Spray dried oleanolic acid powder for pulmonary delivery

Shuangning Chen¹, Henry Hoi Yee Tong², Philip Chi Lip Kwok^{1*}

¹Department of Pharmacology and Pharmacy, The University of Hong Kong, 21 Sassoon Road, Hong Kong ²School of Health Sciences, Macao Polytechnic Institute, Macao

INTRODUCTION

- ➤ Oleanolic acid (OA), well known for its hepatoprotective effect ¹, has been shown in vitro to be cytotoxic in A549 human non-small-cell lung cancer cell line ². Thus it may be potentially useful for lung cancer treatment.

 Being a BCS Class IV drug, it has low oral bioavailability ³. Therefore, inhalation is the preferred route of administration for local delivery.
- > The aim of this study is to develop an inhalable oleanolic acid dry powder formulation.

Molecular structure of OA

Methods

- ➤ OA was spray dried from an acetone solution using a Büchi B-290 Mini Spray Dryer. The spray dried powder was characterized and compared with raw OA.
- ➤ Particle morphology was observed by scanning electron microscopy (SEM), whereas aerodynamic performance was measured by dispersion from an Osmohaler™ into a Next Generation Impactor (NGI).
- The solid state of dry powders was studied by thermal analysis and X-ray powder diffraction.

RESULTS

SEM pictures of raw (A, C) and spray dried (B, D) OA particles before (A, B) and after (C, D) dispersion.

- > Raw OA particles were needle-like, while the spray dried ones were corrugated spherical of 0.5–3 μm in diameter.
- ➤ After dispersion, spray dried OA could be dispersed into primary particles while the raw material seriously agglomerates.

Thermal analysis

➤ For the SD, the exothermic process was observed at around 190 °C followed by endothermic process at around 310 °C with concomitant weight loss.

- The XRPD pattern of the RM showed crystalline peaks.
- The SD exhibited halo
 pattern suggesting
 extremely low crystallinity
 nearly amorphous.

The spray dried formulation exhibits a significantly higher fine particle fraction (FPF) $(63.4 \pm 2.1\%)$ than that of the raw material $(16.1 \pm 6.3\%)$, indicating an enhanced dispersion efficiency.

CONCLUSION

An OA dry powder formulation was successfully prepared by spray drying. It showed excellent aerosol performance (63% FPF) and may be useful for pulmonary delivery.