<table>
<thead>
<tr>
<th>Title</th>
<th>EPISOMAL EXPRESSION CASSETTES FOR GENE THERAPY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inventor(s)</td>
<td>Hu, Jim; Chow, Yu-Hua; O'brodovich, Hugh; Tsui, LC</td>
</tr>
<tr>
<td>Citation</td>
<td>WO Published patent application WO 9851807. World Intellectual Property Organization (WIPO), PatentScope, 1998</td>
</tr>
<tr>
<td>Issued Date</td>
<td>1998</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10722/177166</td>
</tr>
<tr>
<td>Rights</td>
<td>This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.</td>
</tr>
</tbody>
</table>
(51) International Patent Classification 6:
C12N 15/85, 15/12, 15/88, 5/10, A61K 48/00

(21) International Application Number: PCT/CA98/00478

(22) International Filing Date: 14 May 1998 (14.05.98)

(30) Priority Data:
2,205,076 14 May 1997 (14.05.97)

(71) Applicant (for all designated States except US): HSC RESEARCH AND DEVELOPMENT LIMITED PARTNERSHIP [CA/CA]; Suite 5276, 555 University Avenue, Toronto, Ontario M5G 1X8 (CA).

(72) Inventors: and

(75) Inventors/Applicants (for US only): HU, Jim [CA/CA]; 25 Holborne Avenue, East York, Ontario M4C 2P8 (CA); CHOW, Yu-Hua [CA/CA]; 85 Dunblaine Avenue, North York, Ontario M5M 2S2 (CA); O'BRODOVICH, Hugh [CA/CA]; 287 Royal Oak Court, Oakville, Ontario L6H 3A8 (CA); TSUI, Lap-Chee [CA/CA]; 19 Park Manor Drive, Etobicoke, Ontario M9B 3C1 (CA).

(74) Agent: DEFITH WILLIAMS WALL; National Bank Building, Suite 400, 150 York Street, Toronto, Ontario M5H 3S5 (CA).

(54) Title: EPISOMAL EXPRESSION CASSETTES FOR GENE THERAPY

(57) Abstract

The invention consists of episomal expression cassettes for expression of a transgene in gene therapy. The expression cassettes consist of regulatory elements of the human cytokeratin gene and a transgene. The invention also includes liposomes for transfection of epithelial tissue with the cassettes in treatment of cystic fibrosis, emphysema, cancers of epithelial origin arising in the lung or other organs.
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Albania</td>
<td>AL</td>
<td>Spain</td>
<td>ES</td>
<td>Lesotho</td>
<td>LS</td>
<td>Slovenia</td>
<td>SI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Armenia</td>
<td>AM</td>
<td>Finland</td>
<td>FI</td>
<td>Lithuania</td>
<td>LT</td>
<td>Slovakia</td>
<td>SK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Austria</td>
<td>AT</td>
<td>France</td>
<td>FR</td>
<td>Luxembourg</td>
<td>LU</td>
<td>Senegal</td>
<td>SN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Australia</td>
<td>AU</td>
<td>Gabon</td>
<td>GA</td>
<td>Latvia</td>
<td>LV</td>
<td>Swaziland</td>
<td>SZ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Azerbaijan</td>
<td>AZ</td>
<td>United Kingdom</td>
<td>GB</td>
<td>Monaco</td>
<td>MC</td>
<td>Chad</td>
<td>TD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bosnia and Herzegovina</td>
<td>BA</td>
<td>Georgia</td>
<td>GE</td>
<td>Moldova</td>
<td>MD</td>
<td>Togo</td>
<td>TG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barbados</td>
<td>BB</td>
<td>Ghana</td>
<td>GH</td>
<td>Madagascar</td>
<td>MG</td>
<td>Tajikistan</td>
<td>TJ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Belgium</td>
<td>BE</td>
<td>Guinea</td>
<td>GN</td>
<td>The former Yugoslavia</td>
<td>MK</td>
<td>Turkmenistan</td>
<td>TM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Burkina Faso</td>
<td>BF</td>
<td>Greece</td>
<td>GR</td>
<td>Republic of Macedonia</td>
<td>ML</td>
<td>Turkey</td>
<td>TR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bulgaria</td>
<td>BG</td>
<td>Hungary</td>
<td>HU</td>
<td>Mali</td>
<td>ML</td>
<td>Trinidad and Tobago</td>
<td>TT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benin</td>
<td>BJ</td>
<td>Ireland</td>
<td>IE</td>
<td>Mongolia</td>
<td>MN</td>
<td>Ukraine</td>
<td>UA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brazil</td>
<td>BR</td>
<td>Israel</td>
<td>IL</td>
<td>Mauritania</td>
<td>MR</td>
<td>Uganda</td>
<td>UG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Belarus</td>
<td>BY</td>
<td>Iceland</td>
<td>IS</td>
<td>Mauritania</td>
<td>MW</td>
<td>United States of America</td>
<td>US</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada</td>
<td>CA</td>
<td>Italy</td>
<td>IT</td>
<td>Mexico</td>
<td>MX</td>
<td>Uzbekistan</td>
<td>UZ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Central African Republic</td>
<td>CF</td>
<td>Japan</td>
<td>JP</td>
<td>Niger</td>
<td>NE</td>
<td>Viet Nam</td>
<td>VN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Congo</td>
<td>CG</td>
<td>Kenya</td>
<td>KE</td>
<td>Netherlands</td>
<td>NL</td>
<td>Yugoslavia</td>
<td>YU</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switzerland</td>
<td>CH</td>
<td>Kyrgyzstan</td>
<td>KG</td>
<td>Norway</td>
<td>NO</td>
<td>Zambia</td>
<td>ZW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Côte d'Ivoire</td>
<td>CI</td>
<td>Democratic People's Republic of Korea</td>
<td>KP</td>
<td>New Zealand</td>
<td>NZ</td>
<td>Zimbabwe</td>
<td>ZW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cameroon</td>
<td>CM</td>
<td>Republic of Korea</td>
<td>KR</td>
<td>Poland</td>
<td>PL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>China</td>
<td>CN</td>
<td>Kazakhstan</td>
<td>KZ</td>
<td>Portugal</td>
<td>PT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cuba</td>
<td>CU</td>
<td>Saint Lucia</td>
<td>LC</td>
<td>Romania</td>
<td>RO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Czech Republic</td>
<td>CZ</td>
<td>Liechtenstein</td>
<td>LI</td>
<td>Russian Federation</td>
<td>RU</td>
<td>Romania</td>
<td>RO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>DE</td>
<td>Sri Lanka</td>
<td>LR</td>
<td>Sudan</td>
<td>SD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Denmark</td>
<td>DK</td>
<td>Sweden</td>
<td>SE</td>
<td>Singapore</td>
<td>SG</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estonia</td>
<td>EE</td>
<td>Liberia</td>
<td>LR</td>
<td>Singapore</td>
<td>SG</td>
<td>Slovenia</td>
<td>SI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finland</td>
<td>FI</td>
<td>Lithuania</td>
<td>LT</td>
<td>Slovakia</td>
<td>SK</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>France</td>
<td>FR</td>
<td>Luxembourg</td>
<td>LU</td>
<td>Senegal</td>
<td>SN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gabon</td>
<td>GA</td>
<td>Latvia</td>
<td>LV</td>
<td>Swaziland</td>
<td>SZ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>United Kingdom</td>
<td>GB</td>
<td>Georgia</td>
<td>GE</td>
<td>Moldova</td>
<td>MD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Georgia</td>
<td>GE</td>
<td>Ghana</td>
<td>GH</td>
<td>Madagascar</td>
<td>MG</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ghana</td>
<td>GH</td>
<td>Guinea</td>
<td>GN</td>
<td>The former Yugoslavia</td>
<td>MK</td>
<td>Turkey</td>
<td>TR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hungary</td>
<td>HU</td>
<td>Germany</td>
<td>DE</td>
<td>Trinidad and Tobago</td>
<td>TT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iceland</td>
<td>IS</td>
<td>Italy</td>
<td>IT</td>
<td>Ukraine</td>
<td>UA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ireland</td>
<td>IE</td>
<td>Japan</td>
<td>JP</td>
<td>Uganda</td>
<td>UG</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ireland</td>
<td>IE</td>
<td>Kenya</td>
<td>KE</td>
<td>United States of America</td>
<td>US</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Israel</td>
<td>IL</td>
<td>Korea</td>
<td>KR</td>
<td>New Zealand</td>
<td>NZ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iran</td>
<td>IR</td>
<td>Korea</td>
<td>KR</td>
<td>Portugal</td>
<td>PT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kazakhstan</td>
<td>KZ</td>
<td>Liechtenstein</td>
<td>LI</td>
<td>Sudan</td>
<td>SD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saint Lucia</td>
<td>LC</td>
<td>Libya</td>
<td>LR</td>
<td>Singapore</td>
<td>SG</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liechtenstein</td>
<td>LI</td>
<td>Sri Lanka</td>
<td>LR</td>
<td>Singapore</td>
<td>SG</td>
<td>Slovenia</td>
<td>SI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sri Lanka</td>
<td>LR</td>
<td>Sweden</td>
<td>SE</td>
<td>South Korea</td>
<td>KR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sudan</td>
<td>SD</td>
<td>Taiwan</td>
<td>TW</td>
<td>Singapore</td>
<td>SG</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sweden</td>
<td>SE</td>
<td>Singapore</td>
<td>SG</td>
<td>Slovenia</td>
<td>SI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switzerland</td>
<td>CH</td>
<td>Taiwan</td>
<td>TW</td>
<td>Switzerland</td>
<td>CH</td>
<td>Swaziland</td>
<td>SZ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turkey</td>
<td>TR</td>
<td>Trinidad and Tobago</td>
<td>TT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ukraine</td>
<td>UA</td>
<td>United States of America</td>
<td>US</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>United States of America</td>
<td>US</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uzbekistan</td>
<td>UZ</td>
<td>Viet Nam</td>
<td>VN</td>
<td>Yugoslavia</td>
<td>YU</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viet Nam</td>
<td>VN</td>
<td>Zambia</td>
<td>ZW</td>
<td>Zimbabwe</td>
<td>ZW</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
EPISOMAL EXPRESSION CASSETTES FOR GENE THERAPY

Field of the Invention

The invention relates to gene therapy episomal expression cassettes to express a transgene in epithelial cells.

Background of the Invention

1.1 Gene delivery

Demonstration of the feasibility of gene transfer to humans by a number of clinical trials stimulated considerable interest in gene therapy in the scientific community even though no therapeutic benefit has yet been offered to patients (7). Epithelial tissue, particularly lung epithelial tissue, has considerable potential as a target for gene therapy. The lung is a highly suitable organ for in vivo gene therapy treatment of patients with potentially lethal lung disorders, such as cystic fibrosis, cancers of epithelial origin and emphysema because of its large accessible epithelial and endothelial surface area (15). Both virus-based and non-virus-based methods can be used to deliver genes to lungs (6, 15). The use of liposomes as gene transfer agents seems to have some significant advantages for in vivo lung gene therapy (6, 15). First, liposomes offer a wide margin of safety with low toxicity and have already been used to deliver drugs to humans. They can be administered into the lungs as an aerosol, by direct lavage or following intravenous injection. A clinical trial in nasal epithelia showed no adverse effects; nasal biopsies showed no immuno-histological changes (4). Secondly, liposome-complexed DNA can be used to transfected both resting and dividing cells. In addition, large DNA constructs can be accommodated with liposomes for transfection. Finally and most importantly, liposome-mediated gene expression is episomal, thereby avoiding or reducing the risk of random chromosomal insertions. However, one of the major impediments to liposome-mediated in vivo gene therapy is that the currently available expression vectors only offer a very low level of transient transgene expression (15). Therefore, enhancement of the therapeutic gene expression would not only increase the efficacy, but also effectively decrease the already low levels of toxicity by reducing the dose of therapeutic reagent.
1.2 **Control of gene expression**

The inefficient expression of transgenes in lung is, at least in part, due to the lack of proper lung-specific gene expression cassettes (15). An ideal expression cassette for human lung gene therapy should be safe and confer an appropriate level of tissue-specific expression for a reasonable duration. The rational design of expression cassettes for lung gene therapy relies on our knowledge of regulation of gene expression. Regulation of eukaryotic gene expression is a very complicated process. A particular gene may be expressed in only one type of cell or tissue while others are expressed in most cell types or tissues. For example, cytokerin genes are expressed predominantly in epithelial cells (26). In contrast, genes encoding proteins involved in translation (protein synthesis) are expressed in every cell type. The activity of a eukaryotic gene can be regulated at any stage during the course of its expression, such as transcription, RNA splicing, RNA stability, translation, or post-translational modification. Current knowledge indicates that transcription and RNA splicing are the major steps for regulation of many eukaryotic genes.

1.2a **Transcriptional regulation**

Transcription of eukaryotic genes is catalyzed by an RNA polymerase which is recruited to the promoter by multiple protein factors involved in transcription initiation. Regulation of transcription can be attributed to tissue-specific DNA elements (enhancers or silencers) that stimulate or repress transcription through interaction with tissue-specific transcription factors (25). However, these elements may not function if they reside in an inappropriate location on a chromosome, suggesting that chromosomal position and structure also affect gene expression. This has led to discovering a type of regulatory elements called locus control region (LCR) (13). These LCRs, when integrated into chromosomes, confer copy number-dependent and location-independent gene expression. The first LCR was discovered in 5' region of the human β-globin gene cluster (9, 10, 13). LCRs are now known to be associated with other genes (28, 36) including human cytokerin 18 and rat LAP (C/EBPb) which direct gene expression in lung cells of transgenic mice (28, 36).

Although currently there is no evidence to show that LCRs enhance episomal gene expression, this possibility cannot be ruled out since information about the interactions of LCRs with other regulatory elements is still limited. If LCRs increase
gene expression, they would be useful in the design of episomal expression cassettes. As lung epithelial cells are not actively dividing, the delivered plasmid DNA may be wrapped by histones or other nuclear factors and kept in a transcriptionally inactive conformation. Although it is generally believed that plasmids when transferred into nucleus do not form chromatin structures, recent experiments by Jeong and Stein demonstrate that some of the transfected DNAs are in chromatin form (17). The presence of a functional LCR in expression cassettes may allow a plasmid to stay in an open conformation.

1.2b Regulation through RNA processing

Regulation of RNA splicing is also very important for tissue-specific and developmentally regulated gene expression (35). This type of regulated RNA splicing or alternative RNA splicing can lead to the production of different proteins from a single gene by inclusion of different exons in different mRNAs. Some introns contain strong enhancers and their exclusion from expression constructs would lead to diminished gene expression. For example, the first intron of the human cytokeratin 18 contains a strong enhancer which is required for expression of the cytokeratin 18 gene (29). Other introns that do not contain enhancers may also affect gene expression. For example, the presence of rpl32 intron 3 leads to a 30-fold increase in mRNA level relative to the intronless rpl32 minigene (21). However, different introns clearly have different effects. For instance, inclusion of intact thymidylate synthase gene intron 4 alone at its normal position in the thymidylate synthase (TS) coding region leads to a decrease in the level of expression relative to that observed with a the intronless TS minigene (21). The details of this splicing regulation of expression are unknown.

1.3 Gene expression in lung epithelial cells

Efficient tissue-specific gene expression can be achieved, in theory, by using tissue-specific gene expression can be achieved, in theory, by using tissue-specific promoters, promoter elements, RNA processing signals, and tissue-specific RNA-stabilizing elements. Cell-specific gene expression primarily results from either tissue-specific promoters, and/or tissue-specific regulatory elements, such as enhancers, silencers, and locus control regions (LCRs). However, it is very difficult to design a cassette for lung gene therapy because there is not enough information known about regulation of lung gene expression. Currently, no suitable
expression vector for lung gene therapy has been reported. There is a pressing need for an effective expression vector because a number of human CF gene therapy trials have been conducted (7). The SV40 promoter was used to direct CFTR expression in the clinical trial by Caplen et al. (4); we observed that SV40 promoter is not very active even in cultured lung epithelial cells (see Fig. 5) and its expression in rat lung primary cells (the primary cells are first generation cells isolated from the rat lung, i.e. they are not immortalized cell lines cultured for many generations) is undetectable (Plumb and Hu, unpublished results). That might explain the large amounts of plasmid DNA (10 mg to 300 mg/per nostril) used in the study (4). Recently, several cis-acting elements and trans-acting factors regulating lung epithelial gene expression have been identified. The promoters of the SP-A (surfactant protein A), SP-B (surfactant protein B), SP-C (surfactant protein C), SP-D (surfactant protein D) and CC10 (Clara cell 10 kD protein) genes have been extensively analyzed (22, 31, 40, 41). Because these genes are predominately expressed in type II or Clara cells (22), their promoters, unless modified, would not likely be suitable for expressing genes in epithelial cells of conducting airways, which represent the primary target for CF lung gene therapy.

1.4 Epithelial expression cassette for lung gene therapy

Because of the low efficiency in liposome-mediated gene expression, strong viral promoters are often used in gene therapy studies. However, this may not be the ideal approach for liposome-mediated lung gene therapy. For example, the CMV major immediate early gene promoter has been shown to be very strong for transient expression of transgenes in cultured cells, but two studies have shown it to be a poor promoter for lung gene expression in transgenic mice (1, 33). There is no evidence to show the CMV promoter can confer sustained episomal gene expression in vivo.

