METHODS FOR THE IDENTIFICATION OF INHIBITORS OF HOMOCITRATE SYNTHASE AS ANTIBIOTICS

Inventors: Jeffrey Shuster, Chapel Hill, NC (US); Matthew M. Tanzer, Durham, NC (US); Lisbeth Hamor, Durham, NC (US); Kilchi Adachi, Durham, NC (US); Todd M. DeZwaan, Apex, NC (US); Sze-Chung Lo, Durham, NC (US); Maria Victoria Montenegro-Chamorro, Morrisville, NC (US); Blaise Darveau, Hillsborough, NC (US); Sheryl Frank, Durham, NC (US); Ryan Heiniger, Raleigh, NC (US); Sanjay K. Mahanty, Chapel Hill, NC (US); Huaqin Pan, Apex, NC (US); Amy Skalichunes, Raleigh, NC (US); Rex W. Tarpey, Apex, NC (US)

Correspondence Address:
PARADIGM GENETICS, INC
P O BOX 14528
RTP, NC 27709-4528 (US)

The present inventors have discovered that homocitrinate synthase is essential for fungal pathogenicity. Specifically, the inhibition of homocitrinate synthase gene expression in fungi results in no signs of successful infection or lesions. Thus, homocitrinate synthase can be used as a target for the identification of antibiotics, preferably antifungals. Accordingly, the present invention provides methods for the identification of compounds that inhibit homocitrinate synthase expression or activity. The methods of the invention are useful for the identification of antibiotics, preferably antifungals.
Figure 1

\[\text{Acetyl CoA} + \text{H}_2\text{O} + 2\text{-oxoglutarate} \leftrightarrow \text{2-hydroxybutane-1,2,4-tricarboxylate} + \text{CoA} \]
Figure 2

Negative Control
Wild-type
KO1-1
KO1-2
METHODS FOR THE IDENTIFICATION OF INHIBITORS OF HOMOCITRATYNE SYNTHASE AS ANTIBIOTICS

FIELD OF THE INVENTION

[0001] The invention relates generally to methods for the identification of antibiotics, preferably antifungals that affect the biosynthesis of lysine. This application is co-pending with our application entitled “Methods for the Identification of Inhibitors of α-Aminoacidase Reductase as Antibiotics”.

BACKGROUND OF THE INVENTION

[0002] Filamentous fungi are the causal agents responsible for many serious pathogenic infections of plants and animals. Since fungi are eukaryotes, and thus more similar to their host organisms than, for example bacteria, the treatment of infections by fungi poses special risks and challenges not encountered with other types of infections. One such fungus is Magnaporthe grisea, the fungus that causes rice blast disease. It is an organism that poses a significant threat to food supplies worldwide. Other examples of plant pathogens of economic importance include the pathogens in the genera Agaricus, Allensaria, Anisosporama, Anthracocidae, Antrodia, Apiognomonia, Apiosporina, Armillaria, Ascochyta, Aspergillus, Bipolaris, Bjerkandera, Botryosphaeria, Botrytis, Ceratobasidium, Ceratocystis, Cercospora, Cercosporidium, Cerotelium, Cerrena, Chondrostereum, Chrysophycrea, Chrysomyxa, Cladosporium, Claviceps, Cochliobolus, Coelosporium, Colletotrichum, Colletotrichum, Cryptosporia, Cryptosporia, Cythus, Cymadocaea, Cytopsora, Daedaleopsis, Diaportha, Didymella, Diplacarpum, Diplodia, Dischohyniesa, Discula, Dothistroma, Drechslera, Echinodontium, Elisioce, Endocronartium, Endothia, Entyloma, Epichloë, Erysiphe, Exobasidiurn, Euxerholium, Fomes, Fonniolus, Fusarium, Gaeumannomyces, Ganoderma, Gibberella, Glomercospora, Gloeobasidium, Gloeophyllum, Gloccoporus, Glomerella, Gnomoniella, Guignardia, Gymnosporangium, Helmynthsporum, Herpotrichia, Heterobasidion, Hirschioporus, Hypodermella, Inonotus, Irpex, Kabatiella, Kabataa, Labetors, Lasias, Lasiodiplodia, Laxitectum, Leptographium, Leptosphaeria, Leptosphaerulina, Leucytospora, Lispora, Lophodermium, Lophodermium, Macrospomma, Magnaporthe, Marssonina, Melampsora, Melampsoridium, Melania, Microdochium, Microsphaera, Monilinia, Monochaeta, Morechella, Mycosphaerella, Myrothecium, Nectria, Nigrospora, Ophiostoma, Ophiostoma, Penicillium, Perennipora, Peripendia, Pestalotia, Phaeacryptopus, Phaeolus, Phakopora, Phellinus, Phialophora, Phoma, Phomopsis, Phragmidium, Phyllachora, Phyllactinia, Phylimosticta, Phymatrichosporum, Picostrana, Podospora, Pseudopeziza, Pseudoperzia, Puccinia, Pucciniastrum, Pyricularia, Rhabdocline, Rhizoctonia, Rhizopus, Rhizosphaera, Rhynchosporium, Rhytismatium, Schizophyllum, Schizopora, Scirrhia, Sclerotinia, Sclerotium, Scytinostroma, Septoria, Setaospora, Sirococceus, Sphaerotheca, Sphaerospor, Sphaerotorichus, Sporella, Staurospora, Stereum, Taphrina, Thelediopsis, Tilletia, Trametes, Tranzschelia, Trichoderma, Tubakia, Typhula, Uncinula, Urocystis, Uromyces, Ustilago, Valsa, Venturia, Verticillium, Xylaria, and others. Related organisms in the classification, oomycetes, that include the genera Albugo, Aphanomyces, Bremia, Peronospora, Phytophthora, Plasmodiophora, Plasmodiophora, Pseudoperonospora, Pythium, Sclerophthora, and others are also significant plant pathogens and are sometimes classified along with the true fungi. Human diseases that are caused by filamentous fungi include life-threatening lung and disseminated diseases, often a result of infections by Aspergillus fumigatus. Other fungal diseases in animals are caused by fungi in the genera, Fusarium, Blastomyces, Microsporum, Trichophyton, Epidermophyton, Candida, Histoplasma, Pneumocystis, Cryptococcus, other Aspergilli, and others. The control of fungal diseases in plants and animals is usually mediated by chemicals that inhibit the growth, proliferation, and/or pathogenicity of the fungal organisms. To date, there are less than twenty known modes-of-action for plant protection fungicides and human antifungal compounds.

[0003] A pathogenic organism has been defined as an organism that causes, or is capable of causing disease. Pathogenic organisms propagate on or in tissues and may obtain nutrients and other essential materials from their hosts. A substantial amount of work concerning filamentous fungal pathogens has been performed with the human pathogen, Aspergillus fumigatus. Shibuya et al. (Shibuya, K., M. Takaoka, et al. (1999) Microb Pathog 27: 123-31 (PMID: 10455003)) have shown that the deletion of either of two suspected pathogenicity related genes encoding an alkaline protease or a hydrophobin (rotide) respectively, did not reduce mortality of mice infected with these mutant strains. Smith et al. (Smith, J. M., C. M. Tang, et al. (1994) Infect Immun 62: 5247-54 (PMID: 7960101)) showed similar results with alkaline protease and the ribotixin restrictecin; Aspergillus fumigatus strains mutated for either of these genes were fully pathogenic to mice. Reichard et al. (Reichard, U., M. Monod, et al. (1997) J Med Vet Mycol 35: 189-96 (PMID: 9229335)) showed that deletion of the suspected pathogenicity gene encoding, aspergillipepsin (PEP) in Aspergillus fumigatus, had no effect on mortality in a guinea pig model system, and Aufauvre-Brown et al (Aufauvre-Brown, A., E. Mellado, et al. (1997) Fungal Genet Biol 21: 141-52 (PMID: 9073888)) showed no effects of a chitin synthase mutation on pathogenicity. However, not all experiments produced negative results. Ergosterol is an important membrane component found in fungal organisms. Pathogenic fungi that lack key enzymes in this biochemical pathway might be expected to be non-pathogenic since neither the plant nor animal hosts contain this particular sterol. Many antifungal compounds that affect this biochemical pathway have been described (Onishi, J. C. and A. A. Patchett (1990 a, b, c, d, and e) U.S. Pat. Nos. 4,920,109; 4,920,111; 4,920,112; 4,920,113; and 4,921,844, Merck & Co. Inc. (Rehway N.J.)) and (Hewitt, H. G. (1998) Fungiicdes in Crop Protection Cambridge, University Press). D’Enfer et al. (D’Enfer, C., M. Diaquin, et al. (1996) Infect Immun 64: 4401-5 (PMID: 8926121)) showed that an Aspergillus fumigatus strain mutated in an ordotile 5-phosphate decarboxylase gene was entirely non-pathogenic in mice, and Brown et al. (Brown, J. S., A. Aufauvre-Brown, et al. (2000) Mol Microbiol 36:1371-80 (PMID: 10931287)) observed a non-pathogenic result when genes involved in the synthesis of para-aminobenzoic acid were mutated. Some specific target genes have been described as having utility for the screening of inhibitors of plant pathogenic fungi. Bacot et al. (Bacot, K. O., D. B. Jordan, et al. (2000) U.S. Pat. No. 6,074,830, E. I. du Pont de Nemours &
Company (Wilmington Del.) describe the use of 3,4-dihydroxy-2-butanone 4-phosphate synthase, and Davis et al. (Davis, G. E., G. D. Gustafson, et al. (1999) U.S. Pat. No. 5,976,848, Dow AgroSciences LLC (Indianapolis Ind.)) describe the use of dihydroorotate dehydrogenase for potential screening purposes.

[0004] There are also a number of papers that report less clear results, showing neither full pathogenicity nor non-pathogenicity of mutants. Hensel et al. (Hensel, M., H. N. Arst, Jr, et al. (1998) Mol Gen Genet 258: 553-7 (PMID: 9669338)) showed only moderate effects of the deletion of the arc A transcriptional activator on the pathogenicity of Aspergillus fumigatus. Tang et al. (Tang, C. M., J. M. Smith, et al. (1994) Infect Immun 62: 5255-60 (PMID: 7960102)) using the related fungus, Aspergillus nidulans, observed that a mutation in 4-amino-3-oxobenzoic acid synthase prevented mortality in mice, while a mutation in lysine biosynthesis had no significant effect on the mortality of the infected mice.

[0005] Therefore, it is not currently possible to determine which specific growth materials may be readily obtained by a pathogen from its host, and which materials may not. Surprising, especially in light of the results showing that a lysine biosynthesis mutation in the filamentous fungus, Aspergillus nidulans, had no significant effect on the pathogenicity in a mouse model system (Tang, C. M., J. M. Smith, et al. (1994) Infect Immun 62: 5255-60 (PMID: 7960102)), we have found that Magnaporthe grisea that cannot synthesize their own lysine are entirely non-pathogenic on their host organism. To date there do not appear to be any publications demonstrating an anti-pathogenic effect of the knock-out, over-expression, antisense expression, or inhibition of the genes or gene products involved in lysine biosynthesis in filamentous fungi. Thus, it has not been shown that the de novo biosynthesis of lysine is essential for fungal pathogenicity. Our co-pending application entitled “Methods for the Identification of Inhibitors of α-Aminoacid Reductase as Antibiotics” shows that the disruption of lysine biosynthesis as the result of a disruption of the gene encoding the enzyme activity, alpha-aminoacid-semialdehyde dehydrogenase, also results in a non-pathogenic phenotype for M. grisea. Thus, it would be desirable to determine the utility of the enzymes involved in lysine biosynthesis for evaluating antibiotic compounds, especially fungicides. If a fungal biochemical pathway or specific gene product in that pathway is shown to be required for fungal pathogenicity, various formats of in vitro and in vivo screening assays may be put in place to discover classes of chemical compounds that react with the validated target gene, gene product, or biochemical pathway, and are thus candidates for antifungal, biocide, and biostatic materials.

SUMMARY OF THE INVENTION

[0006] Surprisingly, the present inventors have discovered that in vivo disruption of the gene encoding homocitrinate synthase in Magnaporthe grisea prevents or inhibits the pathogenicity of the fungus. Thus, the present inventors have discovered that homocitrinate synthase is essential for normal rice blast pathogenicity, and can be used as a target for the identification of antibiotics, preferably fungicides. Accordingly, the present invention provides methods for the identification of compounds that inhibit homocitrinate synthase expression or activity. The methods of the invention are useful for the identification of antibiotics, preferably fungicides.

