<table>
<thead>
<tr>
<th>Title</th>
<th>Fibromatosis of the neck causing airway obstruction managed effectively with weekly low-dose methotrexate and vinblastine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Sze, H; Yeung, MW</td>
</tr>
<tr>
<td>Citation</td>
<td>Hong Kong Medical Journal, 2009, v. 15 n. 3, p. 221-223</td>
</tr>
<tr>
<td>Issued Date</td>
<td>2009</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10722/180450</td>
</tr>
<tr>
<td>Rights</td>
<td>Hong Kong Medical Journal. Copyright © Hong Kong Academy of Medicine Press; This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.</td>
</tr>
</tbody>
</table>
Fibromatosis of the neck causing airway obstruction managed effectively with weekly low-dose methotrexate and vinblastine

Henry Sze 施俊健
MW Yeung 楊美雲

Fibromatosis is a rare disease with benign histology. Its infiltrative growth pattern may prevent complete resection. We report a case of a 40-year-old woman with fibromatosis of the neck requiring an emergency operation for acute upper airway obstruction. Gross residual tumour was left behind but excellent tumour shrinkage was achieved by using weekly low-dose methotrexate and vinblastine. Despite the use of newer agents such as imatinib, cytotoxic chemotherapy remains an efficacious treatment for inoperable fibromatosis.

Introduction

Fibromatosis, also known as desmoid tumour, is a slow-growing and locally infiltrative disease caused by uncontrolled proliferation of fibrous tissue arising from deep musculoaponeurotic structures. It differs from fibrosarcoma by having low cellularity, infrequent mitoses, absence of necrosis, and not metastasising. Despite having benign histology, its aggressive local growth pattern can cause significant morbidity.1

Fibromatosis is a rare entity, representing only 0.03% of all neoplasms.2 It is classified according to its anatomical position into abdominal, intra-abdominal, and extra-abdominal subtypes.1 Fibromatosis of the head and neck region comprises about 10 to 25% of all cases of extra-abdominal fibromatosis.3 Attempts have been made to separate it from that arising from other parts of the body because of the unique clinical problems it can cause in relation to its critical anatomical position.3,5

The belief that cytotoxic chemotherapy is ineffective against slow-growing tumours with benign histology and is associated with significant morbidity has led to it being considered a last resort for patients who have run out of treatment options. We report a case where a woman whose fibromatosis of the neck obstructed her upper airway had a dramatic response to traditional chemotherapy.

Case report

A 40-year-old woman with a history of good past health first presented with a right neck swelling in May 2003. The neck mass was surgically excised and it was found to be a neurofibroma after examination by the pathologist. One year later, the neck swelling recurred and an incisional biopsy confirmed that it was caused by extra-abdominal fibromatosis. A computed tomographic (CT) scan showed a large soft tissue mass over her right lower neck, posterior to the right common carotid artery and jugular vein. She was given tamoxifen for 8 months. A later CT scan showed an enlarging tumour mass extending to the superior mediastinum and causing anterior displacement of the trachea. Her treatment was changed, tamoxifen was ceased and sulindac commenced but she developed an allergic reaction to sulindac. Debulking surgery was finally performed in 2005, during which her right external carotid artery was ligated. She also developed right vocal cord palsy postoperatively.

One year after the debulking surgery, the patient developed acute upper airway obstruction requiring an emergency procedure for airway relief. Intra-operatively, a huge right neck tumour was found tightly adherent to the prevertebral muscle. It closely surrounded the right common carotid artery and spread behind the trachea and oesophagus to the contralateral side. Inferiorly, the tumour reached the superior mediastinum. Exploratory sternotomy, debulking of the tumour, and a tracheostomy were performed. The right common carotid artery was ruptured during its dissection from the tumour and was ligated. A feeding jejunostomy was performed later to manage extrinsic oesophageal compression. A baseline CT scan of the neck was done after the operation (Fig 1).

To manage her gross inoperable residual tumour, the patient was referred to the Department of Clinical Oncology, Pamela Youde Nethersole Eastern Hospital, Hong
Each week the patient received low-dose chemotherapy using methotrexate 50 mg and vinblastine 10 mg, both intravenously. After a few weeks of chemotherapy, the patient had a subjective improvement in neck tightness. Her obstructive symptoms improved gradually and she was able to resume oral feeding. The jejunostomy and tracheostomy tubes were removed after 6 months and 11 months, respectively. Her general condition and quality of life improved greatly. This response was also confirmed radiologically. Though the first CT scan performed after 2 months of chemotherapy showed minimal change, serial CT scans from 6 months onwards showed progressive improvement. Her most recent CT scan, performed after 16 months of chemotherapy, showed excellent tumour shrinkage amounting to a partial response according to the RECIST (Response Evaluation Criteria in Solid Tumours) scale (Fig 2).