Although it is unreasonable to expect a permanent transgene expression from an episomal plasmid, long lasting expression even at a low level may offer considerable clinical benefits to gene therapy patients. In addition, viral promoters may not confer tissue-specificity. Since currently the nuclear uptake of delivered DNA is highly inefficient (44) in addition to the low efficiency of liposome-mediated gene expression, no one would worry about the effect of non-specifically expressing a therapeutic gene in vivo. However, when the nuclear uptake and liposome-delivery
technology are improved, this has to be seriously considered because there must be an advantage for nature to select genes, such as the cystic fibrosis transmembrane conductance regulatory gene (CFTR), to be epithelium-specific.

If human DNA regulatory elements could direct tissue-specific expression of therapeutic genes at a comparable level to that from strong viral promoters in lung epithelial cells, and sustain gene expression longer than the viral promoters, it would be advantageous to use them for lung gene therapy. At present, there is no suitable expression vector for epithelial tissue gene therapy. There is a need to develop gene therapy cassettes that use human DNA regulatory elements which naturally express genes in epithelial cells and can be used to direct the expression of therapeutic genes. It would be particularly useful if there was an expression cassette that could direct a high level of reporter gene expression in vivo and in vitro. The expression cassette should be safe and confer an appropriate level of tissue-specific expression for a reasonable duration. The expression cassette should be capable of use in epithelial cells, such as submucosal cells.

Brief Description of the Drawings

Preferred embodiments of the invention will be described in relation to the drawings in which:

FIG. 1 Improvement of GUS Reporter Gene System. A) Modification of the GUS reporter gene. B) Chemiluminescent assays of GUS gene expression. RFLE, rat fetal lung primary epithelial cells. The Bioorbit Luminometer (model number 1253) was used and 1 reading unit from this model equals 10,000 reading units from other models such as Berthold Lumat LB 9501.

FIG. 2 Expression of GLP reporter in A547, IB3 and rat fetal lung primary epithelial cells. A) Expression of the green fluorescent protein in cultured human lung cells. A549 cells were transfected with pGREENLANTERN-1(GIBCO BRL) and visualized under a fluorescent microscope (bottom panel) 2 days post-transfection. The phase-contrast view of the same cells is shown in the top panel. B) Expression of the green fluorescent protein in human cystic fibrosis bronchial epithelial cells. IB3 cells were transfected with pGREENLANTERN-1(GIBCO BRL) and visualized under a fluorescent microscope (bottom panel) 2 days post-transfection. The phase-contrast view of the same cells is shown in the top panel. C)
Expression of the green fluorescent protein in rat lung primary cells. Rat fetal lung epithelial cells were transfected with pGREENLANTERN-1 (GIBCO BRL) and visualized under a fluorescent microscope (bottom panel) 2 days post-transfection. The phase-contrast view of the same cells is shown in the top panel.

FIG. 3 Optimization of cell transfection conditions for gene expression. Cells were transfected with pCEP4SEAP complexed with DODAC:DOPE at 2.5 nmol/cm². Each sample corresponds to 50μl of culture medium conditioned by the transfected cells.

FIG. 4 Schematic diagrams of SEAP and CFTR expression constructs. A) The genomic structure of the human cytokeratin 18 gene (K18), in which exons 1 through 7 are depicted as solid boxes and DNAsse I hypersensitive sites as arrows. Intron-1 fragment covers from the end of exon 1 to the beginning of exon 2. The minimal promoter fragment spans 310 base pairs between a unique XhoI (X) site and the K18 translation initiation, excluding the start codon. Enhancer-long and Enhancer fragments cover regions from Hind III (H) to Nsi I sites and from Nsi I to Xho I sites, respectively. B) The simplified structures of the promoterless SEAP construct (CloneTech) and a series of its derivatives which contain various segments of K18 untranslated sequence, as well as their relative expression levels. C) The structure of K18EpilongTECFTR, which is identical to K18EpilongSEAP except that the reporter gene SEAP is replaced by CFTR cDNA with a translational enhancer (adapted from Alfalfa Mosaic Virus RNA4) immediately upstream of the CFTR coding sequence.

FIG. 5 Expression pattern of K18 constructs in comparison with SV40- or CMV-promoter directed expression in selected cell lines. A549, WI38, or COS-7 cells are transfected with DNA-lipid complex in parallel. Culture media were collected and assayed for SEAP activity 48 hr post-transfection.

FIG. 6 Long lasting gene expression in cells transfected with K18EpilongSEAP. Shown are expression kinetics of K18EpilongSEAP versus CMVSEAP. A549 and COS-7 cells were transfected with DNA:lipid mix at 1:10 ratio. Culture media were collected at days post-transfection as indicated, prior
to media change, and stored at -80°C. SEAP reporter assay was performed according to standard procedure.

FIG. 7 Expression of K18EpilongSEAP in rat fetal lung primary cells. Both epithelial cells and fibroblast cells were transfected with plasmid DNA and DODAC:DOPE at 1:10 ratio. The plasmid, pINXCAT was used as a negative control. pCEP4SEAP contains the CMV promoter.

FIG. 8 I-Eflux of COS7 cells transfected with CFTR expression cassettes. Functional analysis for CFTR by iodide efflux assay. COS-7 cells were transfected with K18EpilongTECFTR, pCMVnot6.2CFTR as a positive control, or a negative control plasmid. 48 hr post-transfection, cells were loaded with iodide for one hour followed by extensive washes. AMP-dependent channel activity was then assessed as iodide concentration in the wells before and following the addition of the agonist, forskolin, at 0 time point.

FIG. 9 Splicing of the K18-CFTR chimeric RNA transcript. A) Schematic diagram of the K18-CFTR chimeric RNA transcript and positions of the primers used in RT-PCR. B) RT-PCR products from total RNAs isolated from the CFTR transfected IB3 and rat fetal primary epithelial cells. The types of cells and primer sets are indicated on the top. Lane 4 shows the 1kb ladder. The 712-and 640-bp bands are the expected PCR products from these two primer sets. The stars indicate the mis-spliced products. RNAs from untransfected cells do not yield any bands (data not shown). C) The K18 intron 1 sequences critical for splicing.

FIG. 10 Identification of the cryptic 3' splice-sites in the CFTR coding region and improvement of the splicing efficiency of the K18-CFTR chimeric RNA transcript by mutagenesis. A) Schematic diagram of the structures of K18EpilongTECFTR and the RNA transcript. Primers used for RT-PCR in fig.11 are depicted as arrows. B) DNA sequences of K18EpilongTECFTR at K18 3' splice site and two cryptic splice sites in the CFTR coding region. C) DNA sequences of K18mCFTR at respective sites. Mutations introduced are indicated by asterisks.
FIG. 11 Splicing patterns of K18-CFTR chimeric RNA transcripts. Shown are PCR products from reverse-transcribed (RT+) total RNAs isolated from A549 cells transfected with the indicated plasmids. The correctly-spliced transcript yields a 696 bp band, which is the only species in K18mCFTR transfected cells. In K18EpilongTECFTR transfected cells, two faster-migrating species, corresponding to splicing products utilizing the cryptic splice sites in the CFTR coding region, are present along with the 696 bp band.

FIG. 12 Functional analysis of the CFTR channel activity by iodide efflux assay. COS-7 cells were transfected with K18EpilongTECFTR, K18EpilongmCFTR, pCDM8.1CFTR as a positive control, or a negative control plasmid (K18Epilong). Forty-eight hours post-transfection, cells were loaded with iodide for one hour followed by extensive washes. cAMP-dependent channel activity was then assessed as iodide concentration in the wells before and following the addition of the agonist, forskolin, at 0 time point.

FIG. 13 Targeting expression of the LacZ reporter gene in mouse lung epithelia. The lung was dissected out from a 14 day transgenic mouse fetus and stained with X-gal for 3 hr. The K18mLacZ has been demonstrated clearly expressing in airways of the lung.

FIG. 14 A lung of a normal mouse fetus. The lung was excised out from a 14 day mouse fetus and stained with X-gal overnight.

FIG. 15 Enhancer activity of the 1.4 kb DNA fragment from 5' region of the human K18 gene. A549 cells and COS-1 cells were transfected with K18EpiSEAP or K18EpilongSEAP which contains the distal enhancer. SEAP activities in the culture media are normalized to total protein.

FIG. 16 The position effect of K18 intron 1 on reporter gene expression. In K18EpilongSEAPi construct, the intron was moved to the down stream of the SEAP coding region. Relocating this intron abolished the expression of the SEAP reporter gene by the construct.
FIG. 17 Temporal expression of the lacZ reporter gene in lung airways of the transgenic fetuses. A negative control lung stained with X-gal under the same conditions is shown on the left, at each time point.

FIG. 18 Submucosal expression of the lacZ reporter gene. The left panel shows a horizontal tissue section from the lower part of the trachea of a control mouse. The middle panel shows a horizontal tissue section from the lower part of the trachea of a transgenic mouse. The right panel shows submucosal expression of the reporter gene in a tissue section of the upper part of the trachea from the same transgenic mouse.

FIG. 19 K18EpilongmCFTR restriction map.

FIG. 20 (a) DNA sequence of K18EpilongmTELacZ; (b) restriction map; (c) features.

FIG. 21 Enhancement of human CC10 expression by intron 1 of the human cytokeratin 18 gene in A549, a cell line of human lung carcinoma origin.

Summary of the Invention

The invention satisfies the need for a suitable expression vector for epithelial tissue gene therapy. The expression cassettes of this invention contain human DNA regulatory elements which naturally express genes in epithelial cells and direct the expression of therapeutic genes. For example, the regulatory elements may be from the human cytokeratin 18 gene. The expression cassettes also direct a high level of reporter gene expression in vivo and in vitro. The expression cassettes are safe and confer an appropriate level of tissue-specific expression for a reasonable duration. The expression cassettes may be used in epithelial cells, such as submucosal cells.

The invention also satisfies the need for expression cassettes using epithelial cell specific regulatory elements from mammals. In a preferred embodiment, the human cytokeratin 18 gene regulatory elements are used. Certain elements of the cytokeratin 18 gene from other mammals may also be beneficially used with the expression cassettes.

The invention also relates to a host cell (isolated cell in vitro or a cell in vivo) containing a DNA sequence including: an expression cassette of the invention and the DNA sequence of a gene to be expressed. In a preferred embodiment, the DNA
sequence is operatively linked to the expression cassette and capable of expression in the cell and the DNA sequence encodes a protein selected from the group consisting of: 1) a CFTR protein; 2) a protein having sequence similarity to CFTR and 3) a protein having CFTR activity.

The invention is an expression cassette for the episomal expression of a transgene in targeted epithelial cells, which consists of regulatory elements of the human cytokeratin gene and a transgene. In one embodiment of the invention, the expression cassette is targeted to a lung epithelial cell. The regulatory elements may comprise a promoter, the 5' region and modified intron 1 of the human cytokeratin 18 gene.

In the cassette, the human cytokeratin gene is the human cytokeratin 18 gene. The regulatory elements of the cassette are from the 5' region of the human cytokeratin 18 gene. The regulatory elements may also consist of a promoter, the 5' region and intron 1 of the human cytokeratin 18 gene. The cassette may also contain an enhancer.

The transgene in the cassette can be the cystic fibrosis transmembrane conductance regulatory gene. In another embodiment, the transgene in the cassette can consist of an enhancer and a modified cystic fibrosis transmembrane conductance regulatory (CFTR) gene.

The cells targeted by the cassette may be epithelial cells, such as submucosal cells.

A liposome may be used to deliver the expression cassette construct.

Cells may be transfected by the expression cassette construct. In one embodiment, the cells are part of tissue in a lung.

The invention also includes a method of treating a patient having a lung disorder, by administering to the patient a liposome containing the cassette so that the cassette transfects a targeted lung cell. The method of administration of the liposome may be selected from a group consisting of aerosol administration, intratracheal instillation and intravenous injection. The expression cassette can be used in
treatment of a disorder such as cystic fibrosis, emphysema, and cancers of epithelial origin arising in the lung or other organs.

Another aspect of the invention relates to an expression cassette for the episomal expression of a transgene in a targeted epithelial cell, consisting of:

regulatory elements of a human gene, and a transgene operatively associated with the regulatory elements and capable of expression in the epithelial cell.

The invention also relates to an expression cassette for the episomal expression of a transgene in a targeted epithelial cell, consisting of: regulatory elements of a cytokeratin gene, and a transgene operatively associated with the regulatory elements and capable of expression in the epithelial cell. In a preferred embodiment, the epithelial cell is a lung epithelial cell. The human gene is preferably a cytokeratin gene. The cytokeratin gene is preferably a mammalian cytokeratin gene. The cytokeratin gene is preferably the human cytokeratin 18 gene.

The regulatory elements are preferably from the 5' region of the human cytokeratin 18 gene (all or part of the 5' region including modifications thereto, provided the cassette is functional). In another embodiment, the regulatory elements comprise a promoter, the 5' region (or modified 5' region, provided the cassette is functional) and intron 1 (or modified intron 1, provided the cassette is functional) of the human cytokeratin 18 gene.

In another embodiment, the cassette consists of a promoter, the 5' region (or modified 5' region provided the cassette is functional) and modified intron 1 of the human cytokeratin 18 gene. In another embodiment, the cassette may comprise an enhancer.

The transgene is preferably selected from the group consisting of a cystic fibrosis transmembrane conductance regulatory (CFTR) gene, a gene having at least 70% sequence identity with CFTR and encoding a protein having CFTR activity, and a gene encoding a protein having CFTR activity. In another embodiment, the transgene comprises an enhancer and a modified cystic fibrosis transmembrane conductance regulatory (CFTR) gene. The targeted epithelial cell is preferably a submucosal cell.

The invention also includes a liposome comprising the construct (or expression cassette). The invention also includes a transfected cell comprising the
construct of claim 1, claim 2 or claim 6 and lung tissue comprising the cell of claim 15.

The invention also relates to an expression cassette for treating a defect in the CFTR gene in a target epithelial cell, the expression cassette comprising: the DNA of or corresponding to at least a portion of the DNA regulatory elements of a cytokeratin gene which DNA is capable of regulating gene expression in the target epithelial cell; and a gene, operatively associated with the expression cassette elements and capable of expression in the epithelial cell, the gene encoding a protein selected from the group consisting of a CFTR protein; a protein having at least 70% sequence identity with the CFTR protein and having CFTR activity and a protein having CFTR activity.

In alternate embodiments, the protein has at least 80%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, and most preferably at least 99% sequence identity with the CFTR protein and has CFTR activity.

The expression cassette may comprise the DNA sequence in [SEQ ID NO. 1] or the sequence shown in Fig. 19, or a modification or fragment of these sequences. In another embodiment, the expression cassette has at least 70% sequence identity to the sequence in [SEQ ID NO: 1]. In one embodiment of the invention, the defect being treated with the cassette causes cystic fibrosis. The target cell is preferably a lung epithelial cell. The cytokeratin gene is preferably cytokeratin 18. The cytokeratin gene is preferably a human cytokeratin gene (or a cytokeratin gene from another mammal). The DNA regulatory elements from the cytokeratin 18 gene are preferably selected from the group consisting of: a promoter, the 5' region and modified intron 1.

Another aspect of the invention relates to an epithelial cell containing recombinant human DNA regulatory elements and a gene operatively associated with the regulatory elements, the cell expressing proteins not normally expressed by the cell at biologically significant levels. The DNA regulatory elements preferably comprise cytokeratin DNA regulatory elements. The cytokeratin is preferably cytokeratin 18 (from a human or another mammal).

The DNA regulatory elements are preferably selected from the group consisting of: a promoter, the 5' region and modified intron 1. The cell is preferably a...
human epithelial cell. In another embodiment, the cell is a human cystic fibrosis-
associated cell.

The cell preferably contains a gene expressing a protein selected from the
group consisting of: a CFTR protein, a protein at least 70% sequence identity with the
CFTR protein and having CFTR activity; and a protein having CFTR activity.

The invention also relates to an epithelial cell containing recombinant
cytokeratin DNA regulatory elements and a gene operatively associated with the
regulatory elements, the cell expressing a protein not normally expressed by the cell at
biologically significant levels. The cytokeratin is preferably cytokeratin 18 from a
human (or another mammal).

The DNA regulatory elements are preferably selected from the group
consisting of: a promoter, the 5' region and modified intron 1 (or fragments or
modifications of these regions). The cell is preferably a human epithelial cell. In
another embodiment, the cell is a human cystic fibrosis-associated cell. The cell has a
gene preferably expressing a protein selected from the group consisting of: a CFTR
protein, a protein having at least 70% sequence identity with the CFTR protein and
having CFTR activity; a protein having CFTR activity.

The invention also includes a method of treating a patient having a lung
disorder, comprising administering to the patient a liposome containing the cassette of
the invention whereby the cassette transfects targeted lung cells. The method of
administration is preferably selected from a group consisting of aerosol
administration, intratracheal instillation and intravenous injection. The disorder treated
includes cystic fibrosis, cancers of epithelial origin and emphysema.

The invention also includes a method for treating a defect in a gene in a target
epithelial cell, consisting of: administering to the epithelial cell an amount of an
expression cassette of the invention so that the expression cassette is inserted in the
epithelial cell and expressing the gene to produce the protein.

The invention also includes a method for treating defective chloride ion
transport in a cystic fibrosis-associated epithelial cell in a subject having cystic
fibrosis, consisting of: administering to the epithelial cell an amount of an expression
cassette of the invention so that the expression cassette is inserted in the epithelial
cell; expressing the gene to produce the protein so that the protein is transported to the
plasma membrane and generates chloride channels in the cystic fibrosis-associated epithelial cell of the subject.

The invention also relates to a pharmaceutical composition comprising a therapeutically effective amount of the expression cassette and a pharmaceutically acceptable carrier. The invention also relates to a composition comprising the expression cassette and a carrier.