BRIEF DESCRIPTION OF THE FIGURES

[0007] FIG. 1 shows the reaction performed by the homocitrate synthase (HCS1) reaction. The Substrates/Products are Acetyl CoA+H2O2-oxoglutarate and the Products/Substrates are 2-hydroxybutane-1,2,4-tricarboxylate+CoA. The function of the homocitrate synthase enzyme is the interconversion of Acetyl CoA, 2-oxoglutarate, and H2O to 2-hydroxybutane-1,2,4-tricarboxylate and CoA. This reaction is part of the lysine biosynthesis pathway.

[0008] FIG. 2 shows a digital image showing the effect of HCS1 gene disruption on Magnaporthe grisea pathogenicity using whole plant infection assays. Rice variety CO39 was inoculated with wild-type and the transposon insertion strains, KO1-1 and KO1-2. Leaf segments were imaged at five days post-inoculation.

[0009] FIG. 3 Verification of Gene Function by Analysis of Nutritional Requirements. Wild-type and transposon insertion strains, KO1-1 and KO1-2, were grown in (A) minimal media and (B) minimal media with the addition of L-lysine, respectively. The x-axis shows time in days and the y-axis shows turbidity measured at 490 nanometers and 750 nanometers. The symbols represent wildtype (●), transposon strain KO1-1 (■), and transposon strain KO1-2 (▲).

DETAILED DESCRIPTION OF THE INVENTION

[0010] Unless otherwise indicated, the following terms are intended to have the following meanings in interpreting the present invention.

[0011] The term “active against” in the context of compounds, agents, or compositions having antibiotic activity indicates that the compound exerts an effect on a particular target or targets which is deleterious to the in vitro and/or in vivo growth of an organism having that target or targets. In particular, a compound active against a gene exerts an action on a target which affects an expression product of that gene. This does not necessarily mean that the compound acts directly on the expression product of the gene, but instead indicates that the compound affects the expression product in a deleterious manner. Thus, the direct target of the compound may be, for example, an upstream component which reduces transcription from the gene, resulting in a lower level of expression. Likewise, the compound may affect the level of translation of a polypeptide expression product, or may act on a downstream component of a biochemical pathway in which the expression product of the gene has a major biological role. Consequently, such a compound can be said to be active against the gene, against the gene product, or against the related component either upstream or downstream of that gene or expression product. While the term “active against” encompasses a broad range of potential activities, it also implies some degree of specificity of target. Therefore, for example, a general protease is not “active against” a particular gene which produces a polypeptide product. In contrast, a compound which inhibits a particular enzyme is active against that enzyme and against the gene which codes for that enzyme.
As used herein, the term “allele” refers to any of the alternative forms of a gene that may occur at a given locus.

The term “antibiotic” refers to any substance or compound that when contacted with a living cell, organism, virus, or other entity capable of replication, results in a reduction of growth, viability, or pathogenicity of that entity.

The term “binding” refers to a non-covalent or covalent interaction, preferably non-covalent, that holds two molecules together. For example, two such molecules could be an enzyme and an inhibitor of that enzyme. Non-covalent interactions include hydrogen bonding, ionic interactions among charged groups, van der Waals interactions and hydrophobic interactions among nonpolar groups. One or more of these interactions can mediate the binding of two molecules to each other.

The term “biochemical pathway” or “pathway” refers to a connected series of biochemical reactions normally occurring in a cell, or more broadly a cellular event such as cellular division or DNA replication. Typically, the steps in such a biochemical pathway act in a coordinated fashion to produce a specific product or products or to produce some other particular biochemical action. Such a biochemical pathway requires the expression product of a gene if the absence of that expression product either directly or indirectly prevents the completion of one or more steps in that pathway, thereby preventing or significantly reducing the production of one or more normal products or effects of that pathway. Thus, an agent specifically inhibits such a biochemical pathway requiring the expression product of a particular gene if the presence of the agent stops or substantially reduces the completion of the series of steps in that pathway. Such an agent, may, but does not necessarily, act directly on the expression product of that particular gene.

As used herein, the term “cDNA” means complementary deoxyribonucleic acid.

As used herein, the term “CoA” means coenzyme A.

As used herein, the term “conditional lethal” refers to a mutation permitting growth and/or survival only under special growth or environmental conditions.

As used herein, the term “cosmid” refers to a hybrid vector, used in gene cloning, that includes a cos site (from the lambda bacteriophage). It also contains drug resistance marker genes and other plasmid genes. Cosmids are especially suitable for cloning large genes or multigene fragments.

As used herein, the term “dominant allele” refers to a dominant mutant allele in which a discernable mutant phenotype can be detected when this mutation is present in an organism that also contains a wild type (non-mutant), recessive allele, or other dominant allele.

As used herein, the term “DNA” means deoxyribonucleic acid.

As used herein, the term “ELISA” means enzyme-linked immunosorbent assay. “Fungi” (singular: fungus) refers to whole fungi, fungal organs and tissues (e.g., asci, hyphae, pseudohyphae, rhizoids, sclerotia, stigmata, spores, sporodochia, sporangia, synnemata, conidia, ascoc,
temperature (or heat-sensitive) mutant (i.e., a fungal strain having a heat-sensitive phenotype) exhibits significantly different growth, and preferably no growth, under non-permissive temperature conditions as compared to growth under permissive conditions. In addition, such mutants preferably also show intermediate growth rates at intermediate, or semi-permissive, temperatures. Similar responses also result from the appropriate growth changes for other types of growth conditional phenotypes.

[0027] As used herein, the term “H₂O” means water.

[0028] As used herein, the term “HCS1” means a gene encoding homocitrate synthase activity, referring to an enzyme that catalyses the interconversion of acetyl-CoA, H₂O, and 2-oxoglutarate with 2-hydroxybutane-1,2,4-tricarboxylate and CoA.

[0029] As used herein, the term “heterologous HCS1 gene” means a gene, not derived from Magnaporthe grisea, and having at least 50% sequence identity, preferably 60%, 70%, 80%, 90%, 95%, 99% sequence identity and each integer unit of sequence identity from 50-100% in ascending order to SEQ ID NO: 1 or SEQ ID NO: 2, or at least 10% of the activity of a Magnaporthe grisea homocitrate synthase, preferably 25%, 50%, 75%, 90%, 95%, 99% and each integer unit of activity from 10-100% in ascending order.

[0030] As used herein, the term “homocitrate synthase (EC 4.1.3.21)” or homocitrate synthase polypeptide” is synonymous with “the HCS1 gene product” and refers to an enzyme that catalyses the interconversion of acetyl-CoA, H₂O, and 2-oxoglutarate with 2-hydroxybutane-1,2,4-tricarboxylate and CoA.

[0031] As used herein, the term “His-Tag” refers to an encoded polypeptide consisting of multiple consecutive histidine amino acids.

[0032] As used herein, the term “HPLC” means high pressure liquid chromatography.

[0033] As used herein, the terms “lhp”, “hygromycin B phosphotransferase”, and “hygromycin resistance gene” refer to the E. coli hygromycin phosphotransferase gene or gene product.

[0034] As used herein, the term “hygromycin B” refers to an aminoglycosidic antibiotic, used for selection and maintenance of eukaryotic cells containing the E. coli hygromycin resistance gene.

[0035] “Hypersensitive” refers to a phenotype in which cells are more sensitive to antibiotic compounds than are wild-type cells of similar or identical genetic background.

[0036] “Hyposensitive” refers to a phenotype in which cells are less sensitive to antibiotic compounds than are wild-type cells of similar or identical genetic background.

[0037] As used herein, the term “imperfect state” refers to a classification of a fungal organism having no demonstrable sexual life stage.

[0038] The term “inhibitor”, as used herein, refers to a chemical substance that inactivates the enzymatic activity of homocitrate synthase or substantially reduces the level of enzymatic activity, wherein “substantially” means a reduction at least as great as the standard deviation for a measurement, preferably a reduction by 50%, more preferably a reduction of at least one magnitude, i.e. to 10%. The inhibitor may function by interacting directly with the enzyme, a cofactor of the enzyme, the substrate of the enzyme, or any combination thereof.

[0039] A polynucleotide may be “introduced” into a fungal cell by any means known to those of skill in the art, including transfection, transformation or transduction, transposable element, electroporation, particle bombardment, infection and the like. The introduced polynucleotide may be maintained in the cell stably if it is incorporated into a non-chromosomal autonomous replicon or integrated into the fungal chromosome. Alternatively, the introduced polynucleotide may be present on an extra-chromosomal non-replicating vector and be transiently expressed or transiently active.

[0040] As used herein, the term “knockout” or “gene disruption” refers to the creation of organisms carrying a null mutation (a mutation in which there is no active gene product), a partial null mutation or mutations, or an alteration or alterations in gene regulation by interrupting a DNA sequence through insertion of a foreign piece of DNA. Usually the foreign DNA encodes a selectable marker.

[0041] As used herein, the term “LB agar” means Luria’s Broth agar.

[0042] The term “method of screening” means that the method is suitable, and is typically used, for testing a particular property or effect in a large number of compounds. Typically, more than one compound is tested simultaneously (as in a 96-well microtiter plate), and preferably significant portions of the procedure can be automated. “Method of screening” also refers to determining a set of different properties or effects of one compound simultaneously.

[0043] As used herein, the term “mRNA” means messenger ribonucleic acid.

[0044] As used herein, the term “mutant form” of a gene refers to a gene which has been altered, either naturally or artificially, changing the base sequence of the gene. The change in the base sequence may be of several different types, including changes of one or more bases for different bases, deletions, and/or insertions, such as by a transposon. By contrast, a normal form of a gene (wild type) is a form commonly found in natural populations of an organism. Commonly a single form of a gene will predominate in natural populations. In general, such a gene is suitable as a normal form of a gene, however, other forms which provide similar functional characteristics may also be used as a normal gene. In particular, a normal form of a gene does not confer a growth conditional phenotype on the strain having that gene, while a mutant form of a gene suitable for use in these methods does provide such a growth conditional phenotype.

[0045] As used herein, the term “Ni” refers to nickel.

[0046] As used herein, the term “Ni-NTA” refers to nickel sepharose.

[0047] As used herein, the term “one form” of a gene is synonymous with the term “gene”, and a “different form” of a gene refers to a gene that has greater than 49% sequence identity and less than 100% sequence identity with said first form.
As used herein, the term “pathogenicity” refers to a capability of causing disease. The term is applied to parasitic microorganisms in relation to their hosts.

As used herein, the term “PCR” means polymerase chain reaction.

The “percent (%) sequence identity” between two polynucleotide or two polypeptide sequences is determined according to the either the BLAST program (Basic Local Alignment Search Tool; Altschul, S.F., W. Gish, et al. (1990) J Mol Biol 215: 403-10 (PMID: 2231712)) at the National Center for Biotechnology or using Smith Waterman Alignment (Smith, T. F. and M. S. Waterman (1981) J Mol Biol 147:195-7 (PMID: 7265238)) as incorporated into GeneMatcher Plus™. It is understood that for the purposes of determining sequence identity when comparing a DNA sequence to an RNA sequence, a thymine nucleotide is equivalent to a uracil nucleotide.

By “polypeptide” is meant a chain of at least two amino acids joined by peptide bonds. The chain may be linear, branched, circular or combinations thereof. Preferably, polypeptides are from about 10 to about 1000 amino acids in length, more preferably 10-50 amino acids in length. The polypeptides may contain amino acid analogs and other modifications, including, but not limited to glycosylated or phosphorylated residues.

As used herein, the term “proliferation” is synonymous to the term “growth”.

As used herein, the term “reverse transcriptase-PCR” means reverse transcription-polymerase chain reaction.

As used herein, the term “RNA” means ribonucleic acid.

