<table>
<thead>
<tr>
<th>Title</th>
<th>Tricolor LED display system with audio output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inventor(s)</td>
<td>Pang, GKH; Yang, ES; T.O. Guan; Pang, GKH; T.-O. Guan</td>
</tr>
<tr>
<td>Citation</td>
<td>China Published Patent Application CN 1146850. Beijing, PRC: State Intellectual Property Office (SIPO) of the P.R.C., 2004</td>
</tr>
<tr>
<td>Issued Date</td>
<td>2004</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10722/176644</td>
</tr>
<tr>
<td>Rights</td>
<td>This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.</td>
</tr>
</tbody>
</table>
发明名称 具有音频输出的三色发光二极管显示系统

摘要

提供一种三色 LED 显示系统(10)，具有多个多色 LED(22)，说明书 LED 同时用作显示器和数据通信元件。这些三色 LED 颜色到特定用途的计算系统(12)和音频信号发射器(16)，用于同时控制来自 LED 可视信号，并将音频信息调制到 LED 发射的可视光信号上。接收电路(24)从 LED 接收调制可视光信号，并解调所接收的信号，从而恢复音频信息，然后将这些信息通过音频接口呈现给系统的用户。
1. 一种三色 LED 点阵显示系统，包括：

发射器子系统，用于通过三色 LED 点阵显示器同时发射可视显示信号和调制可视光信号以向用户进行显示，其中可视显示信号和调制可视光信号由相同的 LED 发射，其中调制可视光信号携带调制的音频信息；及

接收器子系统，用于接收调制可视光信号，并解调所述可视光信号，从而恢复所发射的音频信息。

2. 根据权利要求 1 的系统，其发射器子系统包括：

用于产生显示信息的计算机系统；
用于产生调制音频信号的音频信号发射器；及
耦合到计算机系统和音频信号发射器的接口电路，用于将所述显示信息和调制音频信号加到三色 LED 点阵显示器上。

3. 根据权利要求 1 的系统，其中三色 LED 点阵显示器能够显示红、绿和淡黄色。

4. 根据权利要求 2 的系统，其中所述计算机系统与所述接口电路耦合到所述接口电路。

5. 根据权利要求 2 的系统，还包括在计算机系统中工作用于控制显示信息的产生及执行计算机程序。

6. 根据权利要求 2 的系统，其中音频信号发射器包括：

用于产生音频信号的音频信号源；及
与音频信号源耦合用于产生调制音频信号的调制器。

7. 根据权利要求 6 的系统，其中所述调制器是压控振荡器。

8. 根据权利要求 1 的系统，其中接收器子系统包括：

用于从三色 LED 点阵显示器接收调制可视光信号的光传感器；
耦合到所述光传感器的解调器，用于解调所述调制可视光信号，从而恢复所发射的音频信号；及
耦合到音频信号的扬声器。

9. 根据权利要求 8 的系统，其中接收器子系统还包括将三色 LED 点阵显示器发射的光聚焦到光传感器上的透镜。

10. 根据权利要求 8 的系统，其中所述光传感器是光探测器。

11. 根据权利要求 2 的系统，其中所述接口电路包括：
耦合到调制音频信号的行计数解码系统，用于控制三色 LED 点阵显示器中 LED 的行选择；及
耦合到显示信息的段计数解码系统，用于控制三色 LED 点阵显示器中 LED 的段选择。

12. 根据权利要求 11 的系统，其中所述接口电路还包括：
并行端口接口，接收所述显示信息，所述显示信息包括显示数据和
LED 显示器的寻址信息；
地址比较单元，用于比较 LED 显示器的寻址信息与行计数解码系统
和段计数解码系统产生的系统寻址信息；及
图像存储系统，用于在地址比较单元表示 LED 显示器的寻址信息
与行计数解码系统和段计数解码系统产生的系统寻址信息相同时存储
显示数据。