Another aspect relates to the use of the expression cassette for treatment of a disease, disorder or abnormal physical state selected from a group consisting of cystic fibrosis, cancers of epithelial origin and emphysema.

Detailed Description of the Invention

This invention relates to expression cassettes for expressing therapeutic genes or other genes of interest in epithelial cells. The expression cassettes are preferably constructed from human DNA regulatory elements that naturally express genes in epithelial cells to direct the expression of transgenes for use in research, protein production and gene therapy in lung and other organs. The expression cassettes use human DNA regulatory elements that are specifically expressed in epithelial cells to provide high levels of protein expression.

The expression cassettes may be used *in vivo* or *in vitro*. Epithelial cells transformed *in vitro* can be used as a research tool or for protein production. The expression cassettes are also useful for gene therapy by transforming cells *in vivo* to express a therapeutic protein. Gene therapy may be used to treat diseases such as cystic fibrosis, cancers of epithelial origin or emphysema. For example, if one were to upregulate the expression of a gene, one could insert the sense sequence into the expression cassette. If one were to downregulate the expression of the gene, one could insert the antisense sequence into the expression cassette. Techniques for inserting sense and antisense sequences (or fragments of these sequences) would be apparent to those skilled in the art. The gene or gene fragment may be either isolated from a native source (in sense or antisense orientations), synthesized, a mutated native or synthetic sequence or a combination of these.

When the DNA regulatory elements used in the episomal expression cassettes are from human genome, these elements offer better compatibility for human gene therapy because the authentic protein factors interacting with these DNA elements are
present in targeted cells. These cassettes are epithelium-specific and highly efficient; the cell-specificity increases the efficacy and avoids any adverse effects resulting from expression of the therapeutic gene in non-targeted cells. The high efficiency of gene expression is also critical to minimize the dosage of the therapeutic reagents from gene therapy. Additionally, even in cultured cells, the expression from these constructs last longer than the viral promoter based-expression cassette (see Fig. 6).

The expression cassettes of the invention may be used to treat fatal diseases, such as cystic fibrosis which are caused by genetic abnormalities in epithelial cells. The expression of the cystic fibrosis transmembrane conductance regulator (CFTR) gene in human lungs after birth is localized predominately in the epithelial cells of trachea and large bronchi (37), especially in the submucosal cells (11, 12). In cystic fibrosis patients, death may result from lung failure caused by the genetic abnormality.

In a preferred embodiment, the human gene regulatory elements are from the cytokeratin 18 gene. In another embodiment of the invention, cytokeratin 18 gene regulatory elements from other mammals may be used alone or in combination with human cytokeratin 18 gene regulatory elements. Other epithelial cell specific DNA regulatory elements may also be combined in the expression cassettes of the invention.

The following steps are preferably used to design a CFTR expression cassette: first generating a series of DNA constructs that were assessed in cell lines for the expression of reporter genes or the human CFTR gene, then examining selected constructs in primary cells and whole tissue sections, and finally testing selected constructs in mice and humans. In a preferred embodiment, the expression cassette directs a high level of reporter gene expression in human epithelial cells in vivo and in vitro and in rat fetal lung primary epithelial cells. The cassette may be modified to efficiently direct expression of the human CFTR gene with a change in the CFTR coding sequence. The modified expression cassette directs efficient and cell-specific gene expression in lung epithelia of the transgenic mice and human epithelial cells in vivo and in vitro.
Episomal Expression Cassettes

The advantages of using human regulatory elements in the expression cassettes of the invention are described above. In a preferred embodiment of the invention, the human regulatory elements are from a human cytokeratin gene and most preferably from the human cytokeratin 18 gene. These elements control the expression of a transgene expressed in epithelial cells. The specific regulatory elements chosen for a particular cassette may vary depending on factors such as the level of activity of the cassette desired or the characteristics of the gene to be expressed. One skilled in the art can modify the sequences of the regulatory elements and the gene to be expressed using techniques disclosed in this application and known in the art.

Designing an Expression Cassette

K18EpilongSEAP (the construct K18Epilong plus the reporter system SEAP) directed a high level of the SEAP marker in rat lung primary cells (Fig 7). Regulatory elements were derived from the human cytokeratin 18 gene and combined to form the K18Epilong sequence. The SEAP reporter gene system (see Example 1) was inserted into the cassette to measure levels of expression in epithelial cells. K18Epilong included the following cytokeratin 18 gene regulatory elements: 1) intron 1 (which contains a strong enhancer), 2) the K18 promoter, and 3) two 5' fragments (which greatly enhance the level of gene expression). These elements were kept in their original configuration in K18EpilongSEAP as much as possible in the expression cassette, however, other configurations may be used. Keeping the elements in their original configuration is preferable, where possible, to preserve interactions among transcription factors bound to these elements.

Many modifications may be made to the expression cassette DNA sequence and these will be apparent to one skilled in the art. The invention includes nucleotide modifications of the sequences disclosed in this application (or fragments thereof) that are capable of expressing genes in epithelial cells. For example, the K18Epilong sequence may be modified or a gene to be expressed may be modified using techniques known in the art. Modifications include substitution, insertion or deletion of nucleotides or altering the relative positions or order of nucleotides. The invention
includes DNA which has a sequence with sufficient identity to a nucleotide sequence described in this application to hybridize under stringent hybridization conditions (hybridization techniques are well known in the art). The expression cassettes of the invention also include expression cassettes (or a fragment thereof) with nucleotide sequences having at least 70% identity, at least 80% identity, at least 90% identity, at least 95% identity, at least 96% identity, at least 97% identity, at least 98% identity or, most preferred, at least 99% identity to the expression cassette sequences of the invention, or a fragment thereof, including K18pSEAP, K18iSEAP, K18ESEAP, K18EpSEAP, K18EpiSEAP, K18EpilongSEAP, K18EplongSEAP, K18EpilongSEAPI; K18Epilong, K18EpilongTECFTR, K18EpilongmCFTR (pK18mCFTR), pCC10SEAPII, pCC10K18SEAPII, pCC10K18I and K18EpilongmTELacZ (Fig. 4c). The invention also includes nucleotide modifications of the aforementioned sequences that are capable of expressing genes in epithelial cells. Identity refers to the similarity of two nucleotide sequences that are aligned so that the highest order match is obtained. Identity is calculated according to methods known in the art. For example, if a nucleotide sequence (called “Sequence A”) has 90% identity to a portion of [SEQ ID NO: 1], then Sequence A will be identical to the referenced portion of [SEQ ID NO: 1] except that Sequence A may include up to 10 point mutations (such as deletions or substitutions with other nucleotides) per each 100 nucleotides of the referenced portion of [SEQ ID NO: 1].

The invention also includes fragments of the sequences, for example fragments comprising two or more of the human regulatory elements of the invention which are operatively combined for expression in epithelial cells. The invention also includes DNA sequences which are complementary to the aforementioned sequences. One skilled in the art would also appreciate that as other regulatory elements in cytokeratin 18 or CFTR are identified, these may be used with the expression cassettes of the invention. Regulatory elements from other genes are also used. As well, regulatory elements from the cytokeratin 18 gene in mammals other than humans could be inserted in the cassette provided that adequate gene expression still occurs. Other genes similar to the cytokeratin 18 gene may also be used in the expression cassettes. For example, the cytokeratin 18 gene and the cytokeratin 8 gene are expressed in pairs in humans so certain regulatory elements from the cytokeratin 8
gene could be used in the cassettes in addition to, or in place of, cytokeratin 18 regulatory elements. Regulatory elements from other cytokeratin genes are also useful sources of regulatory elements for the expression cassettes of the invention (human cytokeratin genes 1 to 19 are known; cytokeratin genes that are only expressed in skin are less likely to be useful for expression cassettes in lung epithelial tissue).

Regulatory elements and sequences of other genes, such as cytokeratin genes, are known in the art. These regulatory elements may easily be inserted in expression cassettes of the invention and the levels of expression measured. For example, sequences from other cytokeratin genes or cytokeratin 18 genes from other mammals having a high level of sequence identity to the human regulatory elements used in the expression cassettes of the invention (such as cytokeratin 18 regulatory elements) may be easily identified by reviewing sequences from a database, such as Genbank. Suitable sequences preferably have at least 70% identity, at least 80% identity, at least 90% identity, at least 95% identity, at least 96% identity, at least 97% identity, at least 98% identity or most preferably have at least 99% identity to the sequence of a regulatory element (such as a cytokeratin 18 regulatory element) used in the cassettes of the invention disclosed in this application (or a fragment thereof).

Regulatory elements from other genes can be inserted in the expression cassettes. For example, the CC10 promoter (the CC10 sequence is available from the Genbank database; the sequence and other information relating to it in the Genbank database is incorporated by reference) could be substituted in a cassette in place of the K18 promoter. Combinations of regulatory regions can be used to vary the levels of protein production and/or to obtain more cell specific expression. The techniques described to produce an expression cassette with human regulatory elements from the cytokeratin 18 gene may also be used to produce expression cassettes from other genes. Clara cells are nonciliated secretory epithelial cells in the lung airways and they are believed to be important in metabolism of xenobiotics and regeneration of the airway epithelium (Boyd, M. R. 1977, Nature, 269:713-715; Singh et al. 1990, *Biocichimica et Biophysica Acta* 1039:348-355). Their major secretory product is called Clara cell 10 kD protein, or CC10, which is implicated in regulation of lung inflammation. We isolated a 3.3 kb DNA sequence corresponding to the promoter and the upstream region of the human CC10 gene by PCR-cloning. We inserted this
DNA fragment into pSEAPII vector (Tropix) to create the plasmid, pCC10SEAPII, for expressing the Secreted Alkaline Phosphatase (SEAP) reporter gene. To enhance gene expression driven by the CC10 promoter/enhancer in non-Clara cells of lung epithelia, we built the construct, pCC10K18ISEAPII, by inserting intron I of the human K18 gene to the upstream of the SEAP coding sequence. The levels of reporter gene activity of these constructs were assayed with A549 cells. As shown in Fig 3, addition of the K18 intron greatly enhanced the activity of the CC10 promoter/enhancer in A549 cells where the CC10 gene is normally not expressed very well. This broadening of cell-specificity to other lung epithelial cells could be quite useful. We also demonstrated here that the K18 intron can be functional when combined with the human CC10 gene promoter. The combination expression cassette may be further modified according to techniques apparent to one skilled in the art. The expression cassette may be used as a research tool or for protein production.

Other regulatory elements that control expression of the CC10 gene may also be used to produce an expression cassette. A clear advantage of using an expression cassette derived from CC10 and the gene it expresses is that cell specific expression may be obtained. Other genes may have human regulatory elements that are desirable to obtain less cell specific expression.

The DNA sequences of the invention (regulatory element sequences and therapeutic gene sequences) may be obtained from a cDNA library, for example using expressed sequence tag analysis. The nucleotide molecules can also be obtained from other sources known in the art such as genomic DNA libraries or synthesis.

CFTR Expression Cassettes

The examples below show how to make an expression cassette which may be used for CFTR (or its variants or other proteins with CFTR activity) in vivo and in vitro. The examples below are primarily directed to increase the expression of CFTR. However, there are situations where lower levels of CFTR expression are desired, such as when using the cassette as a research tool. In such a case, the expression of the cassette may be altered by incorporating only some of the features of the expression cassettes described below. The level of expression activity of a modified
construct can be measured in an animal model according to methods known in the prior art. Additional changes in the regulatory elements described below may be made in the cassette to alter the level of activity. Regardless of which of the regulatory elements below are used in a cassette, or which additional elements or changes are added to the cassette described below, any variants using human regulatory elements to express genes in epithelial cells are included within the scope of the invention. Any variants using regulatory elements from cytokeratin genes specifically expressed in epithelial cells of any mammal, particularly the cytokeratin 18 gene, are also included within the invention.

For example, the K18EpilongmCFTR expression cassette, discussed below, is customized to produce high levels of CFTR in epithelial cells. Human cytokeratin 18 gene elements were combined with the CFTR gene. Both the regulatory elements in the K18Epilong sequence and the gene were modified as described in the examples below to maximize CFTR production by K18EpilongmCFTR.

K18Epilong was customized to produce a CFTR expression cassette called K18EpilongTECFTR by inserting CFTR cDNA (Fig. 4c). The CFTR gene sequence was manipulated to enhance CFTR protein synthesis. A translational enhancer was added to the 5’ end of the CFTR coding sequence and the translation initiation sequence was optimized according to the Kozak sequence.

The K18EpilongTECFTR cassette was further modified to increase CFTR protein synthesis. The modified expression cassette, called K18EpilongmCFTR (or pK18mCFTR) [SEQ ID NO: 1], caused improved RNA splicing efficiency and removed undesired RNA splice sites. In this cassette, the DNA sequence corresponding to the polypyrimidine tract of the K18 intron 1 was modified by changing the non-coding region of the CFTR gene. Five cytosine residues and three adenine residues were converted into thymine residues. These are translated into uracil in the pre-mRNA sequence (Fig. 10C). The 3’ splice site of the K18 intron was modified by changing the first nucleotide, adenine, of the following exon to guanine (Fig. 10C). The coding region of the CFTR region was also altered to destroy the second cryptic 3’ splice site. This was done by making a single nucleotide change (adenine to guanine; Fig. 10C) which did not alter the protein sequence. A restriction
map for K18EpilongmCFTR is shown in Figure 19. The table below describes the K18EpilongmCFTR expression cassette.

<table>
<thead>
<tr>
<th>Nucleotide Numbers (1 - 12143bp)</th>
<th>Sequence Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (Kpn I) – 2565 (Mlu I)</td>
<td>K18 5’ enhancer and promoter</td>
</tr>
<tr>
<td>2565 (Mlu I) – 3315</td>
<td>K18 intron 1</td>
</tr>
<tr>
<td>3315 – 3354 (Nco I)</td>
<td>Translational enhancer (TE)</td>
</tr>
<tr>
<td>3354 (Nco I) – 7955 (Pst I)</td>
<td>CFTR (Translation starts with ATG in Nco I)</td>
</tr>
<tr>
<td>7955 – 9283 (Sal I)</td>
<td>SV40 small + Ag intron + SV40 early poly A signal</td>
</tr>
<tr>
<td>9283 (Sal I) – 12143</td>
<td>pSEAP (Tropix) backbone</td>
</tr>
</tbody>
</table>

It is clear that the CFTR sequence can be taken out with Neo I and Pst I (Pst I is not unique). Other genes or gene fragments can be inserted in the expression cassette and expressed.

We analyze the expression cassette in CF knockout mice. We generate transgenic mice to express the human CFTR gene with the expression cassettes. We introduce the CFTR expression cassette into CF knockout mice by crossing the CFTR-expressing mice with the CF knockout mice and rescue the CF mice by expression of the human CFTR gene with the expression cassette. In addition, we evaluate the expression cassettes for CFTR expression by intratracheal or intravenous delivery of the plasmid DNA complexed with liposomes (Logan et al. 1995, *Gene Therapy* 2:38-49; Liu et al. 1995, *JBC* 270:24864-24870).

Some of the changes described above to optimize CFTR expression may be omitted if a low level of CFTR expression is desired. For example, if the adenine to guanine change in the CFTR coding region is omitted, CFTR will be produced, but at a lower level. Likewise, variations in the number of cytosine or adenine to thymine mutations may be made if CFTR expression is not destroyed. It would be obvious to one skilled in the art that other changes could be made to alter the levels of expression of CFTR.

The CFTR gene is one therapeutic protein which may be expressed *in vivo* or *in vitro* using the expression cassettes of the invention. Changes in the nucleotide sequence which result in production of a chemically equivalent (for example, as a result of redundancy of the genetic code) or chemically similar amino acid (for example where sequence similarity is present), may also be used as therapeutic
proteins with the expression cassettes of the invention. For example, U.S. Patent No. 5,240,846 discloses mutants of the CFTR gene having a silent mutation that stabilizes expression of the gene. U.S. Patent No. 5,639,661 discloses genes encoding novel CF monomer proteins which have cystic fibrosis transmembrane conductance regulator (CFTR) protein activity.

Other Therapeutic Protein Expression Cassettes

Other therapeutic proteins or mutants may also be used with the cassette. The expression cassettes may be used to drive expression of the cytokine genes, such as Interleukin 10 (De, V. J. 1995, *Annals of Medicine* 27:537-541), to control inflammation in lung, or to drive expression of DNA sequences encoding angiogenesis inhibitors, such as endostain (O'Reilly et al. 1997, *Cell* 88:277-285) and angiostain (O'Reilly et al. 1994, *Cell* 79:315-328) to inhibit tumor formation. These genes may be inserted in the cassette and expressed using techniques described in this application as well as other techniques known in the art. We analyze the expression cassette in a broad range of carcinoma cell lines and oncomice. We also evaluate the expression cassette in cancer gene therapy by testing it in a variety of cancer cell lines, including those from lung, breast, and colon carcinomas.

The expression cassettes are useful in other epithelial tissue, in addition to lung epithelial tissue, because the K18 gene is expressed in the epithelial cells of other internal organs (see Example 3). The DNA regulatory elements of the expression cassettes described below are also useful to direct tissue-specific expression of therapeutic genes in epithelial cells of other organs. However, successful expression of a reporter gene in the right cell type by an expression vector does not guarantee a positive outcome when a therapeutic gene is inserted in the same cassette if the DNA sequence of the therapeutic gene interferes with transcription or subsequent RNA splicing. One skilled in the art can modify the expression construct to accommodate a therapeutic gene. The level of expression activity of a modified construct can be measured in an animal model according to methods known in the prior art.
Research Tool

Mammals and cells cultures transformed with the expression cassette of the invention are useful as research tools. Mammals and cell cultures are used in research according to numerous techniques known in the art. For example, one obtains mice that do not express CFTR and uses them in experiments to assess CFTR gene expression. Experimental groups of mice are transformed with expression cassettes containing different types of CFTR genes (or genes similar to CFTR or fragments of genes) to assess the levels of protein produced, its functionality and the phenotype of the mice (for example, lung structure).