As used herein, “semi-permissive conditions” are conditions in which the relevant culture parameter for a particular growth conditional phenotype is intermediate between permissive conditions and non-permissive conditions. Consequently, in semi-permissive conditions an organism having a growth conditional phenotype will exhibit growth rates intermediate between those shown in permissive conditions and non-permissive conditions. In general, such intermediate growth rate may be due to a mutant cellular component which is partially functional under semi-permissive conditions, essentially fully functional under permissive conditions, and is non-functional or has very low function under non-permissive conditions, where the level of function of that component is related to the growth rate of the organism. An intermediate growth rate may also be a result of a nutrient substance or substances that are present in amounts not sufficient for optimal growth rates to be achieved.

“Sensitivity phenotype” refers to a phenotype that exhibits either hypersensitivity or hyposensitivity.

The term “specific binding” refers to an interaction between homocitrate synthase and a molecule or compound, wherein the interaction is dependent upon the primary amino acid sequence and/or the conformation of homocitrate synthase.

As used herein, the term “TLC” means thin layer chromatography.

“Transform”, as used herein, refers to the introduction of a polynucleotide (single or double stranded DNA, RNA, or a combination thereof) into a living cell by any means. Transformation may be accomplished by a variety of methods, including, but not limited to, electroporation, polyethylene glycol mediated uptake, particle bombardment, agrotransformation, and the like. This process may result in transient or stable expression of the transformed polynucleotide. By “stably transformed” is meant that the sequence of interest is integrated into a replicon in the cell, such as a chromosome or episome. Transformed cells encompass not only the end product of a transformation process, but also the progeny thereof which retain the polynucleotide of interest.

For the purposes of the invention, “transgenic” refers to any cell, spore, tissue or part, that contains all or part of at least one recombinant polynucleotide. In many cases, all or part of the recombinant polynucleotide is stably integrated into a chromosome or stable extra-chromosomal element, so that it is passed on to successive generations.

As used herein, the term “transposase” refers to an enzyme that catalyzes transposition. Preferred transposons are described in WO 00/55346, PCT/US99/07317, and U.S. 09/658,859. As used herein, the term “transposition” refers to a complex genetic rearrangement process involving the movement or copying of a polynucleotide (transposon) from one location and insertion into another, often within or between a genome or genomes, or DNA constructs such as plasmids, baemids, and cosmids.

As used herein, the term “transposon” (also known as a “transposable element”, “transposable genetic element”, “mobile element”, or “jumping gene”) refers to a mobile DNA element such as those, for example, described in WO 00/55346, PCT/US99/07317, and U.S. 09/658,859. Transposons can disrupt gene expression or cause deletions and inversions, and hence affect both the genotype and phenotype of the organisms concerned. The mobility of transposable elements has long been used in genetic manipulation, to introduce genes or other information into the genome of certain model systems.

As used herein, the term “Tween 20” means sorbitan mono-9-octadecenooate poly(oxy-1,1-ethanediyl).

As used in this disclosure, the term “viability” of an organism refers to the ability of an organism to demonstrate growth under conditions appropriate for said organism, or to demonstrate an active cellular function. Some examples of active cellular functions include respiration as measured by gas evolution, secretion of proteins and/or other compounds, dye exclusion, mobility, dye oxidation, dye reduction, pigment production, changes in medium acidity, and the like.

The present inventors have discovered that disruption of the HCS1 gene and/or gene product inhibits the pathogenicity of Magnaporthe grisea. Thus, the inventors are the first to demonstrate that homocitrate synthase is a target for antibiotics, preferably antifungals.

Accordingly, the invention provides methods for identifying compounds that inhibit HCS1 gene expression or biological activity of its gene product(s). Such methods include ligand binding assays, assays for enzyme activity, cell-based assays, and assays for HCS1 gene expression. Any compound that is a ligand for homocitrate synthase may
have antibiotic activity. For the purposes of the invention, “ligand” refers to a molecule that will bind to a site on a polypeptide. The compounds identified by the methods of the invention are useful as antibiotics.

[0067] Thus, in one embodiment, the invention provides a method for identifying a test compound as a candidate for an antibiotic, comprising:

[0068] a) contacting a homocitrate synthase polypeptide with said test compound; and

[0069] b) detecting the presence or absence of binding between said test compound and said homocitrate synthase polypeptide;

[0070] wherein binding indicates that said test compound is a candidate for an antibiotic.

[0071] The homocitrate synthase protein may have the amino acid sequence of a naturally occurring homocitrate synthase found in a fungus, animal, plant, or microorganism, or may have an amino acid sequence derived from a naturally occurring sequence. Preferably the homocitrate synthase is a fungal homocitrate synthase. The cDNA (SEQ ID NO: 1) encoding the homocitrate synthase protein, the genomic DNA (SEQ ID NO: 2) encoding the protein, and the polypeptide (SEQ ID NO: 3) can be found herein.

[0072] By “fungal homocitrate synthase” is meant an enzyme that can be found in at least one fungus, and which catalyzes the interconversion of acetyl-CoA and H2O and 2-oxoglutarate with 2-hydroxybutane-1,2,4-tricarboxylate and CoA. The homocitrate synthase may be from any of the fungi, including ascomycota, zygomycota, basidiomycota, chytriomycota, and lichens.

[0073] In one embodiment, the homocitrate synthase is a Magnaporthe homocitrate synthase. Magnaporthe species include, but are not limited to, Magnaporthe oryzae, Magnaporthe grisea, and Magnaporthe oryzae. The imperfect states of Magnaporthe in the genus Pyricularia. Preferably, the Magnaporthe homocitrate synthase is from Magnaporthe grisea.

[0074] In various embodiments, the homocitrate synthase can be from Powdered Scab (Spongospora subterranea), Grey mould (Botrytis cinerea), White Rot (Armillaria mellea), Heartrot Fungus (Ganoderma adspersum), Brown Rot (Pirotosporum betulinus), Corn Smut (Ustilago maydis), Heartrot (Polyporus squamosus), Gray Leaf Spot (Cercospora zeae-maydis), Horse Fungus (Armillaria gallica), Root rot (Armillaria luteobubalina), Shoestring Rot (Armillaria ostoyae), Banana Anthracnose Fungus (Colletotrichum musae), Apple-rotting Fungus (Monilinia fructigena), Apple-rotting Fungus (Penicillium expansum), Clubroot Disease (Plasmodiophora brassicae), Potato Blight (Phytophthora infestans), Root pathogen (Fusarium avenaceum), Take-all Fungus (Gaeumannomyces graminis), Dutch Elm Disease (Ophiostoma ulmi), Bean Rust (Uromyces appendiculatus), Northern Leaf Spot (Cochliobolus carbonum), Milo Disease (Periconia circinata), Southern Corn Blight (Cochliobolus heterostrophus), Leaf Spot (Cochliobolus lunata), Brown Stripe (Cochliobolus stenopsis), Panama disease (Fusarium oxysporum), Wheat Head Scab Fungus (Fusarium graminearum), Cereal Foot Rot (Fusarium culmorum), Potato Black Scarf (Rhizoctonia solani), Wheat Black Stem Rust (Puccinia graminis), White mold (Sclerotinia sclerotiorum), and the like.

[0075] Fragments of a homocitrate synthase polypeptide may be used in the methods of the invention, preferably if the fragments include an intact or nearly intact epitope that occurs on the biologically active wildtype homocitrate synthase. The fragments comprise at least 10 consecutive amino acids of a homocitrate synthase. Preferably, the fragment comprises at least 15, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300, 310, 320, 330, 340, 350, 360, 370, 380, 390, 400, 410, 420, 430 or at least 440 consecutive amino acids residues of a homocitrate synthase. In one embodiment, the fragment is from a Magnaporthe homocitrate synthase. Preferably, the fragment contains an amino acid sequence conserved among fungal homocitrate synthases.

[0076] Polypeptides having at least 50% sequence identity with a fungal homocitrate synthase are also useful in the methods of the invention. Preferably, the sequence identity is at least 60%, more preferably the sequence identity is at least 70%, most preferably the sequence identity is at least 80% or 90 or 95% or higher, or any integer from 60-100% sequence identity in ascending order.

[0077] In addition, it is preferred that the polypeptide does not include at least 10% of the activity of a fungal homocitrate synthase. More preferably, the polypeptide has at least 25%, at least 50%, at least 75% or at least 90% of the activity of a fungal homocitrate synthase. Most preferably, the polypeptide has at least 10%, at least 25%, at least 50%, at least 75% or at least 90% of the activity of the M. grisea homocitrate synthase protein.

[0078] Thus, in another embodiment, the invention provides a method for identifying a test compound as a candidate for a fungicide, comprising:

[0079] a) contacting said test compound with at least one polypeptide selected from the group consisting of: a polypeptide having at least ten consecutive amino acids of a fungal homocitrate synthase, a polypeptide having at least 50% sequence identity with a fungal homocitrate synthase, and a polypeptide having at least 10% of the activity thereof; and

[0080] b) detecting the presence and/or absence of binding between said test compound and said polypeptide;

[0081] wherein binding indicates that said test compound is a candidate for an antibiotic.

[0082] Any technique for detecting the binding of a ligand to its target may be used in the methods of the invention. For example, the ligand and target are combined in a buffer. Many methods for detecting the binding of a ligand to its target are known in the art, and include, but are not limited to the detection of an immobilized ligand-target complex or the detection of a change in the properties of a target when it is bound to a ligand. For example, in one embodiment, an array of immobilized candidate ligands is provided. The immobilized ligands are contacted with a homocitrate synthase protein or a fragment or variant thereof, the unbound protein is removed and the bound homocitrate synthase is detected. In a preferred embodiment, bound homocitrate
synthase is detected using a labeled binding partner, such as a labeled antibody. In a variation of this assay, homocitrate synthase is labeled prior to contacting the immobilized candidate ligands. Preferred labels include fluorescent or radioactive moieties. Preferred detection methods include fluorescence correlation spectroscopy (FCS) and FCS-related confocal nanofluimetric methods.

[0083] Once a compound is identified as a candidate for an antibiotic, it can be tested for the ability to inhibit homocitrate synthase enzymatic activity. The compounds can be tested using either in vitro or cell based assays. Alternatively, a compound can be tested by applying it directly to a fungus or fungal cell, or expressing it therein, and monitoring the fungus or fungal cell for changes or decreases in growth, development, viability, pathogenicity, or alterations in gene expression. Thus, in one embodiment, the invention provides a method for determining whether a compound identified as an antibiotic candidate by an above method has antifungal activity, further comprising: contacting a fungus or fungal cells with said antifungal candidate and detecting a decrease in the growth, viability, or pathogenicity of said fungus or fungal cells.

[0084] By decrease in growth, is meant that the antifungal candidate causes at least a 10% decrease in the growth of the fungus or fungal cells, as compared to the growth of the fungus or fungal cells in the absence of the antifungal candidate. By a decrease in viability is meant that at least 20% of the fungal cells, or portion of the fungus contacted with the antifungal candidate are nonviable. Preferably, the growth or viability will be decreased by at least 40%. More preferably, the growth or viability will be decreased by at least 50%, 75% or at least 90% or more. Methods for measuring fungal growth and cell viability are known to those skilled in the art. By decrease in pathogenicity, is meant that the antifungal candidate causes at least a 10% decrease in the disease caused by contact of the fungal pathogen with its host, as compared to the disease caused in the absence of the antifungal candidate. Preferably, the disease will be decreased by at least 40%. More preferably, the disease will be decreased by at least 50%, 75% or at least 90% or more. Methods for measuring fungal disease are well known to those skilled in the art, and include such metrics as lesion formation, lesion size, sporulation, respiratory failure, and/or death.

[0085] The ability of a compound to inhibit homocitrate synthase activity can be detected using in vitro enzymatic assays in which the disappearance of a substrate or the appearance of a product is directly or indirectly detected. Homocitrate synthase catalyzes the irreversible or reversible reaction acetyl-CoA and H2O and 2-oxoglutarate-2-hydroxybutane-1,2,4-tricarboxylate and CoA (see FIG. 1). Methods for detection of 2-hydroxybutane-1,2,4-tricarboxylate, CoA, acetyl-CoA, and/or 2-oxoglutarate include spectrophotometry, mass spectrometry, thin layer chromatography (TLC) and reverse phase HPLC.

[0086] Thus, the invention provides a method for identifying a test compound as a candidate for an antibiotic, comprising either:

[0087] a) contacting acetyl-CoA and H2O and 2-oxoglutarate with a homocitrate synthase;

[0088] b) contacting acetyl-CoA and H2O and 2-oxoglutarate with homocitrate synthase and said test compound; and

[0089] c) determining the change in concentration for at least one of the following: 2-hydroxybutane-1,2,4-tricarboxylate, 2-oxoglutarate, acetyl-CoA, CoA, and/or H2O.

