<table>
<thead>
<tr>
<th>Title</th>
<th>Diagnosis of dihydropyrimidinase deficiency in a Chinese boy with dihydropyrimidinuria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Yeung, CW; Yau, MM; Ma, CK; Siu, TS; Tam, S; Lam, CW</td>
</tr>
<tr>
<td>Citation</td>
<td>Hong Kong Medical Journal, 2013, v. 19 n. 3, p. 272-275</td>
</tr>
<tr>
<td>Issued Date</td>
<td>2013</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10722/189579</td>
</tr>
<tr>
<td>Rights</td>
<td>This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.</td>
</tr>
</tbody>
</table>
Case report

Our patient was a 32-month-old Chinese boy born to healthy non-consanguineous parents. He was born at full term by elective caesarean section. His birth weight was 3.47 kg and his Apgar scores were 8 at both 1 and 5 minutes after birth. His postnatal course was unremarkable except for a transient period of neonatal jaundice beginning on day 3, and the peak bilirubin level of 254 μmol/L, the level readily normalised after phototherapy. The patient was referred to Department of Paediatrics, Tseung Kwan O Hospital in January 2011 for delay in language development. At the age of 2 years, he still could not produce a single recognisable word. Motor development was appropriate for his age. Socially the child showed poor eye contact, but no restriction of other interests or ritualistic behaviour. On physical examination, his weight was at 75th centile, his height at the 97th centile, and his head circumference was in the 25th centile, all of which were normal and there were no dysmorphic features. Neurological examination yielded nil abnormal. Routine blood test showed that his complete blood picture, renal function test, blood gas, random glucose and ammonia levels were not abnormal. Liver function was unremarkable except for a mildly elevated alanine aminotransferase level of 78 U/L. Magnetic resonance imaging
of the brain yielded no abnormality. Biochemical investigations for suspected inherited metabolic disease were performed. Urine organic acid analysis by gas chromatography–mass spectrometry showed markedly increased excretion of uracil, thymine, dihydrouracil, and dihydrothymine (Fig 1). Notably, β-alanine and β-aminoisobutyric acid were not detected in the urine amino acid analysis. Plasma amino acid analysis showed a normal pattern.

In view of biochemical diagnosis of DHP deficiency, genetic testing for DPYS mutations was performed on the patient and his parents after obtaining parental informed consent. The nine coding exons and flanking intronic regions of the DPYS gene were amplified by polymerase chain reaction (PCR) on the subject’s genomic DNA from peripheral blood specimens, and direct sequencing of amplification products performed in both the forward and reverse directions. The PCR-amplified fragment sequences were compared with NCBI Reference Sequences, NG_008840.1 and NM_001385.2. Two missense mutations were found in the proband’s DNA, a novel c.48C>G transversion that changes asparagine to lysine at codon 15 in exon 1 (p.N16K), and a c.905G>A transversion that changes arginine to glutamine at codon 302 in exon 5 (p.R302Q) [Fig 2]. Each parent was heterozygous for one of these two mutations (N16K in the mother and R302Q in the father), indicating that the proband is a compound heterozygote.

Discussion
Deficiency of DHP is a rare inborn error of the pyrimidine degradation pathway, with only around 20
patients having been reported in literature. In a study by Sumi et al., after analysing urine samples from 21200 healthy Japanese infants, two asymptomatic cases of dihydropyrimidinuria were encountered. The authors suggested that in Japan, the estimated prevalence of the deficiency was approximately 1/10000.11 The clinical phenotype of patients with DHP deficiency is highly variable. Notably, this disorder has also been reported in asymptomatic individuals identified by population screening for pyrimidine metabolism disorders5,6,7 or family screening of relatives of DHP deficiency patients.5,7 Furthermore, it has been demonstrated by family studies that siblings who shared the same DPYS mutations as the clinically affected index patient can be asymptomatic, suggesting that additional environmental factors may be involved in triggering the clinical phenotype. Also, a direct causal relationship between the genetic and biochemical changes in DHP deficiency and various clinical phenotypes, such as developmental delay as in our patient, cannot be definitively proven. This information too should be conveyed to the patient’s parents during genetic counselling.

The pathophysiological mechanism of the various clinical features of DHP deficiency is not completely understood. The pyrimidine metabolic pathway is involved in the biosynthesis of both β-alanine and β-aminoisobutyric acid; the former was a structural homologue of γ-aminobutyric acid and glycine, and the latter a partial agonist of the glycine receptor. Thus, pyrimidine metabolism is implicated in regulating neurotransmission in the central nervous system, and it has even been postulated that a decrease in β-alanine and β-aminoisobutyric acid may be responsible for the neurological manifestations of DHP deficiency.12,13

Our case was found to have compound heterozygote for mutations c.48C>G (p.N16K) and c.905G>A (p.R302Q). Analysis of the crystal structure of human DHP showed that the point mutation p.R302Q prevents oligomerisation of DHP subunits and formation of an enzyme homotetramer. Functional analysis has also confirmed that mutant DHP enzymes containing the p.R302Q have only 3.9% residual activity.5 The other mutation c.48C>G (p.N16K) was novel and changed a highly evolutionarily conserved asparagine to lysine at codon 16. We have performed a DPYS gene study on 150 ethnically matched normal control subjects, in whom this mutation was not found. Also, computational analysis using PolyPhen-2 (http://genetics.bwh.harvard.edu/pph2/), which predicts damaging effects of missense mutations, indicated that this novel mutation was ‘probably damaging’ with a score of 1.000 using the HumDiv dataset. All these findings suggest that the novel mutation c.48C>G (p.N16K) is damaging to the DHP enzyme function.

Currently, no specific treatment is available for DHP deficiency. However, identification of this disorder is crucial, because patients with inborn

FIG 2. Direct sequencing chromatograms of DPYS sequence alterations in exon 1 and exon 5
error of pyrimidine metabolism cannot metabolise fluoropyrimidine chemotherapeutic agents, such as 5-fluorouracil (5-FU) and its prodrug capecitabine. It has been reported that partial-to-complete deficiency of dihydropyrimidinase dehydrogenase (the first enzyme in the three-step pyrimidine catalytic pathway) accounted for up to 43% of patients with 5-FU–related toxicity.14 The contribution of this deficiency in 5-FU toxicity has also been increasingly recognised. In a case report, severe 5-FU toxicity was attributed to a partial deficiency of DHP due to heterozygous missense mutation in DPYS gene, which illustrates the importance of identifying not only DHP deficiency patients, but also carriers.15 Dihydropyrimidinase deficiency should be regarded as a model of how knowledge in pharmacogenomics translates to improving clinical outcomes by reducing serious adverse drug reactions.

References