13. 根据权利要求 12 的系统，其中所述接口电路还包括：
耦合到并行端口接口的状态指示器，用于在显示数据写入图像存储
系统时，产生完成信号。

14. 根据权利要求 7 的系统，其中所述压控振荡器用作调频器。
15. 一种三色 LED 点阵显示系统，包括：
具有多个三色 LED 的三色 LED 点阵显示器；
用于将显示信号加到三色 LED 上产生可视信号图像的装置；及
用于将音频信号加到三色 LED，从而发射携带音频信号的调制可
视光信号的装置。

16. 一种控制三色 LED 点阵显示系统中的三色 LED 的接口电路，包
括：
用于选择所述显示器的一个行的行计数器；
用于选择所述显示器的上述行中的一个 LED 的段计数器；和
一个图像存储系统，用于存储将由所述显示器的每个 LED 发射的
一个预定的颜色，所述图案存储系统构造为从所述行计数器输入所述选
择的行，从所述段计数器输入被选择的 LED 和控制所述被选择的行中
被选择的 LED 以使各个 LED 发射预定的颜色；
所述行计数器被连接到一个语音调制信号以使所述 LED 发射的
光被语音调制。

17. 根据权利要求 16 的接口电路，其中具有
并行端口接口，接收所述显示信息，所述显示信息包括显示数据和 LED 显示器的寻址信息；

地址比较单元，用于比较 LED 显示器的寻址信息与行计数解码系统和段计数解码系统产生的系统寻址信息；及

所述图像存储系统，用于在地址比较单元表示 LED 显示器的寻址信息与行计数解码系统和段计数解码系统产生的系统寻址信息相同时存储显示数据。

18. 根据权利要求 1 的系统，其中所述系统通过对形成一个消息的 LED 用一种或多种颜色激活且用一种或多种背景颜色激活其余的 LED 而对所述显示器中的各个 LED 用一种颜色激活。
具有音频输出的三色发光二极管显示系统

技术领域

本发明涉及 LED 显示系统和数据通信领域。更具体地说，本发明提供一种三色发光二极管（LED）显示系统，其中 LED 同时用作显示和数据通信元件，用于显示可视信息并将调制的音频信息发射到有关接收器。

背景技术

LED 显示系统较好是包括发射器子系统和接收器子系统。发射器子系统可以包括例如 PC、工作站、或嵌入式计算机等特定用途的计算机和音频信号发射器，它们都通过特定接口电路耦合到优选的三色点阵 LED 显示器。音频信号发射器较好是包括电压控制振荡器，用于将音频信号信息调制到显示器的 LED 上。优选的三色 LED 显示器能够产生三种不同的颜色 — 红、绿和淡黄。接收器子系统可以包括将来自 LED的发射光聚焦到光探测器（或其它光探测装置）上的透镜、用于将音频信息从三色显示器发射的调制可视光信号恢复到音频信息的解调器，及将解调音频信息呈现给系统的使用者的音频系统。

发明内容

本发明的目的是提供具有多个多色 LED 同时用作显示和数据通信元件的三色 LED 显示系统。这些具有双重用途的三色 LED 与特定用途的计算机系统和音频信号发射器耦合，用于同时控制来自 LED 的可视显示信号，并将音频信息调制到 LED 发射的可视光信号上。接收器接收来自 LED 的调制可视光信号，并将所接收的信号解调，恢复音频信息，然后通过音频接口呈现给系统的使用者。

根据本发明，提供了一种三色 LED 点阵显示系统，包括：发射器子系统，用于通过三色 LED 点阵显示器同时发射可视显示信号和调制可视光信号以向用户进行显示，其中可视显示信号和调制可视光信号由相同的 LED 发射，其中调制可视光信号携带调制的音频信息；及接收器子系统，用于接收调制可视光信号，并解调所述可视光信号，从而恢复所发射的音频信息。
其中发射器子系统包括：用于产生显示信息的计算机系统；用于产生调制音频信号的音频信号发射器；及耦合到计算机系统和音频信号发射器的接口电路，用于将所述显示信息和调制音频信号加于三色 LED 点阵显示器上。