[0090] wherein a change in concentration for any of the above substances indicates that said test compound is a candidate for an antibiotic.

[0091] a) contacting 2-hydroxybutane-1,2,4-tricarboxylate and CoA with a homocitrate synthase;

[0092] b) contacting 2-hydroxybutane-1,2,4-tricarboxylate and CoA with a homocitrate synthase and said test compound; and

[0093] c) determining the change in concentration for at least one of the following: 2-hydroxybutane-1,2,4-tricarboxylate, 2-oxoglutarate, acetyl-CoA, CoA, and/or H2O.

[0094] wherein a change in concentration for any of the above substances indicates that said test compound is a candidate for an antibiotic.

[0095] Enzymatically active fragments of a fungal homocitrate synthase are also useful in the methods of the invention. For example, a polypeptide comprising at least 100 consecutive amino acid residues of a fungal homocitrate synthase may be used in the methods of the invention. In addition, a polypeptide having at least 50%, 60%, 70%, 80%, 90%, 95% or at least 98% sequence identity with a fungal homocitrate synthase may be used in the methods of the invention. Most preferably, the polypeptide has at least 50% sequence identity with a fungal homocitrate synthase and at least 10%, 25%, 75% or at least 90% of the activity thereof.

[0096] Thus, the invention provides a method for identifying a test compound as a candidate for a fungicide, comprising:

[0097] a) contacting acetyl-CoA and H2O and 2-oxoglutarate with a polypeptide selected from the group consisting of: a polypeptide having at least 50% sequence identity with a homocitrate synthase, a polypeptide having at least 50% sequence identity with a homocitrate synthase and having at least 10% of the activity thereof, and a polypeptide comprising at least 100 consecutive amino acids of a homocitrate synthase;

[0098] b) contacting acetyl-CoA and H2O and 2-oxoglutarate with said polypeptide and said test compound; and

[0099] c) determining the change in concentration for at least one of the following: 2-hydroxybutane-1,2,4-tricarboxylate, 2-oxoglutarate, acetyl-CoA, CoA, and/or H2O.

[0100] wherein a change in concentration for any of the above substances indicates that said test compound is a candidate for an antibiotic.

[0101] a) contacting 2-hydroxybutane-1,2,4-tricarboxylate and CoA with a polypeptide selected from the group consisting of: a polypeptide having at least 50% sequence identity with a homocitrate synthase, a polypeptide having at least 50% sequence identity with a homocitrate synthase and having at least 10% of the activity thereof, and a polypeptide comprising at least 100 consecutive amino acids of a homocitrate synthase;
sequence identity with a homocitrate synthase and at least 10% of the activity thereof, and a polypeptide comprising at least 100 consecutive amino acids of a homocitrate synthase

[0012] b) contacting 2-hydroxybutyrate-1,2,4-tricarboxylate and CoA, with said polypeptide and said test compound; and

[0013] c) determining the change in concentration for at least one of the following, 2-hydroxybutyrate-1,2,4-tricarboxylate, 2-oxoglutarate, acetyl-CoA, CoA, and/or H2O.

[0014] wherein a change in concentration for any of the above substances indicates that said test compound is a candidate for an antibiotic.

[0015] For the in vitro enzymatic assays, homocitrate synthase protein and derivatives thereof may be purified from a fungus or may be recombinantly produced in and purified from an archaean, bacterial, fungal, or other eukaryotic cell culture. Preferably these products are produced using an E. coli, yeast, or filamentous fungal expression system. Methods for the purification of homocitrate synthase may be described in Jalilitsch and Kubicek (Jalilitsch, W. M. and C. P. Kubicek (1990) Biochem J 269: 247-53 (PMID: 2115771)). Other methods for the purification of homocitrate synthase proteins and polypeptides are known to those skilled in the art.

[0016] As an alternative to in vitro assays, the invention also provides cell based assays. In one embodiment, the invention provides a method for identifying a test compound as a candidate for a antibiotic, comprising:

[0017] a) measuring the expression of a homocitrate synthase in a cell, cells, tissue, or an organism in the absence of said compound;

[0018] b) contacting said cell, cells, tissue, or organism with said test compound and measuring the expression of said homocitrate synthase in said cell, cells, tissue, or organism;

[0019] c) comparing the expression of homocitrate synthase in steps (a) and (b);

[0020] wherein a lower expression in the presence of said test compound indicates that said compound is a candidate for an antibiotic.

[0021] Expression of homocitrate synthase can be measured by detecting the HCS1 primary transcript or mRNA, homocitrate synthase polypeptide, or homocitrate synthase enzymatic activity. Methods for detecting the expression of RNA and proteins are known to those skilled in the art. See, for example, Current Protocols in Molecular Biology Ausubel et al., eds., Greene Publishing and Wiley-Interscience, New York, 1995. The method of detection is not critical to the invention. Methods for detecting HCS1 RNA include, but are not limited to amplification assays such as quantitative reverse transcriptase-PCR, and/or hybridization assays such as Northern analysis, dot blots, slot blots, in-situ hybridization, transcriptional fusions using a HCS1 promoter fused to a reporter gene, DNA assays, and microarray assays.

[0022] Methods for detecting protein expression include, but are not limited to, immuno-detection methods such as Western blots, ELISA assays, polyclonal antibody electrophoresis, mass spectroscopy, and enzymatic assays. Also, any reporter gene system may be used to detect HCS1 protein expression. For detection using gene reporter systems, a polynucleotide encoding a reporter protein is fused in frame with HCS1, so as to produce a chimeric polypeptide. Methods for using reporter systems are known to those skilled in the art.

[0013] Chemicals, compounds or compositions identified by the above methods as modulators, preferably inhibitors, of HCS1 expression or activity can then be used to control fungal growth. Diseases such as rusts, mildews, and blights spread rapidly once established. Fungicides are thus routinely applied to growing and stored crops as a preventive measure, generally as foliar sprays or seed dressings. For example, compounds that inhibit fungal growth can be applied to a fungus or expressed in a fungus, in order to prevent fungal growth. Thus, the invention provides a method for inhibiting fungal growth, comprising contacting a fungus with a compound identified by the methods of the invention as having antifungal activity.

[0014] Antifungals and antifungal inhibitor candidates identified by the methods of the invention can be used to control the growth of undesired fungi, including ascomycota, zygomycota, basidiomycota, eukaryomycota, and lichens.

[0015] Examples of undesired fungi include, but are not limited to Powdery Scab (Spongospora subterranea), Grey Mould (Botrytis cinerea), White Rot (Armillaria meliae), Heartrot Fungus (Ganoderma adspersum), Brown-Rot (Piptoporus betulinus), Corn Smut (Ustilago maydis), Heartrot (Polyporus squamosus), Gray Leaf Spot (Cercospora zeae-maydis), Honey Fungus (Armillaria gallica), Root rot (Armillaria luteobubalina), Shoestring Rot (Armillaria ostoyae), Banana Anthracnose Fungus (Colletotrichum musae), Apple-rotting Fungus (Monilinia fructigena), Apple-rotting Fungus (Penicillium expansum), Clubroot Disease (Plasmodiophora brassicae), Potato Blight (Phytophthora infestans), Root pathogen (Heterobasidion annosum), Take-all Fungus (Gaemanomyces graminis), Dutch Elm Disease (Ophiostoma ulmi), Bean Rust (Uromyces appendiculatus), Northern Leaf Spot (Cochliobolus carbonum), Milo Disease (Periconia circinata), Southern Corn Blight (Cochliobolus heterostrophus), Leaf Spot (Cochliobolus lunata), Brown Stripe (Cochliobolus stenosphilus), Panama disease (Fusarium oxysporum), Wheat Head Scab Fungus (Fusarium graminearum), Cereal Foot Rot (Fusarium culmorum), Potato Black Scurf (Rhizoctonia solani), Wheat Black Sien Rust (Puccinia graminis), White mold (Sclerotinia sclerotiorum), diseases of animals such as infections of lungs, blood, brain, skin, scalp, nails or other tissues (Aspergillus fumigatus Aspergillus sp. Fusaria sp., Trichophyton sp., Epidermophyton sp., and Microsporum sp., and the like).

[0016] Also provided is a method of screening for an antibiotic by determining whether a test compound is active against the gene identified (SEQ ID NO: 1 or SEQ ID NO: 2), its gene product (SEQ ID NO: 3), or the biochemical pathway or pathways it functions on.

[0017] In one particular embodiment, the method is performed by providing an organism having a first form of the gene corresponding to either SEQ ID NO: 1 or SEQ ID NO:
Thus, in one embodiment, the invention provides a method for identifying a test compound as a candidate for an antibiotic, comprising:

a) providing cells having one form of a homocitrate synthase gene, and providing comparison cells having a different form of a homocitrate synthase gene,

b) contacting said cells and said comparison cells with a test compound and determining the growth of said cells and comparison cells in the presence of the test compound,

wherein a difference in growth between said cells and said comparison cells in the presence of said test compound indicates that said test compound is a candidate for an antibiotic.

It is recognized in the art that the optional determination of the growth of said first organism and said comparison second organism in the absence of any test compounds may be performed to control for any inherent differences in growth as a result of the different genes. It is also recognized that any combination of two different forms of an HCS1 gene, including normal genes, mutant genes, homologues, and functional homologues may be used in this method. Growth and/or proliferation of an organism is measured by methods well known in the art such as optical density measurements, and the like. In a preferred embodiment the organism is *Magnaporthe grisea*.

Conditional lethal mutants may identify particular biochemical and/or genetic pathways given that at least one identified target gene is present in that pathway. Knowledge of these pathways allows for the screening of test compounds as candidates for antibiotics. Pathways known in the art may be found at the Kyoto Encyclopedia of Genes and Genomes and in standard biochemistry texts (Lehninger, A., D. Nelson, et al. (1993) *Principles of Biochemistry*. New York, Worth Publishers).

Thus, in one embodiment, the invention provides a method for screening for test compounds acting against the biochemical and/or genetic pathway or pathways in which HCS1 functions, comprising:

a) providing cells having one form of a gene in the lysine biochemical and/or genetic pathway and providing comparison cells having a different form of said gene,

b) contacting said cells and comparison cells with a said test compound,

c) determining the growth of said cells and comparison cells in the presence of said test compound.

wherein a difference in growth between said cells and said comparison cells in the presence of said compound indicates that said compound is a candidate for an antibiotic.

The use of multi-well plates for screening is a format that readily accommodates multiple different assays to characterize various compounds, concentrations of compounds, and fungal strains in varying combinations and formats. Certain testing parameters for the screening method can significantly affect the identification of growth inhibitors, and thus can be manipulated to optimize screening efficiency and/or reliability. Notable among these factors are variable sensitivities of different mutants, increasing hypersensitivity with increasingly less permissive conditions, an apparent increase in hypersensitivity with increasing compound concentration, and other factors known to those in the art.

Conditional lethal mutants may identify particular biochemical and/or genetic pathways given that at least one identified target gene is present in that pathway. Knowledge of these pathways allows for the screening of test compounds as candidates for antibiotics. Pathways known in the art may be found at the Kyoto Encyclopedia of Genes and Genomes and in standard biochemistry texts (Lehninger, A., D. Nelson, et al. (1993) *Principles of Biochemistry*. New York, Worth Publishers). Thus, in one embodiment, the invention provides a method for screening for test compounds acting against the biochemical and/or genetic pathway or pathways in which HCS1 functions, comprising:

a) providing paired growth media; comprising a first medium and a second medium, wherein said second medium contains a higher level of lysine than said first medium;

b) contacting an organism with said test compound;

c) inoculating said first and second media with said organism; and

d) determining the growth of said organism;

wherein a difference in growth of the organism between said first and second media indicates that said test compound is a candidate for an antibiotic.

It is recognized in the art that the optional determination of the growth of said organism in the paired media in the absence of any test compounds may be performed to control for any inherent differences in growth as a result of the different media. Growth and/or proliferation of an organism is measured by methods well known in the art such as optical density measurements, and the like. In a preferred embodiment, the organism is *Magnaporthe grisea*.