A cell line (either an immortalized cell culture or a primary cell culture) is transformed with an expression cassette of the invention containing a CFTR gene (or variants) to measure levels of expression of the gene and the activity of the gene.

Using exogenous agents in combination with an expression cassette

Cystic fibrosis-associated cells transformed with the cassette expressing CFTR may be treated with compounds that mobilize the recombinant protein (CFTR or a protein having similar sequence and function) as well as mutant forms of CFTR that may already be produced by the cells, so that the native and/or recombinant protein is transported to the plasma membrane and generates chloride channels in the cells. U.S. Patent No. 5,674,898 (Cheng et al.) discloses the use of agents such as carboxylic acid or carboxylate which treat defective chloride ion transport by mobilizing mutant CFTR protein.

Transplant of cells transformed with the cassette

Cells transformed with an expression cassette of the invention may be used in epithelial tissue transplants according to techniques known in the art. Examples of the use of transformed epithelial tissue in transplants are in U.S. Patent Nos. 4,980,286 and 5,399,346.
Transgenic mice and rat primary cells as models of expression cassette function in humans

We used transgenic mice to evaluate the cell-specificity of the expression cassette because this is the most reliable approach to the analysis of mammalian gene expression at the whole organism level. We used rat primary epithelial and fibroblast cells with high purity for the evaluation because the freshly isolated primary cells retain their original properties better than the cultured cell lines. The transgenic mouse and rat primary cell models predict expression cassette function in humans.

Example 1. Development of reporter genes for liposome-mediated plasmid gene transfer

For functional analysis of transcription regulatory elements, more than one reporter gene system is normally required because an extra reporter gene under a different promoter is needed to serve as an internal control to normalize the effects resulted from variation in transfection. In addition a particular reporter gene may not be compatible with a particular expression cassette. Therefore, we developed or adapted the following convenient reporter gene systems for lung gene expression studies:

1.1) GUS reporter system.

A bacterial gene (E. coli GUS, coding for β-glucuronidase) has worked well as a reporter gene in plants; its expression can be detected by either highly sensitive chemiluminescent assays (2, 3) or cell staining (16). Although β-glucuronidase activity is present in some mammalian cells, the optimal pH value for the mammalian enzyme is around 4-5 whereas that of the bacterial enzyme is around 7. We have subcloned the GUS gene into pCEP4 (Invitrogen) and transfected different cell lines and primary cells. We demonstrated that GUS can be a sensitive reporter for quantification of gene expression in lung cells. In order to further improve the sensitivity of GUS gene as a reporter, we added a translational enhancer (18) and a DNA sequence encoding a nuclear localization signal (19) to the 5' end of the GUS coding sequence. As shown in Fig. 1, GUS expression was greatly enhanced. We test and optimize the conditions for cell staining.
1.2) SEAP (secreted alkaline phosphatase) reporter system.

We adapted SEAP as a primary reporter for gene expression in cultured cell lines and lung primary cells (Figs. 3, 5 and 6) because the system is more economical and less labor-intensive than CAT or other reporter gene systems. The expression of SEAP can be quantified simply by chemiluminescent assay of the alkaline phosphatase secreted in culture media (2, 3).

1.3) GLP reporter system.

We also adapted the Green Lantern Protein (GLP, a modified version of green fluorescent protein) as a reporter to mark the cells transfected with liposome/DNA complex (Fig. 2).

The above systems may be modified and other markers may be incorporated into the expression cassettes.

Example 2-Optimization of transfection conditions

We carried out experiments to optimize the transfection conditions because liposome-mediated gene expression in cell lines of lung origin is very inefficient. We used cell lines, such as, A549 (Human Lung Carcinoma cell line), IB3 (Cystic fibrosis bronchial epithelial cell line transformed with adeno-12-SV40;(45)), COS7 (SV40 transformed African Green monkey kidney), and WI38 (Human Lung diploid of fibroblast origin). There are many types of liposomes commercially available and a person skilled in the art is able to select suitable liposomes. We used DODAC:DOPE (INEX) because it is effective and large quantities will be available for clinical trials. For most of these cell lines, we found that about 2.5 nmol of DODAC:DOPE/cm² is optimal. Fig. 3 shows the effect of DNA:l lipid ratio on gene expression in A549 and COS7 cells.

Example 3-Construction of K18 expression constructs

Cytokeratins are major components of the epithelial cytoskeleton and different sub-types characterize different epithelia (26). The cytokeratin 18 gene is expressed predominately in internal organs (lung, liver, kidney and intestine) and brain. It is highly epithelium-specific and has been a useful marker of epithelial cell transitions in
the remodeling adult lung (42, 43). The 2.5 kb sequence from the 5' region is able to
direct lung gene expression in a copy number-dependent and position-independent
manner in transgenic mice (28). Therefore, this region can be considered as a lung
LCR (locus control region). A 3.5-kb 3' flanking sequence is required for gene
expression in liver and intestine. There is a strong enhancer present in the first intron
(29). To construct an expression cassette with the human cytokeratin 18 gene
regulatory elements, we isolated the K18 minimal promoter, intron 1 and two 5'
fragments by PCR-cloning (Fig. 4). We found that any one of the elements alone
could not direct SEAP expression in A549 or COS7 cells. The minimal promoter plus
intron 1 has a low level of activity and the two fragments from the 5' region can
greatly enhance the level of gene expression (Fig. 4). Since the 5' region and the
intron 1 of the K18 gene are critical for high levels of gene expression, we decided to
keep these elements in their original configuration as much as possible in construction
of our first expression cassette, K18EpilongSEAP, to preserve the potential
interactions among the transcription factors bound to these elements. In this reporter
expression construct, the transcription will start from the K18 promoter, but protein
translation will start from the first codon of the reporter gene because most of the K18
exon 1, including all the coding sequence, is deleted.

Example 4-Episomal expression of K18 constructs in cultured cells

To show that the episomal expression directed by K18 regulatory elements has
epithelial specificity, we expressed K18EpiSEAP in A549 (human lung epithelial
origin) and WI38 (human lung fibroblast origin). As shown in Fig. 5, K18EpiSEAP
expressed the reporter gene only in A549, but not WI38, while the viral promoter,
CMV, expressed in both cell lines (Fig. 5). The SV40 promoter was not active in
these lung cell lines although it was functional in COS7 cells which are monkey
kidney cells transformed with SV40 large T antigen. Our results showed that
K18EpilongSEAP is about 3 times more active than K18EpiSEAP (Fig. 15) and its
expression lasted much longer than the CMV promoter in cell lines (Fig. 6). In vivo,
the low levels of long lasting expression of the CFTR gene by K18Epilong offers
more clinical benefits to patients in lung gene therapy than the transient expression
from viral promoters. K18EpilongSEAP also exhibit clear cell specificity in that its
expression can only be detected in A549 cells, but not WI38 or another human lung fibroblast line, HLF (data not shown).

Example 5-Expression of K18Epilong in primary lung epithelial cells

Because promoters active in cell lines are often not active in primary cells, we decided to test the K18EpilongSEAP in rat lung primary cells. Although the K18Epilong expression in cell lines was much lower than that of CMV promoter, its expression in rat lung primary cells was better or comparable to that of CMV promoter (Fig. 7).

Example 6-K18 CFTR expression in cell lines and in primary cells

Because the K18Epilong can direct a high level of SEAP expression in rat lung primary cells, we built a CFTR expression cassette by replacing the SEAP coding sequence with CFTR cDNA to create K18EpilongTECFTR (Fig. 4c). The CFTR gene contains 27 exons and 26 introns, spanning over 250 kb on the long arm of human chromosome 7 (20, 30, 38); but the entire coding sequence is about 4.5 kilobases in length. In order to enhance CFTR protein synthesis, we added a translational enhancer (18) to the 5' end of the CFTR coding sequence and optimized the translation initiation sequence according to the Kozak sequence (23). To show that the CFTR gene was expressed from our expression cassette, we transfected COS7 cells with K18EpilongCFTR. Fig. 8 shows that the transfected cells have cAMP-dependent iodide effluxes, indicating that the episomal expressed CFTR can form functional channels in transfected cells. But, the activity of the CFTR channels was not as high as expected, indicating that the CFTR expression by this construct is not optimized. As shown in Fig. 9, we detected three CFTR mRNA species from transfected rat lung primary cells or IB3 cells using RT-PCR, indicating that two cryptic RNA splice-sites are activated; according to the sizes of the three PCR products, only about 25% of the mature CFTR species (the top band) are properly processed. Therefore, we modified the construct to improve the RNA splicing efficiency.
Example 7-Optimizing RNA splicing

There is not much known about the regulation of RNA splicing in lung cells, despite the important role that splicing can play in tissue-specific gene expression (35); e.g. the presence of rPL32 intron 3, which does not contain an enhancer, led to a 30-fold increase in mRNA relative to the intronless rPL32 minigene (21). Although the mechanism for stimulation of gene expression by regular introns is not clear, it is likely that the RNA splicing machinery may preferentially protect the intron-containing pre-mRNAs from nuclease degradation or facilitate the transport of the spliced mRNAs to cytoplasm. Because intron 1 of the cytokeratin 18 gene contains a strong enhancer that is required for gene expression, we included it in the K18-based CFTR expression cassette. But, incorporation of a heterologous intron into a cDNA sequence could potentially activate the cryptic splice-sites in the intron or in the cDNA and cause mis-splicing or alternative splicing. One potential solution to this problem is to put the intron after the coding sequence of the cDNA as long as the intron and/or intron-containing enhancer works from downstream. When the K18 intron 1 in K18EpilongSEAP is moved downstream of the reporter gene, expression of the reporter gene is greatly diminished (Fig. 16). Therefore, we modified the K18Epilongcfr to enhance the desired RNA splicing and to eliminate undesired RNA splice-sites.

Typical eukaryotic introns contain relatively conserved, short sequences recognized by the splicing machinery, spliceosome (27). The consensus sequences for the 5' splice site, the branch site and 3' splice site in mammals are AG/GURAGU, YNYURAC, and YAG/G, respectively (R=purine, Y=pyrimidine, N=any nucleotide, and / indicates a splice site; the underlined nucleotides are completely conserved). In addition, a polypyrimidine tract is often present near the 3' splice site. We PCR-cloned the cDNA sequences derived from the alternatively spliced mRNAs and identified the splice-site junctions by DNA sequencing (Fig. 10 B). We then realized that the poly U (uracil) sequence is the preferred polypyrimidine tract for the epithelial cells we used (Fig. 10B). We also noticed that the K18 intron 5' splice-site (AG/GUAAGG), putative branch-site (UUUUCAC), and 3' splice-site (CAG/A) are not highly conserved and can be potentially improved, since introns with more conserved sequences are, in general, spliced more efficiently (21). We modified the
DNA sequence of pK18EpilongTECFTR corresponding to the polypyrimidine tract of the K18 intron 1 by changing five Cs (cytosine residues) and three As (adenine residues) into Ts (thymine residues), which will be translated into Us in the pre-mRNA sequence (Fig. 10 C). We also modified the 3' splice site of the K18 intron by changing the first nucleotide, A, of the following exon to G (Fig. 10C). Since these nucleotides are not in the CFTR coding region, these changes would not affect the protein produced from the expression plasmid. In addition, we have made a single nucleotide change (A to G) in the CFTR coding region (see Fig. 10 C) to destroy the second cryptic 3' splice site. We engineered the change in such a way so that the protein sequence remains the same and thus, the CFTR function will not be affected by this modification. This new construct was designated K18 EpilongmCFTR, or pK18mCFTR [SEQ ID NO: 1], and the previous version of plasmid was referred as K18EpilongTECFTR. As shown in Fig. 11, these changes very effectively eliminated the alternative RNA splicing and increased the steady state level of the CFTR mRNA.

To show that the new construct expresses functional CFTR channels, we transfected COS7 cells and performed iodide efflux assays. As shown in Fig. 12, a higher level of CFTR channel activity was observed in cells transfected with K18EpilongmCFTR than in cells transfected with the previous construct.

Example 8-Expression analysis of the K18 regulatory elements in transgenic mice.
To demonstrate that the modified K18 5' regulatory elements and intron 1 can direct cell-specific gene expression in lung epithelia in vivo, we carried out a transgenic analysis (28). The transgenic fetuses were identified by PCR and Southern blot analyses of the genomic DNA; the lungs of the 14 day fetuses were dissected out and stained with X-gal solution. These modified K18 DNA regulatory elements direct efficient and cell-specific expression of E. coli LacZ gene in lungs of the transgenic fetuses (Fig. 13-14).
Example 9-Expression in Calu-3 cells

Since the human CFTR gene is heavily expressed in submucosal cells (12), we show that our epithelial expression cassettes function in these cells. The current available cell line that resembles the human submucosal cells is Calu-3 which was derived from a lung adenocarcinoma (available from the American Type Culture Collection). These cells express leukocyte protease inhibitor, lysozyme, and all markers of serous gland cells (34). They also express a high level of CFTR and when confluent, show polarization typical of epithelia.

To show that our expression cassettes direct gene expression in Calu-3 cells, we transfect these cells with K18EpilongSEAP and we perform quantitative assays of secreted alkaline phosphatase activity. The SEAP reporter system is the most convenient assay system because only a small amount of culture medium is required for each assay. The E. coli LacZ gene is also a useful reporter.

Example 10-Expression in lung sections

We show the activity of the expression cassettes in vivo. A recently revived technique of lung slice culture (24, 39) is valuable for assessment of expression cassettes. Lungs of mice or rats are excised from anesthetized animals and inflated with 2% liquid agarose at 37°C through trachea. Following cooling to 4°C, the lungs are cut into 0.2 to 1.0 mm thick slices and cultured overnight in cell culture medium. Cells in these lung slices can survive up to seven days (24, 39). Since more cell-cell interactions are maintained in the lung sections, gene expression in these sections should have more relevance to the gene expression in vivo. In addition to the preservation of cell-cell interactions, there are other reasons for utilization of this method; the transfection conditions for lung slices can be easily controlled and one mouse lung can be sectioned into many slices for testing many constructs at once while more animals have to be used for the same experiment in vivo. The mouse lung slices are transfected with K18EpilongLacZ construct with DODAC:DOPE in the same way as for cultured cells (see above) in a 6 well dish and cultured at 37°C for two days. We use the LacZ as a reporter in lung slices because its β-galactosidase activity can be easily measured with chemiluminescent assays as well as cell-staining.
with X-gal. The transfected tissue slices are homogenized for β-galactosidase activity assay or fixed for (i) cell staining, (ii) in situ hybridization to detect cell-specificity of RNA expression, and (iii) fluorescent immunostaining of reporter gene products (the anti-β-galactosidase antibody is available from Clontech).

5 Example 11- Expression in model animals

Gene expression studies in model animals are necessary for any expression cassette to be used for gene therapy because regulation of gene expression in model animals resembles that in human better than any other in vitro systems. We transfect CD1 mice in triplicates with K18EpilongLacZ using an intra-tracheal instillation technique established by Dr. O'Brodovich's group (at the Hospital for Sick Children, Toronto, Canada) and others. Other transfection techniques known in the art may also be used. A negative control plasmid, K18Epilong (vector) is included in the study. The β-galactosidase activity in lung cells is determined initially 2 days after transfection by using the chemiluminescent assays. To carry out a time course study, transfected mice are sacrificed at day 7, 14, 21, 28 post-transfection and the β-galactosidase activity in lung cells is assayed.

The best animal models available for cystic fibrosis are the CF knock-out mice, that are available in the Hospital for Sick Children, animal facility (Toronto, Canada). We express K18EpilongCFTR in CF knock-out mice. Dr. O'Brodovich has confirmed the observations (14) that UNC CF mice have a higher basal potential difference (PD) and fail to change their PD in response to lowered luminal chloride concentration. We transfect the UNC CF knockout mice with our CFTR expression construct through intra-tracheal instillation. A vector plasmid is used as a negative control. The cell-specific expression of the human CFTR mRNA is assessed by fluorescent in situ RT-PCR and the human CFTR protein is detected by fluorescent immunostaining. Although there are not many high quality antibodies to CFTR available for in vivo detection, Demolombe et al. (8) have recently optimized the conditions for immunofluorescent staining of human CFTR with a monoclonal antibody, MATG 1031. We also transfect the UNC CF mice with the same CFTR construct by nasal instillation and measure the nasal PD of the transfected mice.
Example 12 - Temporal expression of the lacZ gene

We analyzed temporal expression of the lacZ gene. Fig. 17 shows some of the results on β-galactosidase expression driven by K18 DNA regulatory elements in K18EpilonmgmTELacZ at different gestational ages in the transgenic mice.

Example 13 - Submucosal expression of the lacZ reporter gene

Human airway submucosal glands play a major role in maintaining the volume and composition of airway surface fluid, which is important in airway clearance and protection from infection by microorganisms. Fig. 18 shows that the expression cassette we developed (K18EpilonmgmTELacZ) can target the lacZ reporter gene expression to submucosal glands in the trachea of adult transgenic mice.