The patient did suffer side-effects, developing myelotoxicity with grade 3 neutropaenia after 6 weeks of chemotherapy. Her dose was halved and was well tolerated afterwards.

It was planned that the total length of treatment be 12 months, but it was extended due to her continuing excellent response. Chemotherapy will be continued until a plateau of response is reached. The need for radiotherapy will be reviewed after maximal tumour shrinkage has been achieved.

Discussion

Fibromatosis of the head and neck is a rare disease. Patients usually present with a painless mass or less commonly, pain or neurological symptoms. Upper airway obstruction is a potentially fatal clinical presentation that requires urgent attention. As with fibromatosis arising from other parts of the body, surgical resection is the mainstay of treatment.1-6 The primary goal is to achieve a clear resection with wide margins, but preservation of function is of equal importance. Due to the complex anatomy and frequent entrapment of neurovascular structures in the head and neck region, these aims are often difficult to achieve. Resection often leads to injury of important surrounding tissues, for example the brachial plexus, and is associated with recurrence requiring repeated excisions.5 The reported recurrence rate ranges between 46 and 62%.5,6 The role of adjuvant therapy has not been established because of the occasional observation of spontaneous regression and arrested growth after incomplete excision, and the finding that the resection margin correlates poorly with the likelihood of local recurrence.4

For patients with inoperable tumours, or those where surgery may result in major functional loss, radiotherapy is a reasonable option. Improved disease control has been reported in both adjuvant and primary settings.2,7,8 Primary radiotherapy has achieved a local control rate of up to 93%.8
optimal margin around the tumour, radiation dose, fractionation and technique remain undefined, with wide variations reported.2 Margins of 2 to 3 cm in transverse and 5 cm in longitudinal directions are commonly used, as in soft tissue sarcoma. Total doses ranging from 36.0 to 76.2 Gy have been reported.7 A dose-response relationship had been suggested with doses higher than 50 Gy being associated with better local control.2 Most authors propose a dose between 50 and 60 Gy using conventional fractionation.

Sulindac9 or other non-steroidal anti-inflammatory drugs including celecoxib and hormonal therapy using tamoxifen10 or toremifene have shown promising disease control while causing fewer side-effects.

Cytotoxic chemotherapy is usually reserved for patients in whom other treatment options have been exhausted. Many clinicians consider chemotherapy toxic and ineffective for low-grade tumours with a benign histology and no invasive component. While there are limited data on the use of single-agent chemotherapy in fibromatosis, the overall response rate to combination chemotherapy ranges between 17 and 100% with a median response rate of 50%.11 Such an impressive level of responsiveness to chemotherapy is not demonstrated by other low-grade tumours or even some malignant neoplasms. Commonly used regimens include doxorubicin-based chemotherapy (doxorubicin with dacarbazine or doxorubicin with cyclophosphamide and vincristine), actinomycin D–based chemotherapy, or a combination of methotrexate with a vinca alkaloid (vinblastine or vinorelbine). These are all traditional agents that are cheap and easily available. The major concern about doxorubicin-based chemotherapy is cardiotoxicity while those related to actinomycin D–based regimens include sterility and carcinogenesis. The combination of methotrexate with vinblastine, administered weekly, is associated with fewer side-effects.12,13 This is a less toxic alternative, especially when the treatment has to be administered for prolonged periods. Fibromatosis usually responds slowly to chemotherapy; it may take months for the tumour to show a reduction in size. This may be due to the presence of mostly connective tissues with abundant collagen fibres, the low cellularity, and infrequent mitoses of this low-grade tumour. Current data support the use of chemotherapy for at least 1 year unless there is evidence of disease progression or significant toxicity. Most patients can tolerate weekly low-dose methotrexate and vinblastine, although it was demonstrated that myelotoxicity and hepatotoxicity can lead to a prolonged interval between cycles.14 In our patient, myelotoxicity was managed effectively with a dose reduction, without compromising the treatment efficacy.

Other alternatives to systemic treatment include biological agents such as interferon and more recently, imatinib, a tyrosine kinase inhibitor.15 While the most effective therapeutic agent is yet to be defined, our patients should not be left without the option of cytotoxic chemotherapy just because of concerns about its toxicity or the misconception that it is not effective against low-grade tumours.

References