EXPERIMENTAL

EXAMPLE 1

Construction of Plasmids with a Transposon Containing a Selectable Marker

Construction of Sif transposon: Sif was constructed using the GPS3 vector from the GPS-M mutagenesis system
from New England Biolabs, Inc. (Beverly, Mass.) as a backbone. This system is based on the bacterial transposon Tn7. The following manipulations were done to GPS3 according to Sambrook et al. (1989) Molecular Cloning, a Laboratory Manual, Cold Spring Harbor Laboratory Press. The kanamycin resistance gene (npt) contained between the Tn7 arms was removed by EcoRV digestion. The bacterial hygromycin B phosphotransferase (hph) gene (Geitler and Davies (1983) Gene 25: 179-88 (PMID: 6319235)) under control of the Aspergillus nidulans trpC promoter and terminator (Mullaney et al. (1985) Mol Gen Genet 199: 37-45 (PMID: 318796)) was cloned by a HpaI/EcoRV blunt ligation into the Tn7 arms of the GPS3 vector yielding pSIf1. Excision of the ampicillin resistance gene (bla) from pSIf1 was achieved by cutting pSIf1 with XmnI and BglII followed by a T4 DNA polymerase treatment to remove the 3' overhangs left by the BglII digestion and religation of the plasmid to yield pSIf. Top 10F' electrocompetent E. coli cells (Invitrogen) were transformed with ligation mixture according to manufacturer's recommendations. Transformants containing the Sif transposon were selected on LB agar (Sambrook et al. (1989) Molecular Cloning, a Laboratory Manual, Cold Spring Harbor Laboratory Press.) containing 50 ug/ml of hygromycin B (Sigma Chem. Co., St. Louis, Mo.).

EXAMPLE 2

Construction of a Cosmid Library Containing Fungal Genes and a Selectable Marker

[0138] Cosmid libraries were constructed in the pcosKAS vector (Hamer et al. (2001) Proc Natl Acad Sci USA 98: 5110-15 (PMID: 11299265)) as described in Sambrook et al. (1989) Molecular Cloning, a Laboratory Manual, Cold Spring Harbor Laboratory Press. Cosmid libraries were quality checked by pulsed-field gel electrophoresis, restriction digestion analysis, and PCR identification of single genes.

EXAMPLE 3

Construction of Cosmids with Transposon Inserted into Fungal Genes

[0139] Sif Transposon into a Cosmid: Transposition of Sif into the cosmid framework was carried out as described by the GPS-M mutagenesis system (New England Biolabs, Inc.). Briefly, 2 ul of the 10x GPS buffer, 70 ng of supercoiled pSIf, 8-12 ug of target cosmid DNA were mixed and taken to a final volume of 20 ul with water. 1 ul of transposase (TnsABC) was added to the reaction and incubated for 10 minutes at 37°C to allow the assembly reaction to happen. After the assembly reaction 1 ul of start solution was added to the tube, mixed well and incubated for 1 hour at 37°C. Followed by heat inactivation of the proteins at 75°C for 10 min. Destruction of the remaining untransposased pSIf was done by P1Scet digestion at 37°C for 2 hours followed by 10 min incubation at 75°C to inactivate the proteins. Transformation of Top 10F' electrocompetent cells (Invitrogen) was done according to manufacturers recommendations. Sif-containing cosmid transformants were selected by growth on LB agar plates containing 50 ug/ml of hygromycin B (Sigma Chem. Co.) and 100 ug/ml of Ampicillin (Sigma Chem. Co.).

EXAMPLE 4

High Throughput Preparation and Verification of Insertion of Transposon into Fungal Genes

[0140] E. coli strains containing cosmids with transposon insertions were picked to 96 well growth blocks (Beckman Co.) containing 1.5 ml of TB (Terrific Broth, Sambrook et al. (1989) Molecular Cloning, a Laboratory Manual, Cold Spring Harbor Laboratory Press) supplemented with 50 ug/ml of ampicillin. Blocks were incubated with shaking at 37 C overnight. E. coli cells were pelleted by centrifugation and cosmids were isolated by a modified alkaline lysis method (Marra et al. (1997) Genome Res 7: 1072-84 (PMID: 9371743)). DNA quality was checked by electrophoresis on agarose gels. Cosmids were sequenced using primers from the ends of each transposon and commercial dye-sequencing kits (Big Dye Terminators, Perkin Elmer Co.). Sequencing reactions were analyzed on an ABI377 DNA sequencer (Perkin Elmer Co.).

[0141] DNA sequences adjacent to the site of the insertion were collected and used to search DNA and protein databases using the BLAST algorithms (Alschul et al. (1997) Nucleic Acids Res 25: 3389-3402 (PMID: 9254694)). A single insertion of SIF into the Magnaporthe grisea HCS1 gene was chosen for further analysis. This construct was designated cgpmra0023008h04 and it contains the SIF transposon between amino acids 334 and 335 relative to the Penicillium chrysogenum homologue (total length—474 amino acids, GENBANK: PCAA5630 accession number AJ223630).

EXAMPLE 5

Preparation of Cosmid DNA and Transformation of the Fungus Magnaporthe grisea

[0142] Cosmid DNA from the HCS1 transposon tagged cosmid clone was prepared using QIAGEN Plasmid Maxi Kit (QIAGEN), and digested by Pl-PspI (New England Biolabs, Inc.). Fungal electro-transformation was performed essentially as described (Wu et al. (1997) PMPI 10: 700-708). Briefly, M. grisea strain Guy 11 was grown in complete liquid media (Talbot et al. (1993) Plant Cell 5: 1575-1590 (PMID: 8312740)) shaking at 120 rpm for 3 days at 25°C in the dark. Mycelia was harvested and washed with sterile H2O and digested with 4 mg/ml beta-glucanase (InterSpex) for 4-6 hours to generate protoplasts. Protoplasts were collected by centrifugation and resuspended in 20% sucrose at the concentration of 2x10⁶ protoplasts/ml. 50 ul protoplast suspension was mixed with 10-20 ug of the cosmid DNA and pulse used gene Pulser II (BioRad) set with the following parameters: resistance 200 ohm, capacitance 25 uf, voltage 0.6 kV. Transformed protoplasts were regenerated in complete agar media (CM, Talbot et al. (1993) Plant Cell 5: 1575-1590 (PMID: 8312740)) with the addition of 20% sucrose for one day, then overlayed with CM agar media containing hygromycin B (250 mg/ml) to select transformants. Transformants were screened for homologous recombination events in the target gene by PCR (Hamer et al. (2001) Proc Natl Acad Sci USA 98: 5110-15 (PMID: 11296265)). Two independent strains were identified and are hereby referred to as KO1-1 and KO1-2, respectively.
EXAMPLE 6

Effect of Transposon Insertion on Magnaporthe Pathogenicity

The target fungal strains, KO1-1 and KO1-2, obtained in Example 5 and the wild-type strain, Grs111, were subjected to a pathogenicity assay to observe infection over a 1-week period. Rice infection assays were performed using Indian rice cultivar CO39 essentially as described in Valent et al. (1991) Genetics 127: 87-101 (PMID: 2016048). All three strains were grown for sporulation on complete agar media. Spores were harvested and the concentration of spores adjusted for whole plant inoculations. Two-week-old seedlings of cultivar CO39 were sprayed with 12 ml of conidial suspension (5×10^7 conidia per ml in 0.01% Tween-20 (Polyoxyethylene sorbitan monolaureate) solution). The inoculated plants were incubated in a dew chamber at 27°C in the dark for 36 hours, and transferred to a growth chamber (27°C, 12 hours/21°C, 12 hours 70% humidity) for an additional 5.5 days. Leaf samples were taken at 3, 5, and 7 days post-inoculation and examined for signs of successful infection (i.e., lesions). Fig. 2 shows the effects of HCS1 gene disruption on Magnaporthe infection at five days post-inoculation.

EXAMPLE 7

Verification of Gene Function by Analysis of Nutritional Requirements

The fungal strains, KO1-1 and KO1-2, containing the HCS1 disrupted gene obtained in Example 5 were analyzed for their nutritional requirement for lysine using the PM5 phenotype microarray from Biolog, Inc. (Hayward, Calif.). The PM5 plate tests for the auxotrophic requirement for 94 different metabolites. The inoculating fluid consists of 0.05% Phytogel, 0.03% Phloronic F68, 1% glucose, 23.5 mM NaNO_3, 6.7 mM KCl, 3.5 mM Na_2SO_4, 11 mM KH_2PO_4, 0.01% p-iodonitrotetrazolium violet, 0.1 mM MgCl_2, 1.0 mM CaCl_2 and trace elements. Final concentrations of the trace elements are: 7.6 μM ZnCl_2, 2.5 μM MnCl_2, 4H_2O, 1.8 μM FeCl_3, 4H_2O, 0.71 μM COCl_2, 6H_2O, 0.64 μM CuCl_2, 2H_2O, 0.62 μM Na_2MoO_4, 18 μM H_3BO_3, pH adjusted to 6.0 with NaOH. Spores for each strain were harvested into the inoculating fluid. The spore concentrations were adjusted to 2×10^8 spores/ml. 100 μl of spore suspension were deposited into each well of the microtiter plates. The plates were incubated at 25°C for 7 days. Optical density (OD) measurements at 490 nm and 750 nm were taken daily. The OD_490 measures the extent of tetrazolium dye reduction and the level of growth, and OD_750 measures growth only. Turbidity=OD_490/OD_750. Data confirming the annotated gene function is presented as a graph of Turbidity vs. Time showing both the mutant fungi and the wild-type control in the absence (FIG. 3A) and presence (FIG. 3B) of L-lysine.

EXAMPLE 8

Cloning and Expression Strategies, Extraction and Purification of the Homocitrate Synthase Protein

The following protocol may be employed to obtain the purified the homocitrate synthase protein.
is screened in the same way. A polypeptide comprising 10-50 amino acids is generated by subcloning a portion of the HCS1 gene into a protein expression vector that adds a His-Tag when expressed (see Example 8). Oligonucleotide primers are designed to amplify a portion of the HCS1 gene using the polymerase chain reaction amplification method. The DNA fragment encoding a polypeptide of 10-50 amino acids is cloned into an expression vector, expressed in a host organism and purified as described in Example 8 above.

[0167] Test compounds that bind HCS1 are further tested for antibiotic activity. M. grisea is grown as described for spore production on oatmeal agar media (Talbot et al. (1993) Plant Cell 5: 1575-1590 (PMID: 8312740)). Spores are harvested into minimal media (Talbot et al. (1993) Plant Cell 5: 1575-1590 (PMID: 8312740)) to a concentration of 2x10^5 spores/ml and the culture is divided. The test compound is added to one culture to a final concentration of 20-100 µg/ml. Solvent only is added to the second culture. The plates are incubated at 25°C for seven days and optical density measurements at 590 nm are taken daily. The growth curves of the solvent control sample and the test compound sample are compared. A test compound is an antibiotic candidate if the growth of the culture containing the test compound is less than the growth of the control culture.

EXAMPLE 10
Assays for Testing Inhibitors or Candidates for Inhibition of Homocitrate Synthase Activity

[0168] The enzymatic activity of homocitrate synthase is determined in the presence and absence of candidate compounds in a suitable reaction mixture, such as described by Gray and Bhattacharjee (Gray, G S and Bhattacharjee, J K (1976) Can J Microbiol 22: 1664-7 (PMID: 10066)), or Jaklitsch, W. M. and C. P. Kubicek (1990) Biochem J 269: 247-53 (PMID: 2115771). Candidate compounds are identified when a decrease in products of a lack of decrease in substrates is detected with the reaction proceeding in either direction.

[0169] Additionally, the enzymatic activity of a polypeptide comprising 10-50 amino acids from the M. grisea homocitrate synthase is determined in the presence and absence of candidate compounds in a suitable reaction mixture, such as described by Gray and Bhattacharjee (Gray, G S and Bhattacharjee, J K (1976) Can J Microbiol 22: 1664-7 (PMID: 10066)), or Jaklitsch, W. M. and C. P. Kubicek (1990) Biochem J 269: 247-53 (PMID: 2115771). A polypeptide comprising 10-50 amino acids is generated by subcloning a portion of the HCS1 gene into a protein expression vector that adds a His-Tag when expressed (see Example 8). Oligonucleotide primers are designed to amplify a portion of the HCS1 gene using polymerase chain reaction amplification method. The DNA fragment encoding a polypeptide of 10-50 amino acids is cloned into an expression vector, expressed and purified as described in Example 8 above.