The expression cassettes of this invention may be used in epithelial tissue gene therapy, particularly lung epithelial tissue gene therapy. The pharmaceutical compositions of this invention used to treat patients having degenerative diseases, disorders or abnormal physical states of the epithelial tissue could include an acceptable carrier, auxiliary or excipient. The conditions which may be treated by the expression cassettes include cystic fibrosis, emphysema, and cancers of epithelial origin arising in the lung or other organs.

The pharmaceutical compositions can be administered to humans or animals by methods such as aerosol administration, intratracheal instillation and intravenous injection. Dosages to be administered depend on patient needs, on the desired effect and on the chosen route of administration. The expression cassettes may be introduced into epithelial cells using in vivo delivery vehicles such as liposomes. They may also be introduced into these cells using physical techniques such as microinjection and electroporation or chemical methods such as coprecipitation and incorporation of DNA into liposomes. The expression cassette may be introduced into epithelial cells, such as submucosal cells, using these techniques. The expression cassettes may also be used in gene expression studies.
The pharmaceutical compositions can be prepared by known methods for the preparation of pharmaceutically acceptable compositions which can be administered to patients, and such that an effective quantity of the expression cassette is combined in a mixture with a pharmaceutically acceptable vehicle. Suitable vehicles are described, for example in Remington's Pharmaceutical Sciences (Remington's Pharmaceutical Sciences, Mack Publishing Company, Easton, Pa., USA).

On this basis, the pharmaceutical compositions could include an active compound or substance, such as an episomal expression cassette and one or more genes to be expressed, in association with one or more pharmaceutically acceptable vehicles or diluents, and contained in buffered solutions with a suitable pH and isoosmotic with the physiological fluids. The methods of combining the expression cassettes with the vehicles or combining them with diluents is well known to those skilled in the art. The composition could include a targeting agent for the transport of the active compound to specified sites within the epithelial tissue.
Materials and Methods

Construction of reporter gene and CFTR expression cassettes. Polymerase chain reactions (PCR) were performed with pfu polymerase (Stratagene) and primer pairs (K18P3-5’GCAACCGTCAGTAAAGGATTGAG [SEQ ID NO: 2]/K18P4-5’CGAAGATCTGGAGAGTGTAGAGAG [SEQ ID NO: 3]), (K18XH5-5’CATATAAAGCTATTTTCTGCCC [SEQ ID NO: 4]/ K18P2*-5’GCTACGCGTGAGAGAAAGGACAGACTC [SEQ ID NO: 5]),(K18NsiI-5’CTCAGTAGGCTGCTGAATGC [SEQ ID NO: 6]/K18XH3*-5’GACACGACAGCGAGTGTTGTTG [SEQ ID NO: 7]) K18P1-5’CGAGGTACCAATAACAGTAAAAAGGCAGTAC [SEQ ID NO: 8]/K18NsiIR-5’CACCGGTATATACCTTTTCCTGC [SEQ ID NO: 9]) on genomic DNA of human lung epithelial cells (A549) to isolate the first intron, minimal promoter, and two 5' untranslated regions, respectively, of human K18 gene. PCR products were verified by restriction mapping, according to restriction patterns predicted from published sequence, before cloning into the polylinker region of pSEAP(Tropix), via naturally-occurring restriction sites or sites introduced by PCR primers. The primers were purchased from ACGT Corp., Toronto and the PCR machine (DNA Engine, PTC-200), was purchased from Fisher.

The translation initiation sequence of the human CFTR cDNA was modified to introduce an Nco I site as well as to improve the initiation signal, according to Kozak’s rule, by PCR using a cftrp1 primer (of sequence 5’GAGACCATGGGAGGTCG [SEQ ID NO: 10]). A linker containing the alfalfa mosaic virus translational enhancer (TE) sequence (5’GTTTTTATTTTTAATTTTCTTTCAATTACTTCCA [SEQ ID NO: 11]) was inserted immediately upstream of the Nco I site. The SEAP coding region in K18EpilongSEAP was then replaced with the TE-4.6 kb CFTR cDNA fragment, resulting in the K18EpilongTECFTR construct.

PCR mutagenesis was performed on K18EpilongTECFTR using a 2-step nested PCR strategy. First-round PCR reactions incorporate primer pairs (TE2-5’GTCCGAAAGCCAGTGTCTGCTGCC [SEQ ID NO: 12]/K183’S5’AAATTAAAAATAAAACAGACCTGAAAAAAAGAGAGAGGTTGTTT
CCATGA [SEQ ID NO: 13]) and (TEtop-
5'GATCTGTGTTTATTTTTTAAATTTCCACCATGGCCCC
[SEQ ID NO: 14]/cfr3'SS-5'GGTGACTTCCCCAATATAAAAAG [SEQ ID NO: 15]). Products from the first-round reactions were mixed and served as templates for
the second-round PCR using TE2 and cfr3'SS primers. K18mCFTR construct was
then generated by cloning the second-round PCR product back into
K18EpilongTECFTR to replace the corresponding parental fragment.

Tissue culture and transfection. A549, a human lung carcinoma cell line, and COS-
7 cells were cultured in Dulbecco's modified Eagle's medium, supplemented with 10%
fetal bovine serum (FBS). Human lung fibroblasts, WI38, were maintained in alpha
minimum essential medium (alpha-MEM) with 10% FBS. IB3, a human cystic
fibrosis bronchial epithelial cell line, was cultured in LHC-8 with 5% FBS. Day 19
rat fetal lung epithelium and fibroblast cells were isolated according to standard
procedure and maintained in alpha-MEM with 10% FBS.

For transfection, cells were seeded at 50-80% confluency in six-well plates
and allowed to settle in their regular media for overnight. The cells were then
transfected in serum-free media with 1mg DNA premixed with 12 mg of
lipofectamine (GibcoBRL) per well according to the recommended procedure.

Primary cells were transfected with premixed DNA:lipid complexes consisting of 1.66
mg DNA and 16.6 mg DODAC: DOPE (1:1 dioleyl(dimethylammonium
chloride:dioleoylphosphatidylethanolamine, INEX) in serum-free media for 24 hr.

Reporter assay. Culture media from transfected plates were collected at indicated
time points post-transfection, before changes of media, and centrifuged 1 min at
16,000 x g. Supernatant was frozen at -80°C or assayed immediately. Secreted
alkaline phosphatase activities in the media were detected with Phospha-Light
chemiluminescent assay system (Tropix) as recommended and measured on a
luminometer (BioOrbit).

Detection of CFTR mRNA. DNase I treated total RNA from transfected cells,
prepared with RNeasy column (Qiagen), was subjected to reverse transcription,
followed by PCR (30 cycles) using TE1 (5'CTGTCCCTTCTCAGCTCGGTAC [SEQ ID NO: 16]) or TE2 in combination with cftrp2 (5'GAGGAGTCGACTTGC [SEQ ID NO: 17]) or cftrp3 (5'GTTGGTTGGAAAGGAGACTAAAG [SEQ ID NO: 18]) primers.

Functional analysis of CFTR protein. Iodide efflux assays were performed 48 hr post-transfection as previously described(5). Slight modifications were made on compositions of the loading buffer, which is 136 mM NaI, 4 mM KNO₃, 2 mM Ca(NO₃)₂, 2 mM Mg(NO₃)₂, 11 mM glucose, and 20 mM HEPES, pH 7.4, and the agonists, 20 mM forskolin, 0.5 mM 8-(4-chlorophenylthio)-adenosine 3'; 5'-cyclic monophosphate (CPT-cAMP), and 0.5 mM 3-isobutyl-1-methylxanthine (IBMX).

Production of Transgenic mice. The K18mLacZ construct was constructed by replacing the human CFTR coding region in the K18mCFTR plasmid with the E. coli LacZ gene. The K18mLacZ expression cassette was released by digestion with Kpn I. The DNA fragments were separated by agarose gel electrophoresis and purified through elutip (Schleicher & Schuell) following electroelution. The DNA fragments were microinjected into the pronuclei of fertilized eggs of STL/B16 mice. Fertilized eggs that proceeded into 2-cell stage were transferred to pseudo-pregnant CD1 recipients. The lungs of the 14 day fetuses were dissected out and stained with X-gal solution and the transgenic fetuses were identified by PCR and Southern blot analyses of the genomic DNA.

The present invention has been described in terms of particular embodiments found or proposed by the present inventor to comprise preferred modes for the practice of the invention. It will be appreciated by those of skill in the art that, in light of the present disclosure, numerous modifications and changes can be made in the particular embodiments exemplified without departing from the intended scope of the invention. All such modifications are intended to be included within the scope of the appended claims.

All publications, patents and patent applications are herein incorporated by reference in their entirety to the same extent as if each individual publication, patent or patent application was specifically and individually indicated to be incorporated by
reference in its entirety. This application claims priority from Canadian application no. 2,205,076, which is incorporated by reference in its entirety.
References

Transcriptional elements from the human SP-C gene direct expression in the
primordial respiratory epithelium of transgenic mice. Developmental Biology
156:426-43.

identification of cell types in normal and in bleomycin-induced fibrotic rat
Disease 130:910-6.

Journal of Biological Chemistry 270:18997-9007.

and W. B. Guggino. 1991. A cystic fibrosis bronchial epithelial cell line:
immortalization by adeno-12-SV40 infection. American Journal of Respiratory
SEQUENCE LISTING

(1) GENERAL INFORMATION:

(i) APPLICANT:
(A) NAME: MRC Research and Development Limited Partnership
(B) STREET: 555 University Avenue, Suite 5726
(C) CITY: Toronto
(D) STATE: Ontario
(E) COUNTRY: Canada
(F) POSTAL CODE (ZIP): M5G 1X8
(G) TELEPHONE: 416-813-5982

CORRESPONDENCE ADDRESS: Deeth Williams Wall
Suite 400, 150 York Street
Toronto, Ontario M5H 3S5

(ii) TITLE OF INVENTION: Epistomal Expression Cassettes for Gene Therapy

(iii) NUMBER OF SEQUENCES: 18

(iv) COMPUTER READABLE FORM:
(A) MEDIUM TYPE: Floppy disk
(B) COMPUTER: IBM PC compatible
(C) OPERATING SYSTEM: PC-DOS/MS-DOS
(D) SOFTWARE: PatentIn Release #1.0, Version #1.30 (EPO)

(v) CURRENT APPLICATION DATA:
APPLICATION NUMBER:
FILING DATE:
CLASSIFICATION:

PATENT AGENT INFORMATION
NAME: Deeth Williams Wall
REFERENCE NUMBER: 1786/0003

(2) INFORMATION FOR SEQ ID NO: 1:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 12143 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: circular

(ii) MOLECULE TYPE: other nucleic acid
(A) DESCRIPTION: /desc = "Mixture of genomic DNA, cDNA and other types."

(iii) HYPOTHETICAL: NO
(iv) ANTI-SENSE: NO

(v) FRAGMENT TYPE:

(vi) ORIGINAL SOURCE:

(vii) IMMEDIATE SOURCE:

(viii) POSITION IN GENOME:
CHROMOSOME/SEGMENT:
MAP POSITION:
UNITS:

(ix) FEATURE:
(A) NAME/KEY: enhancer
(B) LOCATION: 8..2570
(C) IDENTIFICATION METHOD:
(D) OTHER INFORMATION:/standard_name= "K18 Enhancer/Promoter"
 /note= "DNA fragment was obtained by PCR-cloning and minor modifications were introduced for the purpose of PCR."

(ix) FEATURE:
(A) NAME/KEY: intron
(B) LOCATION: 2571..3318
(C) IDENTIFICATION METHOD:
(D) OTHER INFORMATION:/standard_name= "K18 intron 1"
 /note= "DNA fragment was obtained by PCR-cloning and modifications were introduced to improve the splicing efficiency."

(ix) FEATURE:
(A) NAME/KEY: enhancer
(B) LOCATION: 3319..3354
(C) IDENTIFICATION METHOD:
(D) OTHER INFORMATION:/standard_name= "Alfalfa mosaic virus translational enhancer"
 /note= "Fragment was synthesized chemically."

(ix) FEATURE:
(A) NAME/KEY: misc_feature
(B) LOCATION: 3355..7948
(C) IDENTIFICATION METHOD:
(D) OTHER INFORMATION:/standard_name= "CFTR cDNA"

(ix) FEATURE:
(A) NAME/KEY: misc_feature
(B) LOCATION: 7949..7984
(C) IDENTIFICATION METHOD:
(D) OTHER INFORMATION:/standard_name= "pBluescript II KS(+) multiple cloning site"

(ix) FEATURE:
(A) NAME/KEY: intron
(B) LOCATION: 8507..8572
(C) IDENTIFICATION METHOD:
(D) OTHER INFORMATION:/standard_name= "SV40 small t antigen intron"

(ix) FEATURE:
(A) NAME/KEY: polyA_signal
(B) LOCATION: 9178..9212
(C) IDENTIFICATION METHOD:
(D) OTHER INFORMATION:/standard_name= "SV40 polyadenylation signal"

(ix) FEATURE:
(A) NAME/KEY: polyA_signal
(B) LOCATION: 12021..12055
(C) IDENTIFICATION METHOD:
(D) OTHER INFORMATION:/standard_name= "SV40 polyadenylation signal"

(ix) FEATURE:
(A) NAME/KEY: rep_origin
(B) LOCATION: 9562..10205
(C) IDENTIFICATION METHOD:
(D) OTHER INFORMATION:/standard_name= "pUC origin of replication"

(ix) FEATURE:
(A) NAME/KEY: misc_feature
(B) LOCATION: 11283..11353
(C) IDENTIFICATION METHOD:
(D) OTHER INFORMATION:/standard_name= "Ampicillin resistance gene"

(ix) FEATURE:
(A) NAME/KEY: misc_feature
(B) LOCATION: 11345..11800
(C) IDENTIFICATION METHOD:
(D) OTHER INFORMATION:/standard_name= "fl single strand DNA origin"

(x) PUBLICATION INFORMATION
AUTHORS:
TITLE:
JOURNAL:
VOLUME:
ISSUE:
PAGES:
DATE:
DOCUMENT NUMBER:
FILING DATE:
PUBLICATION DATE:
RELEVANT RESIDUES IN SEQ ID NO.:

