequently, their relative performance is affected more by random fluctuations. Batch processing, again, has obvious benefits, except that SBS is slightly faster than BBS on the Pocket data set with a total order. The cost of SFS drops less rapidly than the other three methods, due to the overhead of the numerous recursive calls, and generally ineffective pruning. These problems, however, do not occur to BFS, as the latter uses backward search components. BFS is very competitive when there is a total order; however, its performance becomes relatively poor, when there are less strict order constraints. The reason is that batch processing and forward search focus on pruning sub-routes. When there is a total order, the search space is relatively small, and the benefits of pruning are offset by the overhead of doing so. With more relaxed order constraints, the search space becomes larger, and the effect of pruning becomes more pronounced; thus, BBS and BFS outperform SBS.

Fig. 8 studies the impact of the query start point \( q \). The influence of \( q \) is measured by the ratio \( a\% \) between the length of the optimal route and that of the greedy
route. The number of queries with value $a\%$ falling in ranges 0-25 percent, 25-50 percent, 50-75 percent, 75-100 percent is listed in Table 7. For queries where $a\%$ is low, the benefit of BFS is more pronounced, as it gradually shrinks the set of candidate points, and reduces the number of unnecessary sub-route computations. Notably, when $a\% < 25\%$, BFS is over an order of magnitude faster than the remaining methods. SFS has a similar advantage; however, unlike BFS, SFS is heavily burdened by ineffective pruning, leading to uncompetitive response times. The performance of SBS and BBS, on the other hand, is significantly affected by $a\%$, since their pruning effectiveness depends upon the quality of the greedy bound. The use of batch processing alleviates this problem, though the efficiency of BBS still lags behind that of BFS.

Fig. 9 evaluates the proposed methods for size-$l$ optimal route queries. We omit the results for SFS since it is subsumed by BFS. Clearly, a smaller value of $l$ reduces the computational costs dramatically for all methods, since backward search terminates after $l$ rather than $m$ joins, and forward search also backtracks after fewer steps. The relative performance of different methods remains the same as in the case for the original optimal route queries.

Finally, Fig. 10 evaluates the clustering modules in algorithms BBS and BFS. Fig. 10a illustrates the response times of BBS and BFS, using three different clustering methods: AG, MA with $ma\% = 25\%$, and MA with $ma\% = 12.5\%$ (see Section 3.2). All other parameters are set to their default values. The results indicate that AG is the best choice among the three for BBS, whereas MA with $ma\% = 25\%$ is most suitable for BFS. Meanwhile, the different clustering modules may lead to considerable differences in performance, especially on the GeoName data set. Further tests confirm that these observations hold for other settings as well. In particular, the best value for the parameter $ma\%$ in MA is around 22-28 percent. Fig. 10b shows the ratio between the time used by clustering in algorithms BBS and BFS and their respective total running time, varying $m$. In these experiments, MA is used for clustering with $ma\% = 25\%$, and all other parameters are fixed to their defaults. The results show that the overhead for clustering in both BBS and BFS is only a fraction (less than 5 percent) of their total computational costs. This is much smaller than the performance advantage of BBS (resp. BFS) over SBS (resp. SFS), therefore clustering is generally worth paying for.

### 6.3 Experiments Using Synthetic Data Sets

We repeat all experiments on the synthetic data set. Due to space constraints, we do not show the impact of parameters $m, G_Q$ and $a\%$ on the performance of the algorithms; the results are very similar as the case of real data. Fig. 11a shows the effect of data cardinality $N$ after setting all other parameters to their default values. Surprisingly, the response times of all algorithms decrease with growing $N$; because categories are randomly assigned to points in Synthetic, when more points are included in the data set, every category becomes denser. Consequently, the greedy algorithm is more likely to identify a good route whose length is close to the optimal one, meaning that the candidate set $CS$ becomes smaller, leading to decreased join costs. Fig. 11b shows the impact of different relative category sizes. In this experiment, $N$ is fixed, and we vary the ratio $c\%$ of the cardinality of larger categories to that of smaller categories. When categories become highly imbalanced, all methods become considerably slower, because the optimal route becomes longer in order to reach points of rare categories; this reduces the effectiveness of pruning. The results suggest that the scalability issue of the optimal route query is rather complicated, and it is an interesting topic for future studies.

Summing up, BFS is the most efficient and robust solution overall, with practically low response times ($10^{-2}$-$10^{-3}$ seconds). If there are strict order constraints or the greedy algorithm returns a relatively accurate bound, backward search solutions also achieve competitive performance, with BBS typically outperforming SBS. In these situations, it is preferable to apply BBS due to its simpler implementation. For total-order queries, SBS (and, thus, R-LORD [13] which SBS reduces to) is still highly efficient. Finally, although the performance of all methods deteriorates with increasingly long routes, they are robust against large data sets. This indicates that the optimal route service can effectively control its workload by adjusting the maximum permissible route length.
7 Conclusion
This paper investigates the problem of optimal route query processing. Existing solutions are either limited to a specific setting of the problem, or incur expensive, redundant computations. Hence, we propose novel and efficient solutions, based on two methodologies: backward and forward search. The solution BFS that combines merits from both backward and forward search achieves the best performance. In the future, we plan to study alternative definitions of the optimal route query, that have temporal constraints (e.g., have lunch at a specified period) or maximize the number of categories to be visited given a total travel length budget.

Acknowledgments
Jing Li and Nikos Mamoulis are supported by grant HKU 715711E from Hong Kong RGC. Yin Yang is supported by the Human Six Sense Program (HSSP) grant from Singapore’s A ‘STAR.

References

Jing Li received the BSc degree in computer science and engineering from Nanjing University in 1995, and the PhD degree in computer science from the Hong Kong University of Science and Technology, in 2000. Currently, he is a professor at the Department of Computer Science, University of Hong Kong. His research interests include database security and privacy, query processing in spatio-temporal databases, and application in geographic web search engines.

Yin David Yang received the PhD degree in computer science from the Hong Kong University of Science and Technology (HKUST) in 2009. He is a research scientist at the Advanced Digital Sciences Center (ADSC), Singapore, and a principal research affiliate at the University of Illinois at Urbana Champaign, Illinois. Before joining ADSC, he worked as an instructor for undergraduate courses at HKUST, and later as a postdoctoral researcher at the University of Hong Kong. His research interests include database security and privacy, spatial and temporal query processing, and distributed systems.

Nikos Mamoulis received the diploma degree in computer engineering and informatics from the University of Patras, Greece, in 1995, and the PhD degree in computer science from the Hong Kong University of Science and Technology, in 2000. Currently, he is a professor in the Department of Computer Science, University of Hong Kong, which he joined in 2001. His research focuses on management and mining of complex data types, privacy and security in databases, and uncertain data management. He served as a PC member in more than 80 international conferences on data management and mining. He is an associate editor for the IEEE Transactions on Knowledge and Data Engineering and the VLDB Journal.

For more information on this or any other computing topic, please visit our Digital Library at www.computer.org/publications/dlib.