其中三色 LED 点阵显示器能够显示红、绿和浅黄色。

所述计算机系统通过并行端口接口耦合到接口电路。

所述系统还包括在计算机系统中工作用于控制显示信息的产生的执行计算机程序。

其中音频信号发射器包括：用于产生音频信号的音频信息源；及与音频信息源耦合用于产生调制音频信号的调制器。其中所述调制器是压控振荡器。所述压控振荡器可以用作为调频器。

其中接收器子系统包括：用于从三色 LED 点阵显示器接收调制可视光信号的光传感器；耦合到所述光传感器的解调器，用于解调所述调制可视光信号，从而恢复所发射的音频信号；及耦合到音频信号的扬声器。

接收器子系统还可以包括将三色 LED 点阵显示器发射的光聚焦到光传感器上的透镜。所述光传感器是光探测器。

其中所述接口电路包括：耦合到调制音频信号的行计数解码系统，用于控制三色 LED 点阵显示器中 LED 的行选择；及耦合到显示信息的段计数解码系统，用于控制三色 LED 点阵显示器中 LED 的段选择。

其中所述接口电路还包括：并行端口接口，接收所述显示信息，所述显示信息包括显示数据和 LED 显示器的寻址信息；地址比较单元，用于比较 LED 显示器的寻址信息与行计数解码系统和段计数解码系统产生的系统寻址信息；及图像存储系统，用于在地址比较单元表示 LED 显示器的寻址信息与行计数解码系统和段计数解码系统产生的系统寻址信息相同时时存储显示数据。

所述接口电路还包括：耦合到并行端口接口的状态指示器，用于在显示数据写入图像存储系统时，产生写完成信号。

所述系统能够通过解形成一个消息的 LED 用一种或多种颜色激活，且用一种或多种背景颜色激活其余的 LED 而对所述显示器中的各个 LED 用一种颜色激活。

本发明还提供了一种三色 LED 点阵显示系统，包括：具有多个三
色 LED 的三色 LED 点阵显示器；用于将显示信号加到三色 LED 上产生可视信号图像的装置；及用于将音频信号加到三色 LED，从而发射携带音频信号的调制可视信号的装置。

本发明最后提供了一种控制三色 LED 点阵显示器中的三色 LED 的接口电路，包括：用于选择所述显示器的一个行的计数器；用于选择所述显示器的上述中的一个 LED 的段计数器；和一个图案存储系统，用于存储将由所述显示器的每个 LED 发射的一个预设的颜色，所述图案存储系统构造为从所述行计数器输入所述选择的行、从所述段计数器输入被选择的 LED 和控制所述被选择的行中被选择的 LED 以使各个 LED 发射预设的颜色；所述行计数器被连接到一个语音调制信号以使所述 LED 发射的光被语音调制。

上述接口电路还包括：并行端口接口，接收所述显示信息，所述显示信息包括显示数据和 LED 显示器的寻址信息；地址比较单元，用于比较 LED 显示器的寻址信息与行计数解码系统和段计数解码系统产生的系统寻址信息；及图像存储系统，用于在地址比较单元表示 LED 显示器的寻址信息与行计数解码系统和段计数解码系统产生的系统寻址信息相同时存储显示数据。

应注意，这些只是本发明的一些方面。通过阅读以下有详细说明，可以清楚本没有具体列出的本发明其它方面。

本发明具有许多优于现有数据通信系统和 LED 显示系统的优点，并不同时需要所有的优点实现所要求的发明，以下列出的仅仅是对可以提供的有益效果的单独或组合形式的展示。本发明的主要优点在于用三色 LED 同时用作显示和数据通信元件，所以可以提供一种更可靠的数据通信系统。由于本发明的显示器中使用了三色 LED，所以可以利用与要显示的主要字符（或信息）不同的颜色激发显示器的背景。给定行中的 LED（不管色状态）可以用相同的音频信息调制。通过以此方式构成该系统，每行中总是存在被点亮的 LED，所以可以确保比单色显示器更可靠的传输，其中一行中某些 LED 不必不截止，以便提供正确的可视显示。除这种可靠性优点外，由于显示器可使用更多颜色，所以由三色显示器显示的图像或图案更具吸引力和更柔和。

