INTRODUCTION

- Oleanolic acid (OA), well known for its hepatoprotective effect, has been shown in vitro to be cytotoxic in A549 human non-small-cell lung cancer cell line. Thus, it may be potentially useful for lung cancer treatment. Being a BCS Class IV drug, it has low oral bioavailability. Therefore, inhalation is the preferred route of administration for local delivery.

- The aim of this study is to develop an inhalable oleanolic acid dry powder formulation.

- The molecular structure of OA is shown below.

Methods

- OA was spray dried from an acetone solution using a Büchi B-290 Mini Spray Dryer. The spray dried powder was characterized and compared with raw OA.

- Particle morphology was observed by scanning electron microscopy (SEM), whereas aerodynamic performance was measured by dispersion from an Osmohaler™ into a Next Generation Impactor (NGI).

- The solid state of dry powders was studied by thermal analysis and X-ray powder diffraction.

RESULTS

- SEM pictures of raw (A, C) and spray dried (B, D) OA particles before (A, B) and after (C, D) dispersion.

- Raw OA particles were needle-like, while the spray dried ones were corrugated spherical of 0.5–3 µm in diameter.

- After dispersion, spray dried OA could be dispersed into primary particles while the raw material seriously agglomerates.

CONCLUSION

An OA dry powder formulation was successfully prepared by spray drying. It showed excellent aerosol performance (63% FPF) and may be useful for pulmonary delivery.

References