[0170] Test compounds identified as inhibitors of HCS1 activity are further tested for antibiotic activity. Magnaporthe grisea fungal cells are grown under standard fungal growth conditions that are well known and described in the art. M. grisea is grown as described for spore production on oatmeal agar media (Talbot et al. (1993) Plant Cell 5: 1575-1590 (PMID: 8312740)). Spores are harvested into minimal media (Talbot et al. (1993) Plant Cell 5: 1575-1590 (PMID: 8312740)) to a concentration of 2x10^5 spores/ml and the culture is divided. The test compound is added to one culture to a final concentration of 20-100 µg/ml. Solvent only is added to the second culture. The plates are incubated at 25°C for seven days and optical density measurements at 590 nm are taken daily. The growth curves of the solvent control sample and the test compound sample are compared. A test compound is an antibiotic candidate if the growth of the culture containing the test compound is less than the growth of the control culture.

EXAMPLE 11
Assays for Testing Compounds or Candidates for Compounds That Alter the Expression of the Homocitrate Synthase Gene

[0171] Magnaporthe grisea fungal cells are grown under standard fungal growth conditions that are well known and described in the art. Wild-type M. grisea spores are harvested from cultures grown on complete agar or oatmeal agar media after growth for 10-13 days in the light at 25°C using a moistened cotton swab. The concentration of spores is determined using a hemacytometer and spore suspensions are prepared in a minimal growth medium to a concentration of 2x10^5 spores per ml. 25 ml cultures are prepared to which test compounds will be added at various concentrations. A culture with no test compound present is included as a control. The cultures are incubated at 25°C for 3 days after which test compound or solvent only control is added. The cultures are incubated an additional 18 hours. Fungal mycelia is harvested by filtration through Miracloth (CalBiochem®, La Jolla, Calif.), washed with water and frozen in liquid nitrogen. Total RNA is extracted with TRIZOL® Reagent using the methods provided by the manufacturer (Life Technologies, Rockville, Md.). Expression is analyzed by Northern analysis of the RNA samples as described (Sambrook et al. (1989) Molecular Cloning, a Laboratory Manual, Cold Spring Harbor Laboratory Press) using a radiolabeled fragment of the HCS1 gene as a probe. Test compounds resulting in a reduced level of HCS1 mRNA relative to the untreated control sample are identified as candidate antibiotic compounds.

EXAMPLE 12
In Vivo Cell Based Assay Screening Protocol with a Fungal Strain Containing a Mutant Form of Homocitrate Synthase with No Activity

[0172] Magnaporthe grisea fungal cells containing a mutant form of the HCS1 gene which abolishes enzyme activity, such as a gene containing a transposon insertion (see Examples 4 and 5), are grown under standard fungal growth conditions that are well known and described in the art. Magnaporthe grisea spores are harvested from cultures grown on complete agar medium containing 4 mM L-lysine (Sigma-Aldrich Co.) after growth for 10-13 days in the light at 25°C using a moistened cotton swab. The concentration of spores is determined using a hemacytometer and spore suspensions are prepared in a minimal growth medium containing 100 µM L-lysine to a concentration of 2x10^5 spores per ml. Approximately 4x10^6 spores are added to each well of 96-well plates to which a test compound is
added (at varying concentrations). The total volume in each well is 200 μl. Wells with no test compound present (growth control), and wells without cells are included as controls (negative control). The plates are incubated at 25°C for seven days and optical density measurements at 590 nm are taken daily. Wild type cells are screened under the same conditions. The effect of each compound on the mutant and wild-type fungal strains is measured against the growth control and the percent of inhibition is calculated as the OD₅₀₀ (fungal strain plus test compound)/OD₅₀₀ (growth control) x 100. The percent of growth inhibition as a result of a test compound on a fungal strain and that on the wild type cells are compared. Compounds that show differential growth inhibition between the mutant and the wild-type are identified as potential antifungal compounds. Similar protocols may be found in Kirschch and DiDomenico ((1994) Biotechnology 26: 177-221 (PMID: 7749303)).

EXAMPLE 13

In Vivo Cell Based Assay Screening Protocol with a Fungal Strain Containing a Mutant Form of Homocitrate Synthase with Reduced Activity

[0173] Magnaporthe grisea fungal cells containing a mutant form of the HCS1 gene, such as a promoter truncation that reduces expression, are known and described in the art. A promoter truncation is made by deleting a portion of the promoter upstream of the transcription start site using standard molecular biology techniques that are well known and described in the art (Sambrook et al. (1989) Molecular Cloning, a Laboratory Manual, Cold Spring Harbor Laboratory Press). Magnaporthe grisea spores are harvested from cultures grown on complete agar medium containing 4 mM L-lysine (Sigma-Aldrich Co.) after growth for 10-13 days in the light at 25°C using a moistened cotton swab. The concentration of spores is determined using a hemacytometer and spore suspensions are prepared in a minimal growth medium to a concentration of 2x10⁶ spores per ml. Approximately 4x10⁴ spores are added to each well of 96-well plates to which a test compound is added (at varying concentrations). The total volume in each well is 200 μl. Wells with no test compound present (growth control), and wells without cells are included as controls (negative control). The plates are incubated at 25°C for seven days and optical density measurements at 590 nm are taken daily. Wild type cells are screened under the same conditions. The effect of each compound on the mutant and wild-type fungal strains is measured against the growth control and the percent of inhibition is calculated as the OD₅₀₀ (fungal strain plus test compound)/OD₅₀₀ (growth control) x 100. The percent of growth inhibition as a result of a test compound on a fungal strain and that on the wild type cells are compared. Compounds that show differential growth inhibition between the mutant and the wild-type are identified as potential antifungal compounds. Similar protocols may be found in Kirschch and DiDomenico ((1994) Biotechnology 26: 177-221 (PMID: 7749303)).

EXAMPLE 15

In Vivo Cell Based Assay Screening Protocol with a Fungal Strain Containing a Mutant Form of a Lysine Biosynthetic Gene with Reduced Activity

[0175] Magnaporthe grisea fungal cells containing a mutant form of a gene in the lysine biosynthetic pathway (e.g. L-Aminoadipate-semialdehyde dehydrogenase (E.C. 1.2.1.31)) are grown under standard fungal growth conditions that are well known and described in the art. A promoter truncation that reduces expression, are grown under standard fungal growth conditions that are well known and described in the art. A promoter truncation is made by deleting a portion of the promoter upstream of the transcription start site using standard molecular biology techniques that are well known and described in the art (Sambrook et al. (1989) Molecular Cloning, a Laboratory Manual, Cold Spring Harbor Laboratory Press). Magnaporthe grisea fungal cells containing a mutant form of a gene in the lysine biosynthetic pathway (e.g. L-Aminoadipate-semialdehyde dehydrogenase (E.C. 1.2.1.31)), such as a promoter truncation that reduces expression, are grown under standard fungal growth conditions that are well known and described in the art. Magnaporthe grisea spores are harvested from cultures grown on complete agar medium containing 4 mM L-lysine (Sigma-Aldrich Co.) after growth for 10-13 days in the light at 25°C using a moistened cotton swab. The concentration of spores is determined using a hemacytometer and spore suspensions are prepared in a minimal growth medium to a concentration of 2x10⁶ spores per ml. Approximately 4x10⁴ spores or cells are harvested and added to each well of 96-well plates to which growth media is added in addition to an amount of test compound (at varying concentrations). The total volume in each well is 200 μl. Wells with no test compound present, and wells without cells are included as controls. The plates are incubated at 25°C for seven days and optical density measurements at 590 nm are taken daily.
Wild type cells are screened under the same conditions. The effect of each compound on the mutant and wild-type fungal strains is measured against the growth control and the percent of inhibition is calculated as the OD_{500} (fungal strain plus test compound)/OD_{500} (growth control)x100. The percent of growth inhibition as a result of a test compound on a fungal strain and that on the wild type cells are compared. Compounds that show differential growth inhibition between the mutant and the wild type are identified as potential antifungal compounds. Similar protocols may be found in Kirsch and DiDomenico (1994) Biotechnology 26:177-221 (PMID: 7749303)).

EXAMPLE 16

In Vivo Cell Based Assay Screening Protocol with a Fungal Strain Containing a Fungal HCS1 and a Second Fungal Strain Containing a Heterologous HCS1 Gene

[0176] Wild-type Magnaporthe grisea fungal cells and M. grisea fungal cells lacking a functional HCS1 gene and containing a HCS1 gene from Thermus aquaticus (Genbank accession 087198, 56% sequence identity) are grown under standard fungal growth conditions that are well known and described in the art. A M. grisea strain carrying a heterologous HCS1 gene is made as follows:

[0177] A M. grisea strain is made with a nonfunctional HCS1 gene, such as one containing a transposon insertion in the native gene (see Examples 4 and 5).

[0178] A construct containing a heterologous HCS1 gene is made by cloning the HCS1 gene from Thermus aquaticus into a fungal expression vector containing a trpC promoter and terminator (e.g. pCB1003, Carroll et al. (1994) Fungal Gen News Lett 41: 22) using standard molecular biology techniques that are well known and described in the art (Sambrook et al. (1989) Molecular Cloning, a Laboratory Manual, Cold Spring Harbor Laboratory Press).

[0179] The said construct is used to transform the M. grisea strain lacking a functional HCS1 gene (see Example 5). Transformants are selected on minimal agar medium lacking L-lysine. Only transformants carrying a functional HCS1 gene will grow.

[0180] Wild-type strains of Magnaporthe grisea and strains containing a heterologous form of HCS1 are grown under standard fungal growth conditions that are well known and described in the art. Magnaporthe grisea spores are harvested from cultures grown on complete agar medium after growth for 10-13 days in the light at 25°C. Using a moistened cotton swab. The concentration of spores is determined using a hemocytometer and spore suspensions are prepared in a minimal growth medium to a concentration of 2x10^8 spores per ml. Approximately 4x10^6 spores or cells are harvested and added to each well of 96-well plates to which growth media is added in addition to an amount of test compound (at varying concentrations). The total volume in each well is 200 µl. Wells with no test compound present, and wells without cells are included as controls. The plates are incubated at 25°C for seven days and optical density measurements at 590 nm are taken daily. The effect of each compound on the wild-type and heterologous fungal strains is measured against the growth control and the percent of inhibition is calculated as the OD_{500} (fungal strain plus test compound)/OD_{500} (growth control)x100. The percent of growth inhibition as a result of a test compound on the wild-type and heterologous fungal strains are compared. Compounds that show differential growth inhibition between the wild-type and heterologous strains are identified as potential antifungal compounds with specificity to the native or heterologous HCS1 gene products. Similar protocols may be found in Kirsch and DiDomenico (1994) Biotechnology 26: 177-221 (PMID: 7749303)).

EXAMPLE 17

Pathway Specific In Vivo Assay Screening Protocol

[0181] Magnaporthe grisea fungal cells are grown under standard fungal growth conditions that are well known and described in the art. Wild-type M. grisea spores are harvested from cultures grown on oatmeal agar media after growth for 10-13 days in the light at 25°C. Using a moistened cotton swab. The concentration of spores is determined using a hemocytometer and spore suspensions are prepared in a minimal growth medium and a minimal growth medium containing 4 mM L-lysine (Sigma-Aldrich Co.) to a concentration of 2x10^8 spores per ml. The minimal growth media contains carbon, nitrogen, phosphorus, and sulfate sources, and magnesium, calcium, and trace elements (for example, see inoculating fluid in Example 7). Spore suspensions are added to each well of a 96-well microtiter plate (approximately 4x10^6 spores/well). For each well containing a spore suspension in minimal media, an additional well is present containing a spore suspension in minimal medium containing 4 mM L-lysine. Test compounds are added to wells containing spores in minimal media and minimal media containing L-lysine. The total volume in each well is 200 µl. Both minimal media and L-lysine containing media wells with no test compound are provided as controls. The plates are incubated at 25°C for seven days and optical density measurements at 590 nm are taken daily. A compound is identified as a candidate for an antibiotic acting against the lysine biosynthetic pathway when the observed growth in the well containing minimal media is less than the observed growth in the well containing L-lysine as a result of the addition of the test compound. Similar protocols may be found in Kirsch and DiDomenico (1994) Biotechnology 26: 177-221 (PMID: 7749303)).