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

45

SUBSTITUTE SHEET (RULE 26)
GGTACCAATA ACAGTAAAAAG GCAGTACATA GCTTGGTGAC TCCACATACT TTATTATAAA 60
ATACTGCCCA ACTTGACAGT TCTGGAATCC AGTGGGGGAA TATAAAGGTT AAAGCAGGAG 120
AGACCCCTCT GACTGGAAAC TCTTACCTCC CAGAAGCCTT GTATGCAAAAA CCAATGGGCA 180
TTCAATTTGA TGTTATTTTG CATCCCCGTTC GCTCCCAAGC CTTGAGGAGG CCCCAGGCCCT 240
CCCTGGCCCA GCTCCACCCC TGACTGCCGC CTGGCTGGGT CCCATTGAGC ACTTGGGGCT 300
CTCCCCACCA TTAGTTGACA GATCGAGAAC AATTCAGGCT CAGGTCTCTT ATCTGTGCTC 360
TGCCCCACCA CTGGCAGGTC CACTGGCAAG GCTTTTCCAG GGTCTCTTCTT ATCCCGAGTC 420
TGCCCTCTCTA TTGGCTCTCC CTTTCCCTCT CAGCTGTTAG CTCGAATAGA ATCAATAGGT 480
CCACTCCAGA GCAAGAGCAA CAGCCCAATG TGTCATACCA GGGCCCTGCA CAAATACCAG 540
CTGCTGAGGC TGACAAAACTT GAAGGCACAA CACCCTAAGT TCCCCCAAC ACTTCTATTCA 600
GCAGGGATTG TCATCCAGCT TCAGGGGGCA GCCAGCAGTA AAGCCTCCCT ATCTCCACTCC 660
TTCTCACACA GAAGCTGGGG AGAGCACTCTT GGAGGATGCA GTCCCTGGGG GCCAGGCTTC 720
TAATCCAGAC AGCCCTTACA AGGGCGGACA GGAGAAGGAC TGGCTGGGAG AAAGTCTCTA 780
GAAAAAGGGG GAGGGGCACT GCCAACCCAG GCTGGCTCACG TGCTATAGAT GTCTAGAGAG 840
TGCCCTGCCTG TCCCCAGGGA CCCATGCGGA TGTAAGCACG ATTACATTTA TTTATTATT 900
TATTTATTTT GAGTCAGATG TTGGCTCTGG TGCCCGAGGC TGGAGCGCGA CGGCCAGCTC 960
TTGGCTCAGT GCAACCTCTG CTCCTCTGGT TCAAGCGATT CTCCCTGCCG AGCCCTGCTG 1020
GTAGCTGAGA TTACAGGAGG ACACCTGTGT GTTGAATTGT TGTAATTTTGA GTGAGAGAAAG 1080
GGTGTCACCA TGTTGAGTCA GCTGGGCTCA AAAAAATTTT TTTTTTTTTT TTTTTTTTTT 1140
AGACAGAGTC TTGCTCTGGT GTCTAGGGCT GAGTGCAGTG GCATCGAAGT CTTGACCTCA 1200
AGTGATCCAC CCGCTCCGCG CTTCCCAAGCT GCTGGGATTA CAGGGCATAG CCACTGTGCC 1260
GGCGATGTG GGACACATTA TCACTCCTGT GAGAGATTTT TGTTCTCCTT TGTCCACGCC 1320
CTCTCCTCCC AGCTCCTAGA AGTGGGCGCTG GCCACACAGTA GTTGGTCAAT GCATCTGATT 1380
TGAATTGTTA ATGCTCAGGA TTTGTATTAAT TTAGGATGCA GAGAAGGTTA TATAACGCTG 1440
TGCAAGAGTC AGGATGCAAT CCTGTCACAA ATCACAGTGT TCCACTGAGG CAGGCACCCCT 1500
GQGAGTGGAG GCGGAGGAGG GAGGGGTTGT GGAGGCGGCT CAGAGACTGG GTTTGTATTT 1560
GQGAGTCTGCG ACCTATTTTGC TGAGTGAATG TATAGTTGTGT TGCACTCGAG AGGACACCTC 1620
TGATGATTCA GGGTGAGTGT GTGGTGAAGG AAACGTGGGC AGCCGAGGAG TGTTGAGGAG
1680
CCAGGTCAGC CTTGGGCTTGG AGTGTTGTAAG CAGGCAGCTA TGAGGCTGGG CATGGCTTCT
1740
CTCTCCTTTC TCCAGCTCCCG AGCCTTTCTT CCCCAGGACT CCTGGGGCTTC CAGAGATGCC
1800
CAAAGATCCC CTCCACAGTG GATAAATTTG GGCTGCAAGT TAAGGACAGC TAGAGGAGACT
1860
CACAGGGCAT TCCACCCGCA CACACCAGCA CCCAAATATT TCTTTTCTTT TTCTTTTTTG
1920
AGACAGAGTC TCACTCTGTCC GCGAGCTGTC AGTGTCGCGGA TCTCGGCTCA CTGCAACCTC
1980
CGCTTCCAG GTTCAAGGGA TTCCCCCTCC TACGGCTCCC AAGTAGCTGA GACTACAGGC
2040
GTCGACCACG AGCTCCCCGCT AAATTTTTAT AGTTTAAGAG AGAGGGGTAG CACCATGTTG
2100
GCTAGGATGG TCTGACTTCG TGATCCTGTG GATTCGCCCCA CTAGGGCTCT CCAAATGGCT
2160
GAGATTACAG GCGTGAGGACCT CTGGCAGGGC TCAAGACTCC CAAATTCTCA ACTGCCAGC
2220
ACCTCCTCCA CTTGGGGGAG AAGAGCATAA TAACGTATT TTCTGCCCCT AAAGCCAGCT
2280
CGAGGGCCGA CAACACCTGC TGTGCTTGGT CAGCCGGCTGT TGCCCCACCC GTTCTGAGGG
2340
GGTGAGGGG GCTTTTGAGC GCTGGCGGGA GGGCGGGGAG GTGGGGCCTG GGGCGGAGCG
2400
GCCGGGGGG GAGGGCGCGC GCTCCAGGCT GCCTCAGCTGT GCTGGGCTGCT TCCGAAGGCG
2460
CTCAGGGGGC GGGCCGGCGC CTCACCTCCT GCATAAACCT GGGTGGCGCC GCTGGGGCAG
2520
GCCGCCGCC CTCGCTCCCGA AAGCCTGAGTC CTGGCTCTTC TCTCGACGGGT CAGGTAAGGG
2580
GTAGAGGGGA CCTCAACTCC CAGCCTTCTGT TGGACCCCTCA ATTATACACT CTTCTGCCCT
2640
TTTCCGTCAT TCCATAACCA CCCCCACCC TACTCCAGCG GGAGGGGTGG GGGCATACCT
2700
GGATTCCCCG CGCGCAACTCT AGCCACAGGG TCCCTAAGAG CAGCGACACG TAGGATGGG
2760
AGGGCTTCTT GCGAGAGAGG AGGGAAGGGA GACAGGGGTT GAGAGCTTTA CAGAGGAAGT
2820
GGCAGCAGCTG GGGGGAGGTGA AGGAAAGGCG TGTAAGAGGG AGGAGACACT GGCTCGGGCG
2880
GAATGAGGAC TATTGGAGAT TTAAGGGGAT GTGGCTAAGG CTGAGCTACCT TAGGAGTAAA
2940
CAAGAGGCGT TCTTTTGGGA GGAGCCAAATC CAGGGTGTTG GGGGCCAGA GTGACCAGGT
3000
GCAGCTGGGA AAAATGCGCA GGGAGGAGGG AGGAGAGGGA CTGGTTTAGTA CGCAGCCTACT
3060
TCTGGGGCGC CAGCGCGAGCC AGCTAGGCCG CTTGGCTAGG CTTCACAGGA GGGGCAGAGT
3120
GCTGGGATCTT GGGAAATCCAG GAAAGGAGGG AATGGGGTGG GGCTAGATGA AAAGGGATAG
3180
GCTGCGGCGG AGAGGCCCTCG GCTATTCCTG GGACCAGGAA GTTTTCACCA GGATACATAA
3240

SUBSTITUTE SHEET (RULE 26)
AAAGAAAAAT CACCTTTTGG TGTGGTCTAT GATGAATATA GATACAGAAG CGCTCATCAA 4920
GACGCGCAAC TAAAGAAGGA CATCTCAAGG TTTGCAGAGA AAGACAATAT AGTCTTTGGA 4980
GAAGGGGAAA TACACTGTAG TGGAGGTCAA CGAGCAAGAA TTCTTTAGC AAGAGCGATA 5040
TACTAAAGATGT CGATATGTGA TTTATTAGAC TCTCCTTTTG GATACCTAGA TGTTTTAACA 5100
GAARAAAGAAA TATTGGGAAG CGTGTGTCTGT AAACTGTAGG CTAAACAAAA TAGGATTTTG 5160
GCTACCTTCTA AAATGGACCA TTTAAAGGAAA GCTGACAAAAA TTATAAATTTT GAAATGAGGT 5220
AGCAGCTATT TTTATGGGAC ATTTTTGAGAA CTCCAAAATC TACAGCGAGA CTTTAGCTCA 5280
AAACTCAGGG GATGGTATTC TTTTGACCAA TTTAGTGGCAG AAAGAAAGAAAA TTCACTCTCA 5340
ACTGAGACCT TACCCCGTTT CTCAATTAGAA GAGAGTGATCC CGTGCTCTTG AGACAAAAAC 5400
AAAAAAACAT CTTTTAAACA GACTGGGAGG TTTGGGGAAA AAAGGAAGAAA TTCTATTCTC 5460
AATACCAATCA ACTCTTATACG AAATTTTTCC ATTGCGCATA AGACTCCCTT ACCAAATGAAT 5520
GGCATGAGAG AGGTTTGTGA TGATCCCTTA GAGGAAGGGC TGTCGGTATT ACCGATTCT 5580
GACGAGGGAG AGCCGACTAT CCCTGGCATC AGCGTGATCA GCAGTGCGCC CAGCTTCCAG 5640
GCAGAGGAGA GCCGCTTCTGT CTCGAAACCTG ATGACACACCT CAGTTAAACCA AGGTCAGAAC 5700
ATTTCACCAA AGACAAACGC ATCTCAACAGA AAAGTGTCAC TGCCCATCTCA GGAACACTTG 5760
ACTGAACTGG ATTATATATTC AAGAAGGTTA TCTCAAGAAAA CTGGCTTGGA AAAAGTGGA 5820
GAAATTAACG AAGGAAGCTT AAAAGCTTGGC CTGGTTGGATG ATATGGGAGA CTAACAGCA 5880
GTGACTCACG GGAACACATA CCTCGGATAT ATTACTGTCC ACAAGAGCTT AAATTTTTGT 5940
CTAATTGGGT GCTTATGAAT TTTAGCTGCA GAGGTTGGCAG GCTTTTCTTT TGCTCTTGAG 6000
CTCCCTGGAA ACAGTCCTCTC TCAGACAAAA GGAATACTGA CTCAAATGAG AATAAACASC 6060
TATGCAGTGA TTAGGATCAT CACAGATTGC TATATTGAGT TTTACATTTA GCTGGGAGTA 6120
GCCGACACTT TGCTGGCTAT GGATCTGCTTC AGAGGTCTAC CACTGCGTCA TACTCTAAC 6180
ACAGGCTGGA AAAAAAFACA CCACAAAATG TTAGATTCTG TTCTTTCAAGC ACCTTAATTC 6240
ACCCCTAACA CGTTGGAAGGC AGTGGGGATT CTATAAGAT TCTCCAAAGAG TAAAGCAATT 6300
TTGAGATGAC TTTGCGCCCT TACCATATTT GACTCGATCC AGTTGTATT AATTGGTGATT 6360
GGAGCTATAG CAGTTGTCGC AGGTTTACAA CTTACAGACT TTTGTCGACG AGTGCCAGTG 6420
ATAGTGGCCTT TTTATATGTTT GAGAGCATAT TTCTCCCAAA CCTCAGACAA ACTCAAAACAA 6480
CTGGAATCTG AAGGCAGGAG TCCAAATTTC ACTCATCTTG TTACAGGCTT AAAAGGACTA 5540
TGGGACCTTTC GTGCCCTCAG AGCGGACTTC TACCTTGGAA CTCTGTCTCA CAAAGCTCTG 5600
AATTTACAAT CTGCCAACAG GTCTTTCTAC CTGTCAACAC TGGCTCGCTTT CCAAATGAGA 5660
ATAGAAATGA TTTCTGTCAT CTCTCTCATT GTCGTTACCT TCATTCCCAT TTAAACACCA 5720
GGAGAAGAGG AGGGAAGAGT TGTTATATAC TGACATTGTG CCATGAATAT CATGAGTACA 5780
TTGCAGTGGG CTGTAAACTC CAGCATAGAT TGGAATAGCT TGATGCGATC TGTAAGCGGA 5840
GTCTTTAAGT TCATTGACAT GCCACAGAA GTAACACCTA CCAAGTCAAC CAAACCATAC 5900
AAAGAATGGCC AACTCTCAGAA AGTTATGGAT ATTTGAGATT CACACGTGAA GAAAGATGAC 5960
ATCTGGCCCT CGAGGGGCCA AATGACCTTC AAAGATCTCA CAGCACAATA CACAGAAGGT 7020
GGAAATGCCA TAACTGAGAA CATTCTCTTC TCAATAGTG CTTGGCCAGA GTGGGCTCTC 7080
TTGGGAAGAA CTGGATCGGG GAAGAGTACT TTGTTATCACT CTTTTTGAG ACTACTGAA 7140
ACTGAAGGAG AATATCAGAT CGATGTTGTT TCTTGGAATT CAATAACTTTT GCAAACAGTTG 7200
AGGAAAGCCT TTGGAGTGAT ACCACAGAAA GTATTTATTT TTTCTGGAAC ATTTAGAAAA 7260
AACTTGAGTC CCTATGACA GTGGAGTGAT CAGAAATAT GAAAGTGGC AGATGAGGTT 7320
GGCTCAGATT GTGTATAGA ACAGTTCCC GGGAAAGCTG ACTTCTGCTT TGTTGATGGG 7380
GGCTGTGTCG TAAGCCATGG CCACAAGCAG TTGAATGCTG TGCTAGACCT TGTCCTCACT 7440
AAGGCCAGGA TCTTGTGCTGT TGATGAAACC AGTGGCTCAT TGATCCAGTT AACATACCAA 7500
ATATTAGAAA GAACCTTAAA ACAAGCCATT GCTGATTGCA CAGTTAATTCT CTGTGACAC 7560
AGGATAGAGA CAATGCTGGA AGCGCAGCAA TTTTTGTCGA TAGAGAGAAA CAAAGTGCGG 7620
CAGTACGATT CCATCCAGAA ACTGCTGACG GAGAGGAGCC TCTCCCGCCA AGCCATCACG 7680
CCCTCCGACA GGGTAAGCTC CTTTTCCCAC CGGAAACTCA AAGAGTGCAA GTCTAAGCCC 7740
CAGATTGCTG CTCTGAAAGA GGAGACAGAA GAAGAGTGCC AAGATAACAAG GCTTTAGAGA 7800
GCAGCATAAA TTGTCAGATG GGAACATTGC TCTATGGAAAT GGAAGTCGTT TGGAACGTCAC 7860
CTCATTGGAAT TGGAAGTCGTG GGAACATTTA CCTCTGGGTC AGAAAAACAG GATGAATAAA 7920
GTTTTTTTTTT TTTTTTTTTTTTTTTTTTTTTTTTTT CAAAAAGAAA CATTGCGAG GAATCCTCAG TCAAGCTTAT 7980
CGATATGTTT ACAACACCCC AACATCTTTC AGCGCGGCGT GGCGGGCTT CCCGACGATG 8040
ACCGCGGTGA ACTTTCGGCC GCCGTTGGTG TTTTGAGGCA CGGAAGAGAC ATGACGGAAA 8100

SUBSTITUTE SHEET (RULE 26)
AAGAGATCGT GGATTAGCAG GCCAGTCAAG TAACAACCGCC GAAAAAGTTG CGCGGAGGAG 8160
TTGTGTTTGT GGACAAGGAGT ACCGAAAGGTC TTACCCGGAAA ACTCGACCCAG TCTAAAATCA 8220
GAGGATCCT CATRAAGGCC AAGAAGGGGCG GAAGTCCCAA ATTGTTAAAA TCTAACGTGTAT 8280
TCAGCGATGA CGAAAATCTT ATCTATGGTA ATACACCGGAT GAGTGGCGAG GCGGGCCGTA 8340
ATTATTTTAA CGACGTTATT GGGCCCTTTA AACGCTTGGT GCTACGCCCTG AGATAGTGAT 8400
AATAAGCAGG TGAATGCGAG AAAAAAAGCG CACTCTTTGT AAAAAAAGCG TCTTCTGTTG 8460
TGACAATAAA TTGGACAAAC TACTACTACA GATTTTAAAG TCTAAGGTAA ATATAAAAATT 8520
TTTAAGTGTA TAATGTGTGA AACTACTGAT TCTAATTTTG TGGTATTTTT ATGATTCCAC 8580
CTATGGAACT GATGAATGGG AGACGTGGGAT GAATGCCCCA AATGAGAAAA ACCCTGTTTG 8640
CTCAGAAGAA ATGCACACTCTA GTGATGATGA GGGCTACTCTG GACTCTCAAC ATTTCTACTCC 8700
TCGAAAGAAG AAGGAAACGG TCGAGACCCC CACAGGACCTT CTTCCAGAAAT TGGTAAATT 8760
TTTTAGTCTAT GTCTGTGTTTA GTATAGAAC TCTCTGCTGC TTTGGTATTT ACACACAAAA 8820
GCAAAGAAAG CTACAGCCTAT AGCAAGAAAA TATGGAAAAA TATTCTGTAA ACACACAAAA 8880
TAGGCTACAA AGTATAAACG TAACAAGACT GTTTTTTCTT ACTCCACACAA GGCAATAGGT 8940
CTCTCACTTT AATAACTATG CTCAAAAAAT GTGTTACCTTT AGCTTTTTAA TTTGAAAGG 9000
GTTAAATAAG GAATAATTTGA TGTATAGTGC CTGCAGTACTA GATCATAACTT GGCCATACCA 9060
CATTGTGGA GGTCTCTACTT GCTTTAAGAA ACCTTCCCCA CTTCCCTCTG AACCTGAAAC 9120
ATAAAAATGAA TGCAAGTGGT GTGTTAAGCT TGTTTATGAT AGCTTATAAT GTTTACAAAT 9180
AAAGCAATAG CATCACAATA TTCAAAATAA AGACATTCTT TCTACTTCAT TCTAGTGTGTG 9240
GTTTGTCCAA ACTCATCAGA GTATTTTATC TATGCTGGAT CGGTGACAGC ATGCCCTTTGA 9300
GAGCCCTCAA CCCGTCACGC TCTCTCCGGT GGGCGCGGCG CATGACTATC GTCCGCCGAC 9360
TTATGACTGT TTCTGTTATG AGCAGACTCG TAGGACAGGT GCCGGCAGCG CTCTTTCGGT 9420
TCCTGCTCA CGACGCTCGT GGCTGCGGTC GTCTGGCTGC GGCAGCGGAT ATCAGCTCAC 9480
TCAAAGGCGG TAACTAGTTT ATCCACAGAA TCAGGGGATA AGCAGAAAA GAACTATTTA 9540
GCAAAGGAC CGAACAAAGGAG CAGGACCGGT AAAAAGGCGG GTTGGCGTGGG GGTGTTCGAT 9600
AGGCTCGGCC CCGCTGAGGA GCGATCAAA AATCGACGCT TAAAGCAGAGT GTGGCGGAAAAC 9660
CCGACAGGAG TATTAAGGATA CCGCGCTTTT CCCCCGGAA GCTCCCTCGT GCGCTCTCTC 9720
GTTCGACCC TGCCGCTTAC CGGATACCTG TCGCCCTTTC TCCCTTCGGG AAGCGTGGCG 9780
CTTTCTCATA GCTCAGGGTG TAGGTTATTC AGTTGCTGTG AGGTGCGTGC CTCCAAGCCTG 9840
GGCTGGTG GCAGACCACCCT GTGCTAGCTGC GACGCTGGGC CTTATACTGG CACTCATCCTG 9900
CTTGAGATCC ACACCAGTAAG ACACGACTTA TCGCCACTGG CACGACACAG TGGTAAACAGG 9960
ATTAGGAGG AGCGTATGTC AGCCGGTGCT ACAGAGTCTC TGAAGTGCTG GCCTAACTAC 10020
GGTCTACCAT GAAGAGACGT ATTTGGTATAC TCGGCTCCTGC TGAAGCCAGT TACCTCTCGA 10080
AAAGAGGGTG GTGAGCTTTC ATCCGGCAA AAACCAACCG CTGGTACGCG TGGTTTTTTT 10140
GGTTGCAAGC AGCAGATTAC GCCAGAAAAA AAAGAGATCTC AAGAAGATGCT TTTGATCTTT 10200
CTACGGGCTT CTGCGGCGTA GTGGAGCCAA AACTCGAGTTT AAGGGATTTT GGTGATGAGA 10260
TTATCAAAAA GGAATCTTCAC CTGATATTTT TTTAATTTAA AATGAATTTT TAAATCAATC 10320
TAAAGTATAT ATGAGTAAAC TTTGCTGCC AGTGGACAAAT GCTTAATCAG TGAGGGCCCT 10380
ATCTACCGCA TCTGCTTATT TCGGGATCTCC ATAGTTGGCT GACTCCCGGT CTGGTACGATA 10440
ACTACGATAC CGGAGGCTTT ACCATCTGCC CCCAGTGCTG CAAAGATACC GCGAGGACCA 10500
GGTCTACCCGG CTCCAGATTT ATCAGCAATA AACGACCGAG CGGGAAGGCG CGAGGGCA 10560
AGTTGGTCTTG CAACTTTATC GCCTCTCATC CAGCTTATTA ATTTGACGCC GGAAGCTGACA 10620
GTAAGTGATTT GCGCAGTTAA TAGTGTTGSC AGGTTGCTTG CCATGCTTAC AGGCACTGTCG 10680
GTGCACGGCT CGTCTGTGGG TATGTCCTCC ATGCCGGTCC GTGCCCAACCG ATCAAAGGCA 10740
GTTCACATGAT CCCCCATGTGT GTGCAAAGAAA GCCGTTAGCT CTTGCGCTGC TCGGATGCTT 10800
GTCAAGAGTA AGTTGGCGGC AGTGTATATCAA CTGATAGTTA TGGCAGCACC GCTATAACTT 10860
CTTACTCTCA TGCCATCCCC AGAGTGCTTTT TCTGATGACTG GTGAGTACTC AAACCAAGTCA 10920
TTTCTGAGAA ATAGTGATGCC GCAGCCGAGT TGCTCTTGGC CGGCGTAATG ACAAGGATAAT 10980
ACCGCGCCAC ATAGCAGAAC TTTAAGATGT CTGATCATTG GAAAAGCTTC TTGGGCGGCA 11040
AAACTCTCAAC GGTATCTTAC GCAGTTGGAG TCCAGTTGCC TGGTAAACCAC TCGGTCACCC 11100
AATCAGCTTT CAGCATTCTT TACTTTACC AGCCTTCTTG GGTGACGCAA AACAAGGAGG 11160
CAGAAATCGC GAAAAAGGG AATAGGGCCG ACACGGGAAAT GTGGAATATT CATACTCTTC 11220
CTTTCTTCAAT ATTATGAGAG AATTTATCAG GTTTATGTCG TCGAGGCGG ATACATATT 11280
GAATGTAATT AGAATAATAA ACAAAATAGG GCCAGGGCAG GCTTTTCCCG AAAAGTGCCA 11340