本发明的其它优点例如包括：(1) 比单色 LED 显示器更亮的显示；(2) 由于接口电路和其同步电源的设计，减少了调制信号噪声；(3)
允许文本滚动，同时对所发射的调制信号没有影响；（4）放松了对接
收系统的设计限制。

这些只是本发明众多优点中的几个，下面将对优选实施例进行更细

地介绍。应理解，本发明能够具有不同于这些所记载的实施例，可以

从各方面在细节上作出改进，所有这些都不背离本发明的精神。因此，

优选实施例的附图的介绍可作为展示，但不作为限制。

附图说明

图 1 是根据本发明的优选三色 LED 显示系统的框图，包括发射器
子系统和接收器子系统；

图 2 是音频信号发射器的框图，是图 1 所示优选发射器子系统的一
部分；

图 3 是优选接收器子系统的框图；

图 4 是优选接口电路的框图，是图 1 所示优选发射器子系统的一部
分；

图 5 是使用发光二极管的三色点阵显示器的示图。

具体实施方式

现参见各附图，图 1 是根据本发明的优选三色 LED 显示系统 10 的
框图，包括发射器子系统 12-22 和接收器子系统 24。发射器子系统包
括：可以运行执行程序 14 的计算机 12；音频信号发射器 16；接口
电路 18；及包括多个三色 LED 22 的三色 LED 显示器 20。下面结合图
3 更详细地介绍接收器子系统 24。

计算机 12 可以是 PC、工作站、膝上计算机、嵌入式计算机或能够
执行程序的其它处理系统。执行计算机程序 14 在计算机 12 上运行，控
制字符、装饰图像或信息在显示屏 20 上的可视显示。音频信号发射
器 16（以下将结合图 2 作详细介绍）产生调制音频信号，提供给 LED
显示器 20，以使 LED 22 发射携带希望的音频信息的调制可视光信号。
音频信号发射器 16 和计算机 12 通过接口电路 18 植合到三色 LED 点阵
显示器 20。计算机 12 与接口电路 18 间的耦合优选是并行数据端口，
用于从计算机 12 将并行数据传输到接口电路 18，用该数据产生在三色
LED 显示矩阵 20 上的适当显示信息。下面结合图 4 详细介绍优选接口
电路。该电路的目的是同时控制 LED 显示器的显示和数据通信功能。

接收器子系统 24 包括用于接收三色显示器 20 的调制可视光信号、
并解调所接收的信号以便恢复所希望的音频信息的元件。接收器子系统的优选元件如图 3 所示。

图 2 是音频信号发射器 16 的框图，形成图 1 所示优选三色 LED 显示系统的一部分。音频信号发射器包括例如盒带 30 或 CD 播放器 32 等音频信息源、压控振荡器（VCO）电路 34 和缓冲电路 36。音频信号发射器的输出是调制信号 38，在加到三色 LED 显示器 20 的 LED 22 上时，该信号会使 LED 发射包括音频信息的调制可视光信号。

盒带 30 或 CD 播放器 32 产生将由 LED 显示器 22 发射的音频信号。该音频信号然后送到作为调频器（FM）工作的 VCO 34，以便调制音频信号，从而使调制的载波频率正比于音频信号的幅度。VCO 输出调制信号 38，该信号加到 LED 22 上，以便在对应于调制信号的特定频率下导通/截止 LED。该频率高到足以使来自 LED 22 的可见光表现为使人眼可连续看到。所以，对于观察者来说，看不到三色显示器的 LED 以协同工作的方式工作。

图 3 是优选接收器子系统 24 的框图。接收器子系统 24 包括透镜 42、光探测器 44、FM 解调器 46 和扬声器 50 和/或耳机 48。透镜 42 收集 LED 显示器 20 发射的可见光，包括调制可视光信号。然后，这些光线被聚焦在光探测器 44 上或其它类型的光探测装置上。光探测器 44 将调制可视光信号转变成电信号。然后，FM 解调器 46 将调制信号解调为由盒带 30 或 CD 播放器 32 产生的原始音频信号。可用扬声器 50、耳机 48 或耳塞传输从发射器 16 发送的音频信息或音乐。接收器子系统可以由电池供电，这样它便可以是便携式，或可由任何其它类型的电系统供电。