[0182] While the foregoing describes certain embodiments of the invention, it will be understood by those skilled in the art that variations and modifications may be made and still fall within the scope of the invention. The foregoing examples are intended to exemplify various specific embodiments of the invention and do not limit its scope in any manner.
SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 3

<210> SEQ ID NO 1
<211> LENGTH: 1458
<212> TYPE: DNA
<213> ORGANISM: Magnaporthe grisea

<400> SEQUENCE: 1

atgtgccat cctgctagcc tggcagagcc gctgcttaca atggcactgc gaacgygcat
60
gcgctctca atgcaatgga aaacggagc ggaagtgaactg tggattgac tggcaagca
120
caaaaagtgc gctcagcaag atacggaat cctaccaagcg ccgctggctga atttttgccc
180
aacgtaaca accttcagct cattgagaga gcccgtcagag agggcgagca gttgcccagct
240
gcttcctcagac ccgctcagagcc gctgctttgc gctgcttgcg ccaggtgtgca cttgctggcc
300
gactacatcg acggtcagca cccccggtggc tcggagcact gcgcaggtgca cttgctgagc
360
atctccagac tgggcaatca gcggcagcat ctccagcaca ctcgctgca actgcgacctg
420
gccggaatct cggcgccagc cgcttttgag gcgcgggacat tggtaagctct cacatccttgag
480
tttatctagtg aagacatccag gccagcagag atgacactaca toaccaacac gcgcattgag
540
gtctacatct ttgctcagag ccagactgct gcggctggct ctctcagcaga gcggctgatttc
600
cgcggcaacct tcggtgacct gcggcagctg tgcgtagcgct cicgctggtat acagttcacac
660
cgcgggtta tcggtgcttc gccttgctgct gcggctgccc gcgggtgctca cgctgctgctca
720
maggtctgct gcgtgtcttt ctttcttgctg ctttcttgctg acctcccat gcgcgacgctcgt
780
tggtgcacact ccagtgccttt tggcgctttg gagccgggtgc tcacccacat gcgcctgctg
840
ttcctgtgtg tcggctgtcttc acgccaggct gcgtgctttg ggtcggctggt ggcgtgtgct
900
attgctgtg ccgactcagct ggctgtgctg cgcctcgcag ctgcagcttc ccagtgtgtgc
960
gacgcctgtg tcggcagct gcggctgtgct acacatcttt caatctata caactcatctgc
1020
attgcgctt ctcaccaagc gcgcgcattgcctgccagc ctacctacca gcgcgacgctcgc
1080
acatgacag tcgcttgccag gcgcgcctgc gcggatgcct gcgatgccct gcggcgagcg
1140
agactgaag gctggcagcc cattggcagc aaatatcggc gcggcgagcc gcgacgctcgc
1200
agatgagtct gcagcggagag cgcgctgtgg cgcgctgtgg gcggccagcg gcggcgagcc gcgacgctcgc
1260
gtcatgacg acgcgcgagc ctacccgacgc gcggatgcct gcgatgccct gcggcgagcg
1320
cattgacgc cttgcttggc gcctctctgc gcgcgacgcc gcggcgaggg gcgacgctcgc
1380
gcgcgagctg gcgcgacgcc gcggcgagcg gcggcgacgcc gcggcgagcg gcgacgctcgc
1440
gtctgctgtg ttcacgta
1458
-continued

<221> NAME/KEY: exon
<222> LOCATION: (1101),(1349)
<223> OTHER INFORMATION:
<220> FEATURE:
<221> NAME/KEY: exon
<222> LOCATION: (1415),(1459)
<223> OTHER INFORMATION:
<220> FEATURE:
<221> NAME/KEY: exon
<222> LOCATION: (1518),(1572)
<223> OTHER INFORMATION:
<220> FEATURE:
<221> NAME/KEY: misc.feature
<223> OTHER INFORMATION: Connect exons 1 to 6 for coding sequence (CDS)

<400> SEQUENCE: 2

caagctggg gctccacgg gcggcggc gctctggatg caaacggtgc 60
gagagtct gcggcggcgc tctcttcgag ttatcaaaaa aacatccaa 120
accacaaa atg tgc cca tcc tgg cag cct gaa ggc gct gcc tcc cag Met Cys Pro Ser Cys Glu Pro Glu Glu Ala Ala Ala Ser Asn 1 5 10 171
gga atg act att gag act cgc cca cca aac gcc caa aac gcc tcc cag Gly Met Thr Gly Ile Thr Thr Arg Glu Ala Glu Ala Arg Tyr Glu 35 40 42 45 267
ccattttg cgg aat ccc tac cag ccc gtc gtt gcc ttt tgt tcc aac gtt Pro Ser Arg Aen Pro Tyr Glu Pro Val Gly Asp Phe Leu Ser Asn Val 50 55 60 315
acc aac tcc aag tct att gag aac gcc ctc gca ggg ggg gcc gag cag tcc Asn Aen Aen Phe Lys Ile Ile Glu Ser Thr Leu Arg Glu Glu Gin Phe 65 70 75 363
ggc aag gcc tcc ttc gac aag gtgatccaa cccagctgaa aagaaactct Ala Asn Aen Phe Asp Thr 80 85 414
tgccttac aacggcggca agctcgacgt tctttgctgct ctgctggtct gttttgtgtg 474
cgatgtcc tggcggcggc cggccgagca aacagacct ctgactgac tctgcttttt 534
tttaactcc gcgcag gaa aag att gag atc gcc aag ggc ggt cag gcac Ala Lys Lys Ile Glu Ile Ala Lys Leu Asp Asp 90 95 586
ttggc gcc gtc gcc tac atc gag ctc acc acc ccg gcc gtt gcc tcc gat Phe Gly Val Asp Tyr Ile Glu Leu Thr Ser Pro Ala Ala Ser Glu Gin 100 105 110 634
tgcc agg ctt gcc gtc gcc atc tgc aag ctt gcc gtc aag gcc aag Ser Aen Leu Asp Cys Ala Ile Cys Lys Leu Gly Leu lvs Ala Lys 115 120 125 682
atc ctc acc ccc atc agg tgc ccc atg gac gcc ggc ggc gcc atc gcc Ile Leu Thr His Ile Arg Cys His Met Asp Asp Ala Arg Ile Ala Val 130 135 140 145 730
ggc ggt gcc gcc gcc gcc tcc gcc atc gtt gac gtc acc gcc tcc gcc Thr Glu Val Gly Val Asp Ile Val Ile Gly Thr Ser Ser Phe 150 155 160 778
cgcc atg gac gcc cct gac ggc aag gac gtt cct ctc atc aac asp Leu Met Glu His Ser His Gly Lys Asp Met Thr Tyr Thr Aen Thr 165 170 175 826
-continued

gcc att gag gtc atc aac ttc gac aag aag cgc atc gag gtc cgc
 Ala Ile Glu Val Ile Aun Phe Val Lys Ser Lys Gly Ile Glu Val Arg
 180 165 190

ttc tca tcc gag gag tcc ttc cgc aag aac ctg gtt gac ctg ctg aag
 Phe Ser Ser Glu Asp Ser Phe Arg Ser Asn Leu Val Asp Asp Leu Ser
 195 200 205

att tac tca acc gtc gac gag agg att ggt gtc acc cgt gtc gtt att gct
 Ile Tyr Ser Thr Val Asp Lys Ile Val Asn Arg Val Gly Ile Ala
 210 215 220 225

gtc acc gtc ggt tgc ggc tgg cgc cag gtc ttc gac ctg tgc aag
 Aasp Thr Val Gly Cys Ala Ser Pro Arg Glu Val Tyr Aasp Leu Val Lye
 230 235 240

acc ctg cgt ggt gtt gtc ttt tgg tgg cgc aac gag
 Thr Leu Arg Gly Val Val Ser Cys
 245

gctggtcag gagctgtaa gttgctag t gac att gag aca cac ttc ccc cac aac
 Asp Ile Glu Thr His Phe His Asn
 250 255

gac act ggc tgt goc atc tca atg gct ttt tgc gtt tgt gag gcc ggt
 Asp Thr Gly Cys Ala Ile Ser Ala Phe Cys Ala Glu Gly Gly
 260 265 270

gct acc cac atc gac acc tgt gtc cgg gtt gtc acc gcc gac cgg asg
 Ala Thr His Ile Asp Thr Cys Val Leu Gly Ile Glu Arg Asn Gly
 275 280 285

att acc cct gtt ggt cgg atg cgg gct att gtc ggg tcc aag
 Ile Thr Pro Leu Gly Gly Met Ala Met Ile Val Gly Ser Lys
 290 295 300 305

gac tac ggt cct agc aag tac aag ctc aac aag ctc aag gag att gag
 Asp Tyr Val Leu Ser Lye Tyr Lye Leu His Leu Lye Asp Ile Glu
 310 315 320

gag ctt gtt gcc gcc gtt cgg gcc gtt cgg ctt gtt gcc ctt gtt gcc
 Glu Leu Val Ala Asp Ala Glu Val Asn Ile
 325 330

gcagttttct tttgctgtag gagttgtcct atttgctgct tgtag t cct ttc aat
 Pro Phe Ams
 335

aac tac atc act ggt ttc tgt gct ttc acc cac aa
 Asn Tyr Ile Thr Gly Phe Cys Ala Phe Thr His Lys
 340 345

toccaactg gatctgtaa aatctggtag g goc ggt
 Ala Gly

ata ctt gcc aag ctt gct att ctc aag aac ccc tca aca ttt gag att att
 Ile His Ala Lys Ala Ile Leu Aasp Thr Thr Gly Ile Ile
 350 355 360 365

gtagtttt gatctgtcct ccagctgtgc ccagctgtgc ctagtgagcc gaaatgcta

accctgatt aatcag gaa coc act ctg ttc ggc atc act cgc tat gtc cac
 Asp Pro Thr Leu Phe Gly Ile Thr Arg Tyr Val His
 370 375

ttc gcc agc aag tgt aag gaa tgg aac gcc atc aag aag gaa gaa cgg
 Phe Ala Ser Arg Leu Thr Gly Trp Asn Ala Ile Lys Ser Arg Ala Ser
 380 385 390

cag ctc acc att gag atc cgg gat gag ctc aag gag tgc act gcc
 Glu Leu Asn Ile Glu Met Thr Asp Glu Glu Cys Lys Gly Thr Ala
 395 400 405

aac goto aag ctt tgt gct gac att aag ccc atc gtt atc aag gac ggc
 Lye Ile Lye Leu Leu Ala Asp Ile Arg Pro Ile Ala Ile Aasp Ala
 410 415 420 425

gac ttc atc att cac gca ttc ccc cgc aag ctc aag tgg goc cag ctt
 430
-continued

Asp Ser Ile Ile His Ala Phe His Arg Ser Ile Asn Ser Gly Gln Pro
430 435 440
att cag tat ctc gga aag cag ctc ccc aac atg acg gag gag aag
Ile Gln Tyr Leu Gly Ser Leu Leu Pro Aan Met Thr Glu Glu Glu Lys
445 450 455 460
gcc gcc tgt gca gat gta gag cgc tgt aac gat gcc gag cca
Ala Ala Leu Ala Asp Val Glu Arg Arg Glu Ser Asn Asp Ala Glu Gln
465 470 475
ccg ggc gcc aag agg gcc aag gtc gag gct gtt gta t gca caca acg
Pro Ala Ala Lys Arg Ala Lys Val Glu Ala Val Ala
480 485
gaattttga gcttgttca aagttgagcg aatgtttttg ataagaaaa gcgcaaattt
2079
tggtgttta gggaaagag agaaaggct tgtgctttga ttttaataac cccaaagctg
2139
tgcatttatt atatgtctt cttctgtttct catcagaaaag caaaaaaaaa gggaaaagag
2199
aasagatagc agcattatgg gcgggatagc gttcgccatt cggccccgg gttcgccatt
2259
atatcgtttc ctagtcgggt aagggcaggt gggggcaggt gggggcaggt
2319
atatcgtttc tatacatcattg aagggcaggt gggggcaggt gggggcaggt
2366