SUBSTITUTE SHEET (RULE 26)
CCTGACGCCG CCTGTAGCCG CGCATTAAGC GCGGGCGGTG TGTTGTGTTAC GCCGACGGTG 11400
ACGGCTACAC TTGGCAGCCG CCTAGGCCCC GCTCCTTTCG CTCTCTTCCC TTGCTTTCTC 11460
GCCAGTTTCG CGGCTTTCCC CGTCAAGGCT CTAAATCGGG GGCCTCCCTTT AGGGTTCCGA 11520
TTTAGTGCTT TACGGCACCCT CGACCCCAAA AAACTTGATT AGGGTGAGGG TACCAGTAAGT 11580
GGCCATCGGC CCTGATAGAC GGTGGTTCGC CTTTGAGCCT TGGAGTCCAC GTTCTTTAAT 11640
AGTTGGACTCT TGGTTCCAAAC TGGAACAAACA CTCACCCTTA TCTCGGCTCA TTCTTTTGAT 11700
TTTAAGGGGA TTTGGCGGAT TTGCGCCTAT TGTTAAAAA ATGAAGCTGAT TTAAACAAAAA 11760
TTTAACCGCA ATTTTAACAA AATATTAACG TTCTACATTT CCCATTGGCC ATTCAGGCTA 11820
CGCAACTGTT GGGAGGGCGG ATCGGTGCGG GCCCTCTTGCC TATTCAGCCA GCCCAAGCTA 11880
CCATGATAAG TAAGTAATAT TAAGGTACGT GGAGGTTTTA CTTGCTTTAA AAAACCTCCC 11940
ACACCTCCCC CTGAACCTGA AACATATAAT GATGCAATT GTTGTTGTTA ACTGTTTTAT 12000
TGAGGTTTAT AAGGGTACCA AATAAAGGCA AGGATACACA AATTTCAACA ATGAAGCATT 12060
TTTTTCAGTG CATTCTAGTT GTGGTTGTC CAAACTCACCA AATGATATTT ATGTTACGT 12120
AACTGAGCTA ACATAACCCG GGA 12143

(2) INFORMATION FOR SEQ ID NO: 2:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 24 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: other nucleic acid

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(v) FRAGMENT TYPE: internal

[vi) ORIGINAL SOURCE:

(vii) IMMEDIATE SOURCE:

(viii) POSITION IN GENOME:
CHROMOSOME/SEGMENT:
MAP POSITION:
UNITS:
(ix) FEATURE:
(A) NAME/KEY: -
(B) LOCATION: 1..24
(D) OTHER INFORMATION:/note= "K18P3 synthetic DNA
 oligo-nucleotide - amplification primer for obtaining K18"

(x) PUBLICATION INFORMATION
 AUTHORS:
 TITLE:
 JOURNAL:
 VOLUME:
 ISSUE:
 PAGES:
 DATE:
 DOCUMENT NUMBER:
 FILING DATE:
 PUBLICATION DATE:
 RELEVANT RESIDUES IN SEQ ID NO.:

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

GCAAGGCCTC AGGTAAGGG TAGG

(2) INFORMATION FOR SEQ ID NO: 3:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 26 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: other nucleic acid

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: YES

(v) FRAGMENT TYPE: internal

(vi) ORIGINAL SOURCE:

(vii) IMMEDIATE SOURCE:

(viii) POSITION IN GENOME:
 CHROMOSOME/SEGMENT:
 MAP POSITION:
 UNITS:

(ix) FEATURE:
(A) NAME/KEY: -
(B) LOCATION: 1..26
(C) IDENTIFICATION METHOD:
(D) OTHER INFORMATION:/note= "K18P4 synthetic DNA
 oligo-nucleotide - amplification primer for obtaining K18"

54

SUBSTITUTE SHEET (RULE 26)
(x) PUBLICATION INFORMATION
AUTHORS:
TITLE:
JOURNAL:
VOLUME:
ISSUE:
PAGES:
DATE:
DOCUMENT NUMBER:
FILING DATE:
PUBLICATION DATE:
RELEVANT RESIDUES IN SEQ ID NO.:

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:

CGAAGATCTG GAGGGATTG AGAGAG

(2) INFORMATION FOR SEQ ID NO: 4:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 23 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: other nucleic acid

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(v) FRAGMENT TYPE: internal

(vi) ORIGINAL SOURCE:

(vii) IMMEDIATE SOURCE:

(viii) POSITION IN GENOME:
CHROMOSOME/SEGMENT:
MAP POSITION:
UNITS:

(ix) FEATURE:
(A) NAME/KEY: -
(B) LOCATION:1..23
(C) IDENTIFICATION METHOD:
(D) OTHER INFORMATION:/note= "K18XHS' synthetic DNA oligonucleotide - amplification primer for obtaining K18"

(x) PUBLICATION INFORMATION
AUTHORS:
TITLE:
JOURNAL:
CATAATAACG TCATTTCCTG CCC

(2) INFORMATION FOR SEQ ID NO: 5:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 28 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: other nucleic acid

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: YES

(v) FRAGMENT TYPE: internal

(vi) ORIGINAL SOURCE:

(vii) IMMEDIATE SOURCE:

(viii) POSITION IN GENOME:
 CHROMOSOME/SEGMENT:
 MAP POSITION:
 UNITS:

(ix) FEATURE:
 (A) NAME/KEY: -
 (B) LOCATION: 1..28
 (C) IDENTIFICATION METHOD:
 (D) OTHER INFORMATION:
 "K18p2* synthetic DNA oligo-nucleotide - amplification primer for obtaining K18"

(x) PUBLICATION INFORMATION
 AUTHORS:
 TITLE:
 JOURNAL:
 VOLUME:
 ISSUE:
 PAGES:
 DATE:
 DOCUMENT NUMBER:
FILING DATE:
PUBLICAION DATE:
RELEVANT RESIDUES IN SEQ ID NO.:

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:

CTACGCCGTG AGAGAAAGGA CAGGACTC

2) INFORMATION FOR SEQ ID NO: 6:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 21 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: other nucleic acid

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(v) FRAGMENT TYPE: internal

(vi) ORIGINAL SOURCE:

(vii) IMMEDIATE SOURCE:

(viii) POSITION IN GENOME:
 CHROMOSOME/SEGMENT:
 MAP POSITION:
 UNITS:

(ix) FEATURE:
 (A) NAME/KEY: -
 (B) LOCATION: 1..21
 (C) IDENTIFICATION METHOD:
 (D) OTHER INFORMATION:/note= "K18NsiI synthetic DNA oligo-nucleotide - amplification primer for obtaining K18"

(x) PUBLICATION INFORMATION
AUTHORS:
TITLE:
JOURNAL:
VOLUME:
ISSUE:
PAGES:
DATE:
DOCUMENT NUMBER:
FILING DATE:
PUBLICATION DATE:
RELEVANT RESIDUES IN SEQ ID NO.:
CTCACAGTAG GTGCTGAATG C

(2) INFORMATION FOR SEQ ID NO: 7:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 23 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: other nucleic acid

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: YES

(v) FRAGMENT TYPE: internal

(vi) ORIGINAL SOURCE:

(vii) IMMEDIATE SOURCE:

(viii) POSITION IN GENOME:
CHROMOSOME/SEGMENT:
MAP POSITION:
UNITS:

(ix) FEATURE:
(A) NAME/KEY: -
(B) LOCATION: 1..23
(C) IDENTIFICATION METHOD:
(D) OTHER INFORMATION:/note= "K18XH3' synthetic DNA oligo-nucleotide - amplification primer for obtaining K18"

(x) PUBLICATION INFORMATION
AUTHORS:
TITLE:
JOURNAL:
VOLUME:
ISSUE:
PAGES:
DATE:
DOCUMENT NUMBER:
FILING DATE:
PUBLICATION DATE:
RELEVANT RESIDUES IN SEQ ID NO.:

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:

GACACGGACA GCAGGTGTG TTG

(2) INFORMATION FOR SEQ ID NO: 8:
(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 30 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: other nucleic acid

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(v) FRAGMENT TYPE: internal

(vi) ORIGINAL SOURCE:

(vii) IMMEDIATE SOURCE:

(viii) POSITION IN GENOME:
 CHROMOSOME/SEGMENT:
 MAP POSITION:
 UNITS:

(ix) FEATURE:
 (A) NAME/KEY: -
 (B) LOCATION: 1..30
 (C) IDENTIFICATION METHOD:
 (D) OTHER INFORMATION:/note= "K18P1 synthetic
 oligo-nucleotide - amplification primer for obtaining K18"

(x) PUBLICATION INFORMATION
 AUTHORS:
 TITLE:
 JOURNAL:
 VOLUME:
 ISSUE:
 PAGES:
 DATE:
 DOCUMENT NUMBER:
 FILING DATE:
 PUBLICATION DATE:
 RELEVANT RESIDUES IN SEQ ID NO.:

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:

CGAGGTACCA ATAACAGTAA AAGGCAGTAC

30

(2) INFORMATION FOR SEQ ID NO: 9:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 23 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: other nucleic acid

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: YES

(v) FRAGMENT TYPE: internal

(vi) ORIGINAL SOURCE:

(vii) IMMEDIATE SOURCE:

(viii) POSITION IN GENOME:
CHROMOSOME/SEGMENT:
MAP POSITION:
UNITS:

(ix) FEATURE:
(A) NAME/KEY: -
(B) LOCATION: 1..23
(C) IDENTIFICATION METHOD:
(D) OTHER INFORMATION:/note= "K18siIR synthetic DNA
oligo-nucleotide - amplification primer for obtaining K18"

(x) PUBLICATION INFORMATION
AUTHORS:
TITLE:
JOURNAL:
VOLUME:
ISSUE:
PAGES:
DATE:
DOCUMENT NUMBER:
FILING DATE:
PUBLICATION DATE:
RELEVANT RESIDUES IN SEQ ID NO.:

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:
CACCGTATA TCACCTTCC TGC

23

(2) INFORMATION FOR SEQ ID NO: 10:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 18 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: other nucleic acid

(iii) HYPOTHETICAL: NO

60

SUBSTITUTE SHEET (RULE 26)
(iv) ANTI-SENSE: NO
(v) FRAGMENT TYPE: internal
(vi) ORIGINAL SOURCE:
(vii) IMMEDIATE SOURCE:
(viii) POSITION IN GENOME:
 CHROMOSOME/SEGMENT:
 MAP POSITION:
 UNITS:
(ix) FEATURE:
 (A) NAME/KEY: -
 (B) LOCATION: 1..18
 (C) IDENTIFICATION METHOD:
 (D) OTHER INFORMATION:/note= "cfrpl synthetic DNA oligonucleotide - amplification primer for PCR mutagenesis"

(x) PUBLICATION INFORMATION
 AUTHORS:
 TITLE:
 JOURNAL:
 VOLUME:
 ISSUE:
 PAGES:
 DATE:
 DOCUMENT NUMBER:
 FILING DATE:
 PUBLICATION DATE:
 RELEVANT RESIDUES IN SEQ ID NO.:

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:

GAGACCATGG AGAGGTCG

(2) INFORMATION FOR SEQ ID NO: 11:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 34 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: other nucleic acid

(ix) FEATURE:
 (A) NAME/KEY: -
 (B) LOCATION: 1..34
 (C) IDENTIFICATION METHOD:
 (D) OTHER INFORMATION:/note= "TE"

61
(x) PUBLICATION INFORMATION
AUTHORS:
TITLE:
JOURNAL:
VOLUME:
ISSUE:
PAGES:
DATE:
DOCUMENT NUMBER:
FILING DATE:
PUBLICATION DATE:
RELEVANT RESIDUES IN SEQ ID NO.:

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:

GTTTTTATTT TTAAATTCT TTCAAATACT TCCA

(2) INFORMATION FOR SEQ ID NO: 12:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 24 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: other nucleic acid

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(v) FRAGMENT TYPE: internal

(vi) ORIGINAL SOURCE:

(vii) IMMEDIATE SOURCE:

(viii) POSITION IN GENOME:
 CHROMOSOME/SEGMENT:
 MAP POSITION:
 UNITS:

(ix) FEATURE:
 (A) NAME/KEY: -
 (B) LOCATION: 1..24
 (C) IDENTIFICATION METHOD:
 (D) OTHER INFORMATION:/note= "TE2 synthetic DNA
 oligo-nucleotide - amplification primer for PCR mutagenesis"

(x) PUBLICATION INFORMATION
AUTHORS:
TITLE:
JOURNAL:
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:

GTCCGCAAAG CCTGAGTCCT GTCC

(2) INFORMATION FOR SEQ ID NO: 13:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 54 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: other nucleic acid

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: YES

(v) FRAGMENT TYPE: internal

(vi) ORIGINAL SOURCE:

(vii) IMMEDIATE SOURCE:

(viii) POSITION IN GENOME:
CHROMOSOME/SEGMENT:
MAP POSITION:
UNITS:

(ix) FEATURE:
(A) NAME/KEY: -
(B) LOCATION: 1..54
(C) IDENTIFICATION METHOD:
(D) OTHER INFORMATION:/note= "K183'SS synthetic DNA oligo-nucleotide - amplification primer for PCR mutagenesis"

(x) PUBLICATION INFORMATION
AUTHORS:
TITLE:
JOURNAL:
VOLUME:
ISSUE:
PAGES:
DATE:
DOCUMENT NUMBER:
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13:

AAATTTAAAAA TAAAAACAGA CCTGAAAAAA AAAAAAGAG AGGTTGTTCC ATGA

(2) INFORMATION FOR SEQ ID NO: 14:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 49 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: other nucleic acid

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(v) FRAGMENT TYPE: internal

(vi) ORIGINAL SOURCE:

(vii) IMMEDIATE SOURCE:

(viii) POSITION IN GENOME:
 CHROMOSOME/SEGMENT:
 MAP POSITION:
 UNITS:

(ix) FEATURE:
 (A) NAME/KEY: -
 (B) LOCATION: 1..49
 (C) IDENTIFICATION METHOD:
 (D) OTHER INFORMATION:/note= "T7top synthetic DNA oligo-nucleotide - amplification primer for PCR mutagenesis"

(x) PUBLICATION INFORMATION
 AUTHORS:
 TITLE:
 JOURNAL:
 VOLUME:
 ISSUE:
 PAGES:
 DATE:
 DOCUMENT NUMBER:
 FILING DATE:
 PUBLICATION DATE:
 RELEVANT RESIDUES IN SEQ ID NO:

(xl) SEQUENCE DESCRIPTION: SEQ ID NO: 14:

SUBSTITUTE SHEET (RULE 26)
GATCTGTTTT TATTTTTAAT TTTCTTCAA ATACTTCCAC CATGGCCCC

(2) INFORMATION FOR SEQ ID NO: 15:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 25 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: other nucleic acid