图 4 是优选接口电路 18 的框图，是图 1 所示优选发射器子系统的一部分。该电路 18 可以包括：行计数解码系统 60；并行端口接口电路 64；状态指示器 66；段计数解码系统 68；图像存储系统 72；地址比较电路 78；和振荡器 80。该电路还可以包括一个或多个缓冲/寄存电路 62、70、74、76。这些缓冲/寄存器中的三个 62、74 和 76 分别产生行数据、段数据和段选择信号，用于控制三色 LED 显示器 20。接口电路 18 通过并行端口接口 64 与计算机 12 耦合，通过调制信号 38 与音频信号发射器耦合。

来自音频信号发射器 16 的调制信号 38 耦合到行计数解码系统 60,
行计数解码系统 60 通过任意的缓冲/寄存器 62 摇合到三色 LED 显示器 20 上的行数据输入。行计数解码系统 60 用于在 LED 显示器 62 的各行之间进行转换，包括由调制信号 38 驱动的计数器，和用于适当行选择的解码器。

段计数解码系统 68 由振荡器 80 驱动，可用于 LED 显示器 20 的各段间的转换。段计数解码系统 68 通过任选的缓冲器/寄存器 76 与三色 LED 显示器 20 上的段选择输入耦合。这一电路 68 包括由快速振荡器 80 驱动的计数器和用于段选择的解码器。

图像存储系统 72 用于存储矩阵 20 中每行和每段中的 LED 显示图像。优选为 SRAM，尽管也可以采用其它类型的固态存储器。存储在图像存储系统 72 中的数据图像通过并行端口接口 64 由计算机系统 12 提供。

地址比较单元 78 用于输入当前行地址（从行计数解码系统 60）和段地址（从段计数解码系统 68），并比较这些地址与来自并行端口接口 64 的地址信号。它比较系统产生的地址（根据两个计数器系统 60, 68）与计算机 12 发送的地址。这样做可以确保 SRAM 数据存储在图像存储系统 72 中，显示器 20 将不会被中断，直到 LED 处于非激活态（截止态）。直到这些地址匹配为止，新数据不会写入图像存储系统 72。地址比较单元 78 包括位比较器（用于比较地址值的位）和数据寄存器 70。寄存器固定来自并行端口接口 64 的信息数据，直到系统准备好将数据写入 SRAM（即在地址值匹配时）。在这种情况下发生时，地址比较单元将“/WE”线插入 SRAM 72，使寄存器数据 70 被写入图像存储系统 72。图像存储系统通过任意缓冲/寄存电路 74 向三色显示器 20 中的合适 LED 输出段数据。

状态指示器 66 包括具有异步预置和清零输入的 D 型触发器。该非反相触发器输出脚（选通脚）用于表示成功的写入操作。在这种情况下发生时（根据来自地址比较单元 78 的信号），选通脚设置为高，然后通过并行端口接口 64 被传输到计算机 12，以便计算机 12 可以发送下一个数据。

任意地方，接口电路 18 如下所述更新三色 LED 显示器 20 的显示图像。首先，来自计算机 12 的数据被锁存到寄存器 70 中。然而，数据将不发送到 SRAM 72 输入脚或段寄存器 74 输入脚，因而不中断正常的
LED 显示过程。第二，来自计算机 12 的地址呈现给地址比较器 78，比
较该地址与来自行计数解码系统 60 和段计数解码系统 68 的系统产生的
地址。在这些地址匹配时，比较器的输出下拉（/WE），使存储在寄存器
70 中的数据写入图形存储器 SRAM 72。写入完成后，来自地址比较
单元 78 的信号（P = Q）发送到状态指示器 66，状态指示器 66 将选通
输出设置为高，于是通知计算机 12 写入成功，附加数据可呈现给接口
电路 18。