<210> SEQ ID NO 3
<211> LENGTH: 449
<212> TYPE: PRT
<213> ORGANISM: Magnaporthe grisea

<400> SEQUENCE: 3

Met Cys Pro Ser Cys Glu Pro Glu Gln Ala Ala Ala Ser Asn Gly Asn
1 5 10 15
Ala Asn Gly Asn Gly Ala Ser Asn Gly Asn His Asp Gly Met
20 25 30
Thr Gly Ile Glu Thr Arg Gln Ala Aan Ala Arg Tyr Gln Pro Ser
35 40 45
Arg Asn Pro Tyr Gln Pro Val Gly Asp Phe Leu Ser Asn Val Asn Asn
50 55 60
Phe Lys Ile Ile Glu Ser Thr Leu Arg Glu Gly Glu Gln Phe Ala Aan
65 70 75 80
Ala Phe Phe Asp Thr Ala Lys Lys Ile Ala Lys Ala Leu Asp
85 90 95
Asp Phe Gly Val Asp Tyr Ile Glu Leu Thr Ser Pro Ala Ala Ser Glu
100 105 110
Gln Ser Arg Leu Asp Cys Ala Ala Ile Cys Lys Leu Gly Leu Lys Ala
115 120 125
Lys Ile Leu Thr His Ile Arg Cys His Met Asp Ala Arg Ile Ala
130 135 140
Val Glu Thr Gly Val Asp Gly Val Ile Val Ile Gly Thr Ser Ser
145 150 155 160
Phe Leu Met Glu His Ser His Gly Lys Asp Met Thr Tyr Ile Thr Aan
165 170 175
Thr Ala Ile Glu Val Ile Asn Phe Val Lys Ser Lys Gly Ile Glu Val
180 185 190
Arg Phe Ser Ser Glu Ser Phe Arg Ser Asn Leu Val Asp Leu Leu
195 200 205
Ser Ile Tyr Ser Thr Val Asp Lys Ile Gly Val Asn Arg Val Gly Ile
210 215 220
Ala Asp Thr Val Gly Cys Ala Ser Pro Arg Glu Val Tyr Asp Leu Val
225 230 235 240
What is claimed is:

1. A method for identifying a test compound as a candidate for an antibiotic, comprising:
 a) contacting a homocitrate synthase polypeptide with said test compound; and
 b) detecting the presence or absence of binding between said test compound and said homocitrate synthase polypeptide;

 wherein binding indicates that said test compound is a candidate for an antibiotic.

2. The method of claim 1, wherein said homocitrate synthase polypeptide is a fungal homocitrate synthase polypeptide.

3. The method of claim 1, wherein said homocitrate synthase polypeptide is a Magnaporthe homocitrate synthase polypeptide.

4. The method of claim 1, wherein said homocitrate synthase polypeptide is SEQ ID NO: 3.

5. A method for determining whether a compound identified as an antibiotic candidate by the method of claim 1 has antifungal activity, further comprising:

 contacting a fungus or fungal cells with said antibiotic candidate and detecting the decrease in growth, viability, or pathogenicity of said fungus or fungal cells.

6. A method for identifying a test compound as a candidate for an antibiotic, comprising:
 a) contacting said test compound with at least one polypeptide selected from the group consisting of: a polypeptide having at least ten consecutive amino acids of a fungal homocitrate synthase, a polypeptide having at least 50% sequence identity with a fungal homocitrate synthase, and a polypeptide having at least 10% of the activity thereof, and
 b) detecting the presence and/or absence of binding between said test compound and said polypeptide;

 wherein binding indicates that said test compound is a candidate for an antibiotic.

7. A method for determining whether a compound identified as an antibiotic candidate by the method of claim 6 has antifungal activity, further comprising:

 contacting a fungus or fungal cells with said antibiotic candidate and detecting a decrease in growth, viability, or pathogenicity of said fungus or fungal cells.

8. A method for identifying a test compound as a candidate for an antibiotic, comprising:
 a) contacting acetyl-CoA and H2O and 2-oxoglutarate with a homocitrate synthase;
 b) contacting acetyl-CoA and H2O and 2-oxoglutarate with a homocitrate synthase and said test compound; and
c) determining the change in concentration for at least one of the following: 2-hydroxybutane-1,2,4-tricarboxylate, 2-oxoglutarate, acetyl-CoA, CoA, and/or H₂O;

wherein a change in concentration for any of the above substances between steps (a) and (b) indicates that said test compound is a candidate for an antibiotic.

9. The method of claim 8, wherein said homocitate synthase is a fungal homocitate synthase.

10. The method of claim 8, wherein said homocitate synthase is a Magnaporthe homocitate synthase.

11. The method of claim 8, wherein said homocitate synthase is SEQ ID NO: 3.

12. A method for determining whether a compound identified as an antibiotic candidate by the method of claim 8 has antifungal activity, further comprising:

contacting a fungus or fungal cells with said antibiotic candidate and detecting a decrease in growth, viability, or pathogenicity of said fungus or fungal cells.

13. A method for identifying a test compound as a candidate for an antibiotic, comprising:

a) contacting 2-hydroxybutane-1,2,4-tricarboxylate and CoA with a homocitate synthase;

b) contacting 2-hydroxybutane-1,2,4-tricarboxylate and CoA with a homocitate synthase and test compound; and

c) determining the change in concentration for at least one of the following: 2-hydroxybutane-1,2,4-tricarboxylate, 2-oxoglutarate, acetyl-CoA, CoA, and/or H₂O;

wherein a change in concentration for any of the above substances between steps (a) and (b) indicates that said test compound is a candidate for an antibiotic.

14. The method of claim 13, wherein said homocitate synthase is a fungal homocitate synthase.

15. The method of claim 13, wherein said homocitate synthase is a Magnaporthe homocitate synthase.

16. The method of claim 13, wherein said homocitate synthase is SEQ ID NO: 3.

17. A method for determining whether a compound identified as an antibiotic candidate by the method of claim 13 has antifungal activity, further comprising:

contacting a fungus or fungal cells with said antibiotic candidate and detecting a decrease in growth, viability, or pathogenicity of said fungus or fungal cells.

18. A method for identifying a test compound as a candidate for an antibiotic, comprising:

a) contacting acetyl-CoA and H₂O and 2-oxoglutarate with a polypeptide selected from the group consisting of: a polypeptide having at least 50% sequence identity with a homocitate synthase, a polypeptide having at least 50% sequence identity with a homocitate synthase and having at least 10% of the activity thereof, and a polypeptide comprising at least 100 consecutive amino acids of a homocitate synthase

b) contacting acetyl-CoA and H₂O and 2-oxoglutarate with said polypeptide and said test compound; and

c) determining the change in concentration for at least one of the following: 2-hydroxybutane-1,2,4-tricarboxylate, 2-oxoglutarate, acetyl-CoA, CoA, and/or H₂O;

wherein a change in concentration for any of the above substances between steps (a) and (b) indicates that said test compound is a candidate for an antibiotic.

19. A method for identifying a test compound as a candidate for an antibiotic, comprising:

a) contacting 2-hydroxybutane-1,2,4-tricarboxylate and CoA with a polypeptide selected from the group consisting of: a polypeptide having at least 50% sequence identity with a homocitate synthase, a polypeptide having at least 50% sequence identity with a homocitate synthase and having at least 10% of the activity thereof, and a polypeptide comprising at least 100 consecutive amino acids of a homocitate synthase

b) contacting 2-hydroxybutane-1,2,4-tricarboxylate and CoA, with said polypeptide and said test compound; and

c) determining the change in concentration for at least one of the following: 2-hydroxybutane-1,2,4-tricarboxylate, 2-oxoglutarate, acetyl-CoA, CoA, and/or H₂O;

wherein a change in concentration for any of the above substances between steps (a) and (b) indicates that said test compound is a candidate for an antibiotic.

20. A method for identifying a test compound as a candidate for an antibiotic, comprising:

a) measuring the expression of a homocitate synthase in a cell, cells, tissue, or an organism in the absence of said compound;

b) contacting said cell, cells, tissue, or organism with said test compound and measuring the expression of said homocitate synthase in said fungus or fungal cell;

c) comparing the expression of homocitate synthase in steps (a) and (b);

wherein a lower expression in the presence of said test compound indicates that said compound is a candidate for an antibiotic.

21. The method of claim 20 wherein said cell, cells, tissue, or organism is, or is derived from a fungus.

22. The method of claim 20 wherein said cell, cells, tissue, or organism is, or is derived from a Magnaporthe fungus or fungal cell.

23. The method of claim 20, wherein said homocitate synthase is SEQ ID NO: 3.

24. The method of claim 20, wherein the expression of homocitate synthase is measured by detecting HCS1 mRNA.

25. The method of claim 20, wherein the expression of homocitate synthase is measured by detecting homocitate synthase polypeptide.

26. A method for identifying a test compound as a candidate for an antibiotic, comprising:

a) providing cells having one form of a homocitate synthase gene, and providing comparison cells having a different form of a homocitate synthase gene;

b) contacting said cells and said comparison cells with a test compound and determining the growth of said cells and comparison cells in the presence of the test compound;
wherein a difference in growth between said cells and said comparison cells in the presence of said compound indicates that said compound is a candidate for an antibiotic.

27. The method of claim 26 wherein the cells are fungal cells.

28. The method of claim 26 wherein the cells are Magnaporthe cells.

29. The method of claim 26 wherein said form and said comparison form of the homocitrate synthase are fungal homocitrate synthases.

30. The method of claim 26, wherein at least one form is a Magnaporthe homocitrate synthase.

31. The method of claim 26 wherein said form and said comparison form of the homocitrate synthase are non-fungal homocitrate synthases.

32. The method of claim 26 wherein one form of the homocitrate synthase is a fungal homocitrate synthase, and the other form is a non-fungal homocitrate synthase.

33. A method for identifying a test compound as a candidate for an antibiotic, comprising:

a) providing cells having one form of a gene in the lysine biochemical and/or genetic pathway and providing comparison cells having a different form of said gene;

b) contacting said cells and comparison cells with a said test compound;

c) determining the growth of said cells and comparison cells in the presence of said test compound;

wherein a difference in growth between said cells and said comparison cells in the presence of said compound indicates that said compound is a candidate for an antibiotic.

34. The method of claim 33 wherein the cells are fungal cells.

35. The method of claim 33 wherein the cells are Magnaporthe cells.

36. The method of claim 33 wherein said form and said comparison form of the lysine biosynthesis gene are fungal lysine biosynthesis genes.

37. The method of claim 33, wherein at least one form is a Magnaporthe lysine biosynthesis gene.

38. The method of claim 33 wherein said form and said comparison form of the lysine biosynthesis genes are non-fungal lysine biosynthesis genes.

39. The method of claim 33 wherein one form of the lysine biosynthesis gene is a fungal lysine biosynthesis gene, and the other form is a non-fungal lysine biosynthesis gene.

40. A method for determining whether a test compound identified as an antibiotic candidate by the method of claim 33 has antifungal activity, further comprising:

(a) contacting a fungus or fungal cells with said antibiotic candidate and detecting a decrease in growth, viability, or pathogenicity of said fungus or fungal cells.

41. A method for identifying a test compound as a candidate for an antibiotic, comprising:

(a) providing paired growth media; comprising a first medium and a second medium, wherein said second medium contains a higher level of lysine than said first medium;

(b) contacting an organism with said test compound;

(c) inoculating said first and second media with said organism; and

(d) determining the growth of said organism;

wherein a difference in growth of the organism between said first and second media indicates that said test compound is a candidate for an antibiotic.

42. The method of claim 31, wherein said organism is a fungus.

43. The method of claim 41, wherein said organism is Magnaporthe.

44. An isolated polynucleotide comprising a nucleotide sequence that encodes a polypeptide of SEQ ID NO: 3.

45. The polynucleotide of claim 44 comprising the nucleotide sequence of SEQ ID NO: 1.

46. An expression cassette comprising the polynucleotide of claim 45.

47. The isolated polynucleotide of claim 44 comprising a nucleotide sequence of at least 50 to at least 95% sequence identity to SEQ ID NO: 1.

48. A polypeptide consisting essentially of the amino acid sequence of SEQ ID NO: 3.

49. A polypeptide comprising the amino acid sequence of SEQ ID NO: 3.

* * * * *