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(v) FRAGMENT TYPE: internal

(vi) ORIGINAL SOURCE:

(vii) IMMEDIATE SOURCE:

(viii) POSITION IN GENOME:
 CHROMOSOME/SEGMENT:
 MAP POSITION:
 UNITS:

(ix) FEATURE:
 (A) NAME/KEY: -
 (B) LOCATION: 1..25
 (C) IDENTIFICATION METHOD:
 (D) OTHER INFORMATION:/note= "cftr3' SS synthetic DNA
 oligo-nucleotide - amplification primer for PCR mutagenesis"

(x) PUBLICATION INFORMATION
 AUTHORS:
 TITLE:
 JOURNAL:
 VOLUME:
 ISSUE:
 PAGES:
 DATE:
 DOCUMENT NUMBER:
 FILING DATE:
 PUBLICATION DATE:
 RELEVANT RESIDUES IN SEQ ID NO.:

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15:

GGTGACTTCCC CCCAAATATA AAAAG

(2) INFORMATION FOR SEQ ID NO: 16:
(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 23 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: other nucleic acid

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(v) FRAGMENT TYPE: internal

(ix) FEATURE:
 (A) NAME/KEY: -
 (B) LOCATION: 1..23
 (C) IDENTIFICATION METHOD:
 (D) OTHER INFORMATION:/note= "TE1 synthetic DNA oligo-nucleotide - amplification primer for PCR analysis of CFTR mRNA"

(x) PUBLICATION INFORMATION
 AUTHORS:
 TITLE:
 JOURNAL:
 VOLUME:
 ISSUE:
 PAGES:
 DATE:
 DOCUMENT NUMBER:
 FILING DATE:
 PUBLICATION DATE:
 RELEVANT RESIDUES IN SEQ ID NO.:

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 16:

CTGTCCTTTG TCTCAGCGGT CAG

(2) INFORMATION FOR SEQ ID NO: 17:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 16 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: other nucleic acid

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO
(v) FRAGMENT TYPE: internal

(vi) ORIGINAL SOURCE:

(vii) IMMEDIATE SOURCE:

(viii) POSITION IN GENOME:
 CHROMOSOME/SEGMENT:
 MAP POSITION:
 UNITS:

(ix) FEATURE:
 (A) NAME/KEY: -
 (B) LOCATION: 1..16
 (C) IDENTIFICATION METHOD:
 (D) OTHER INFORMATION:/note= "cftrp2 synthetic DNA oligo-nucleotide - amplification primer for PCR analysis of CFTR mRNA"

(x) PUBLICATION INFORMATION
 AUTHORS:
 TITLE:
 JOURNAL:
 VOLUME:
 ISSUE:
 PAGES:
 DATE:
 DOCUMENT NUMBER:
 FILING DATE:
 PUBLICATION DATE:
 RELEVANT RESIDUES IN SEQ ID NO.: 17:

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17:

GAGGAGTGCC ACTTGC

(2) INFORMATION FOR SEQ ID NO: 18:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 24 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: other nucleic acid

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(v) FRAGMENT TYPE: internal

(vi) ORIGINAL SOURCE:
(vii) IMMEDIATE SOURCE:

(viii) POSITION IN GENOME:
CHROMOSOME/SEGMENT:
MAP POSITION:
UNITS:

(ix) FEATURE:
(A) NAME/KEY: -
(B) LOCATION:1..24
(C) IDENTIFICATION METHOD:
(D) OTHER INFORMATION:/note= "cftrp3 synthetic DNA oligo-nucleotide - amplification primer for PCR analysis of CFTR mRNA"

(x) PUBLICATION INFORMATION
AUTHORS:
TITLE:
JOURNAL:
VOLUME:
ISSUE:
PAGES:
DATE:
DOCUMENT NUMBER:
FILING DATE:
PUBLICATION DATE:
RELEVANT RESIDUES IN SEQ ID NO.:

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 18:

GTGTTGGAA AGGAGACTAA CAAG 24
We claim:

1. An expression cassette for the episomal expression of a transgene in a targeted epithelial cell, comprising
 - regulatory elements of a human gene, and
 - a transgene operatively associated with the regulatory elements and capable of expression in the epithelial cell.

2. An expression cassette for the episomal expression of a transgene in a targeted epithelial cell, comprising
 - regulatory elements of a cytokeratin gene, and
 - a transgene operatively associated with the regulatory elements and capable of expression in the epithelial cell.

3. The expression cassette of claim 1 or claim 2, wherein the epithelial cell is a lung epithelial cell.

4. The cassette of claim 1, wherein the human gene is a cytokeratin gene.

5. The cassette of claim 2, wherein the cytokeratin gene is a mammalian cytokeratin gene.

6. The cassette of claim 2 or claim 4, wherein the cytokeratin gene is the human cytokeratin 18 gene.

7. The cassette of claim 1, claim 2 or claim 6, wherein the regulatory elements are from the 5' region of the human cytokeratin 18 gene.

8. The cassette of claim 7, wherein regulatory elements comprise a promoter, the 5' region and intron 1 of the human cytokeratin 18 gene.

9. The cassette of claim 1, claim 2 or claim 6, wherein regulatory elements comprise a promoter, the 5' region and modified intron 1 of the human cytokeratin 18 gene.

10. The cassette of claim 7, further comprising an enhancer.
11. The cassette of claim 1, claim 2 or claim 6, wherein the transgene is selected from the group consisting of a cystic fibrosis transmembrane conductance regulatory (CFTR) gene, a gene having at least 70% sequence identity with CFTR and encoding a protein having CFTR activity, and a gene encoding a protein having CFTR activity.

12. The cassette of claim 1, claim 2 or claim 6, wherein the transgene comprises an enhancer and a modified cystic fibrosis transmembrane conductance regulatory (CFTR) gene.

13. The cassette of claim 1, claim 2 or claim 6, wherein the targeted epithelial cell is a submucosal cell.

14. A liposome comprising the construct of claim 1, claim 2 or claim 6.

15. A transfected cell comprising the construct of claim 1, claim 2 or claim 6.

16. Lung tissue comprising the cell of claim 15.

17. An expression cassette for treating a defect in the CFTR gene in a target epithelial cell, the expression cassette comprising:

 a) the DNA of or corresponding to at least a portion of the DNA regulatory elements of a cytokeratin gene which DNA is capable of regulating gene expression in the target epithelial cell; and

 b) a gene, operatively associated with the expression cassette elements and capable of expression in the epithelial cell, the gene encoding a protein selected from the group consisting of

 i) a CFTR protein;

 ii) a protein having at least 70% sequence identity with the CFTR protein and having CFTR activity;

 iii) a protein having CFTR activity.

18. The expression cassette of claim 17, wherein the expression cassette comprises the sequence in [SEQ ID NO. 1].

19. The expression cassette of claim 17, wherein the expression cassette comprises at least 70% sequence identity to the sequence in [SEQ ID NO: 1].
20. The expression cassette of claim 17, wherein the defect being treated causes cystic fibrosis.

21. The expression cassette of claim 17, wherein the target cell is a lung epithelial cell.

22. The expression cassette of claim 17, wherein the cytokeratin gene is cytokeratin 18.

23. The expression cassette of claim 17, wherein the cytokeratin gene is a human cytokeratin gene.

24. An epithelial cell containing recombinant human DNA regulatory elements and a gene operatively associated with the regulatory elements, the cell expressing proteins not normally expressed by the cell at biologically significant levels.

25. The cell of claim 24, wherein the DNA regulatory elements comprise cytokeratin DNA regulatory elements.

26. The cell of claim 25, wherein the cytokeratin is cytokeratin 18.

27. The cell of claim 26, wherein the DNA regulatory elements are selected from the group consisting of: a promoter, the 5' region and modified intron 1.

28. The cell of claim 24, wherein the cell is a human epithelial cell.

29. The cell of claim 28, wherein the cell is a human cystic fibrosis-associated cell.

30. The cell of claim 24, wherein the gene expresses a protein selected from the group consisting of: a CFTR protein, a protein at least 70% sequence identity with the CFTR protein and having CFTR activity; and a protein having CFTR activity.

31. An epithelial cell containing recombinant cytokeratin DNA regulatory elements and a gene operatively associated with the regulatory elements, the cell expressing a protein not normally expressed by the cell at biologically significant levels.

32. The cell of claim 31, wherein the cytokeratin is cytokeratin 18.

33. The cell of claim 32, wherein the DNA regulatory elements are selected from the group consisting of: a promoter, the 5' region and modified intron 1.

34. The cell of claim 31, wherein the cell is a human epithelial cell.
35. The cell of claim 34, wherein the cell is a human cystic fibrosis-associated cell.

36. The cell of claim 31, wherein the gene expresses a protein selected from the group consisting of: a CFTR protein, a protein having at least 70% sequence identity with the CFTR protein and having CFTR activity; a protein having CFTR activity.

37. A method of treating a patient having a lung disorder, comprising administering to the patient a liposome containing the cassette of claim 1, claim 2 or claim 6, whereby the cassette transfects targeted lung cells.

38. The method of claim 37 wherein the method of administration is selected from a group consisting of aerosol administration, intratracheal instillation and intravenous injection.

39. The method of claim 37, wherein the disorder is selected from a group consisting of cystic fibrosis, cancers of epithelial origin and emphysema.

40. A method for treating a defect in a gene in a target epithelial cell, comprising:
 - administering to the epithelial cell an amount of the expression cassette of any of claims 1 to 23 so that the expression cassette is inserted in the epithelial cell;
 - expressing the gene to produce the protein.

41. A method for treating defective chloride ion transport in a cystic fibrosis-associated epithelial cell in a subject having cystic fibrosis, comprising:
 - administering to the epithelial cell an amount of the expression cassette of any of claim 11, claim 12 or claims 17 to 23 so that the expression cassette is inserted in the epithelial cell;
 - expressing the gene to produce the protein so that the protein is transported to the plasma membrane and generates chloride channels in the cystic fibrosis-associated epithelial cell of the subject.

42. A pharmaceutical composition comprising a therapeutically effective amount of the expression cassette of any of claims 1 to 23 and a pharmaceutically acceptable carrier.
43. A composition comprising the expression cassette of any of claims 1 to 23 and a carrier.

44. The use of the expression cassette of any of claims 1 to 23 for treatment of a disease, disorder or abnormal physical state selected from a group consisting of cystic fibrosis, cancers of epithelial origin and emphysema.
a) Translational enhancer (from Alfalfa Mosaic Virus RNA4)

b) Translation initiation sequence (A/GXXAUGG)

c) Nuclear localization signal from SV40 Large T

FIG. 1A
FIG. 4B

[Diagram showing different SEAP constructs with various modifications and symbols indicating different properties.

FIG. 4C

[Diagram showing a long TE followed by CFTR with an indication of positivity (+) and a longer TE with CFTR with an indication of positivity (+) and a longer TE with CFTR with an indication of positivity (+).]
FIG. 5 (continued on next page)
FIG. 5

SEAP activity /well

COS-7

SEAP
SV40SEAP
K18piSEAP
K18EpiSEAP
CMVSEAP

0 200 400 600 800
FIG. 6 (continued on next page)
1 kb ladder
IB3 Primer 1/3
RFLP Primer 1/3
RFLP Primer 1/2

640 bp

712 bp

FIG. 9B

17/33

SUBSTITUTE SHEET (RULE 26)
AG/GUAAGG——ACAUAAC——CCUCUCUCUACAAUCCCCUCCAG/A
5' splice site Branch site Polyprimidine tract 3' splice site

FIG. 9C
K18 Epilong TECFTR

K18 CFTR chimeric RNA transcript

---CCTCTCTCTACAATCCCTCCAG/A---------TTTTTTTCAG/C----------TCTTTTTATATTAG/G

K18 3’ splice site
CFTR 3’ splice site-1
CFTR 3’ splice site-2

----CCTCTCTCTTTTTTTTTTCAG/G-----------TTTTTTTCAG/C-----------TCTTTTTATATTGGG

FIG. 10
FIG. 11
FIG. 12 (continued on next page)
FIG. 15

SEAP Activity (RLU)

<table>
<thead>
<tr>
<th></th>
<th>A549</th>
<th>COS-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>K18EpiSEAP</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>K18EpilongSEAP</td>
<td>2500</td>
<td>6000</td>
</tr>
</tbody>
</table>
SEAP Activity in transfected A549 cells

K18EpilongSEAP K18EpilongSEAPi

FIG. 16
FIGURE 17

12.5 days 13.5 days 14.5 days 17.5 days

FIGURE 18
DNA sequence 12143 b.p. ggtaccaataac…cataacccggga circular

<table>
<thead>
<tr>
<th>Nucleotide Numbers</th>
<th>Sequence Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (Kpn I) – 2565 (Mlu I)</td>
<td>K18 5' enhancer and promoter</td>
</tr>
<tr>
<td>2565 (Mlu I) – 3315</td>
<td>K18 intron 1</td>
</tr>
<tr>
<td>3315 – 3354 (Nco I)</td>
<td>Translational enhancer (TE)</td>
</tr>
<tr>
<td>3354 (Nco I) – 7955 (Pst I)</td>
<td>CFTR (Translation starts with ATG in Nco I)</td>
</tr>
<tr>
<td>7955 – 9283 (Sal I)</td>
<td>SV40 small + Ag intron + SV40 early poly A signal</td>
</tr>
<tr>
<td>9283 (Sal I) – 12143</td>
<td>pSEAP (Tropix) backbone</td>
</tr>
</tbody>
</table>

Figure 19
1. DNA sequences
A) SEQUENCE

Figure 20 (continued on next page)
Figure 20 (continued on next page)
B) RESTRICTION MAP

C) FEATURES:
Nucleotide Positions Features
1-2565 K18 5'Enhancer and promoter
2566-3315 K18 Intron 1
3316-3354 Translational Enhancer (TE)
3355-6446 LacZ
6447-7644 SV40 small T antigen and polyA signal
7645-10504 pSEAP (Tropix) backbone

Figure 20
Figure 21
A. CLASSIFICATION OF SUBJECT MATTER

<table>
<thead>
<tr>
<th>IPC</th>
<th>C12N15/85</th>
<th>C12N15/12</th>
<th>C12N15/88</th>
<th>C12N5/10</th>
<th>A61K48/00</th>
</tr>
</thead>
</table>

According to international Patent Classification (IPC) or to both national classification and IPC.

B. FIELDS SEARCHED

- **Minimum documentation searched (classification system followed by classification symbols)**
 - IPC 6 C12N A61K C07K

- **Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched**

- **Electronic data base consulted during the international search (name of data base and, where practical, search terms used)**

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>WO 96 40963 A (GORMAN CORI M; MEGABIOS CORP US) 19 December 1996 see page 25, line 16 - line 23</td>
<td>1,11-16, 27</td>
</tr>
<tr>
<td>A</td>
<td>WO 97 09441 A (GENZYME CORP US) 13 March 1997 see page 12, line 21 - line 25</td>
<td>1-10, 24-27</td>
</tr>
</tbody>
</table>

- **X** Further documents are listed in the continuation of box C.
- **A** Patent family members are listed in annex.

* Special categories of cited documents:
 - "A" document defining the general state of the art which is not considered to be of particular relevance
 - "E" earlier document but published on or after the international filing date
 - "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 - "O" document referring to an oral disclosure, use, exhibition or other means
 - "P" document published prior to the international filing date but later than the priority date claimed
 - "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 - "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 - "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
 - "A" document member of the same patent family

Date of the actual completion of the international search

22 September 1998

Date of mailing of the international search report

02/10/1998

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016

Authorized officer

Cupido, M
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>WO 92 03563 A (CENTRAAL DIERGENEESKUNDIG INSTITUUT) 5 March 1992 see page 6, line 15 - line 23</td>
<td>1-5</td>
</tr>
</tbody>
</table>
INTERNATIONAL SEARCH REPORT

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. **X** Claims Nos., because they relate to subject matter not required to be searched by this Authority, namely:

 Remark: Although claims 37–39, claim 40 insofar an in vivo method is concerned, claims 41 and 44 are directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the expression cassette.

2. **☐** Claims Nos., because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful international Search can be carried out, specifically:

3. **☐** Claims Nos., because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking(Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. **☐** As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.

2. **☐** As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invoice payment of any additional fee.

3. **☐** As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:

4. **☐** No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

- [] The additional search fees were accompanied by the applicant’s protest.
- [] No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (1))(July 1992)
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>WO 9640963 A</td>
<td>19-12-1996</td>
<td>AU 6381396 A</td>
<td>30-12-1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0832272 A</td>
<td>01-04-1998</td>
</tr>
<tr>
<td>WO 9709441 A</td>
<td>13-03-1997</td>
<td>AU 6917396 A</td>
<td>27-03-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0850313 A</td>
<td>01-07-1998</td>
</tr>
<tr>
<td>WO 9203563 A</td>
<td>05-03-1992</td>
<td>NL 9001828 A</td>
<td>02-03-1992</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT 121786 T</td>
<td>15-05-1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 657698 B</td>
<td>23-03-1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 8412291 A</td>
<td>17-03-1992</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2089484 A</td>
<td>16-02-1992</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69109298 D</td>
<td>01-06-1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69109298 T</td>
<td>21-09-1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0544746 A</td>
<td>09-06-1993</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2074280 T</td>
<td>01-09-1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HU 68379 A</td>
<td>28-06-1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 6500096 T</td>
<td>06-01-1994</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5580564 A</td>
<td>03-12-1996</td>
</tr>
</tbody>
</table>