上面已介绍了接口电路 18 的优选电路结构，有益的是考虑了提供
优于目前已知的 LED 显示系统的优点的该设计的附加工作特征。第一
个优点是 LED 显示器采用了多时钟信号，包括高速振荡时钟 80 和调制
时钟信号 38。无论调制信号改变与否，LED 显示器 20 的激活行也改变，
所以该行表示一些信息。调制信号的优选频率是 100kHz。音频信号信
息由发射器子系统的 VCO34 调制到该信号上，于是频率范围为
100±44.1kHz。

用于优选接口电路 18 的其它定时信号由高速振荡器 18 产生，在优
选实施方式中，采用 12MHz 振荡频率，尽管也可以选择其它频率。该
信号用于在三色 LED 显示器 20 的不同段间（即不同字符中的不同颜
色）进行转换。段时钟应在高于调制信号时钟 38 的频率下工作，以便
在调制信号 38 改变前，所以段至少被扫描一次并被更新。其它情况下，
如同预计的那样，某些段将不被点亮。

在公用信号 92（“行”）在调制信号的频率（即 100kHz）下改变
时，段信号 90、94（“列”）在约 12MHz 的更高频率下改变。然而，
这个 12MHz 可以被被段计数器 68 一分为二，以使在 6MHz 下工作。此外，
仅有调制信号 100kHz 周期的一半用于段选择。因此，在行被激活
的时间周期内，段地址改变的次数大约为：

$$\frac{6M * 1}{100k} = 30$$

优选接口电路 18 的第二工作特征是，在 LED 处于截止态的时间周
期内进行图像数据的更新。通过使该电路与调制信号 38 同步，于是消
除了所发射的 LED 信号中的任何噪声，包括图像更新时。接口电路 18
只在到 LED20 的行输入未激活时更新显示。以此方式，由于图像更新过
程中没有数据传输，所以没有噪声注入调制信号。
图 5 是使用了能够发射三种不同颜色的发光二极管 22 的三色点阵显示器 20 的示意图。这些颜色优选是红、绿和淡黄。各 LED 22 线合到公用信号 92 和两个段信号，公用信号 92 将 LED 接定行系在一起，两个段信号一个是红 90，另一个是绿 94。为激励 LED，用于该行的公用信号 92 保持低。于是，如果将发射红信号，则刚好该特定列的红色段保持高。如果将发射绿信号，则刚好该特定列的绿色段保持高。如果将发射淡黄信号，则红和绿段 92 和 94 都保持高。

用于该三色 LED 点阵显示器 20 的显示控制和图像更新的软件程序 14 如下工作。关于写周期，数据首先放到将计算机 12 拍合到接口电路 18 的并行端口总线上，锁存该数据。然后，相应的地址（即、行和段数据）由程序 14 放置到同一总线上。接口电路 18 比较该地址与系统产生的地址。如果地址匹配，则信息数据在该地址写入接口电路 19 的图像存储系统。一个信号送回计算机 12，表示写入成功。由于然后所有 LED 被照明，所以可以产生显示效应，例如滚动进入该系统。

本发明的有益效果可以应用于许多应用。在室内环境，携带合适接收系统 24 的用户可以通过点阵显示器 20 的三色 LED 22 听到音频信息广播。可以保持安静的气氛。与传统广播系统相比，一个主要优点是接收器在接收特定信息时具有选择的自由，不用收听任何不想要的声音、音乐、或商业信息。

在户外环境中，例如在街道上的交易或商务场所前，三色点阵 LED 显示器 20 所发射的光可用于选择性将音频信号发射给距离该场所很远的接收器和耳机用户。利用本发明，所有商业广告牌都可用于传输例如每日的特别报道、折扣、最新的具吸引力的事情或任何商业、预定电话号码等附加信息。

这里仅以实例展现了上述本发明系统的优选实施例和几种应用，并不意味着限制本发明的范围。本发明的范围由权利要求书限定。可以用其它元件和步骤代替这里所示出的。