PHOTOCHROMIC DIARYLETHENE-CONTAINING COORDINATION COMPOUNDS AND THE PRODUCTION THEREOF

Inventors: Vivian Wing-Wah Yam, Hong Kong (CN); Chi-Chiu Ko, Hong Kong (CN)

Assignee: The University of Hong Kong (CN)

Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 191 days.

Appl. No.: 10/883,677
Filed: Jul. 6, 2004

Prior Publication Data

Int. Cl.
G02F 1/061 (2006.01)
C07D 471/04 (2006.01)
C07D 409/14 (2006.01)

U.S. Cl. 359/241; 546/88; 549/59

Field of Classification Search 546/88; 359/241; 549/59

See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS
5,175,079 A 12/1992 Van et al.
5,183,726 A 2/1993 Tatemizo et al.
5,443,940 A 8/1995 Tatemizo et al.
5,622,812 A 4/1997 Tatemizo et al.
6,359,150 B1 3/2002 Fukadome et al.

FOREIGN PATENT DOCUMENTS
JP 2-230877 10/1990
JP 3-14938 1/1991
JP 3-271286 12/1991
JP 4-282378 10/1992
JP 5-59025 3/1993

Abstract

Diarylethene-containing ligands and their coordination compounds are described. The ligands display photochromism with UV excitation, while the coordination compounds display photochromism with both excitation in the UV region and excitation into lower energy absorption bands characteristic of the coordination compounds, through which the excitation wavelengths for the photocyclization can be extended from λ≤340 nm to wavelengths beyond 470 nm. Switching of the luminescence properties of the compounds has also been achieved through photochromic reactions.

12 Claims, 3 Drawing Sheets
Fig. 1

\[
\begin{align*}
\text{Br}_2 & \quad 30\% \text{SO}_3 / \text{H}_2\text{SO}_4 \\
\text{CH}_3\text{COOH} & \quad \text{Br}_2 \\
\text{B(OH)}_2 & \quad \text{Pd(PPh}_3)_4 & \quad \text{THF} / 2\text{M Na}_2\text{CO}_3 \\
\text{Zn(OOCCH}_3)_2 & \quad 2\text{R} & \quad \text{CH}_2\text{Cl}_2 \\
\end{align*}
\]

Fig. 2

![UV spectrum graph](image-url)
Fig. 3

![Graph showing absorption spectra with wavelength in nm on the x-axis and absorbance (ε x 10^3) on the y-axis.]

Fig. 4

(a) [Diagram showing structural changes between open and close forms with wavelength changes at 313 nm and 365, 540 nm.]

(b) [Diagram showing structural changes between open and close forms with wavelength changes at 313, 440 nm and 365, 540 nm.]

Fig. 5

![Graph showing normalized emission intensity with wavelength in nm on the x-axis and normalized emission intensity on the y-axis.]

PHOTOCHROMIC DIARYLTHENE-CONTAINING COORDINATION COMPOUNDS AND THE PRODUCTION THEREOF

FIELD OF THE INVENTION

This invention is related to the design and the photochromic behavior of novel photochromic ligands and their coordination compounds. The design of these photochromic ligands and their coordination compounds is based on the cis-diarylthene structure, which forms part of a mono- or poly-cyclic ring structure that contains one or more donor atom(s) or heteroatom(s) for coordination to an acceptor atom to form photochromic coordination compounds.

BACKGROUND OF THE INVENTION

Photochromism is defined as "a reversible transformation of a single chemical species being induced in one or both directions by absorption of electromagnetic radiation, with two states having different distinguishable absorption spectra." Thus, photochromic compounds are compounds that possess at least two isomeric forms which have different physical properties, such as absorption properties, refractivity, and the like, and can be transformed from one form to another by light excitations at prescribed wavelengths.

Photochromism has been intensively studied due to its potential use for optical recording and other optical functioning devices. To be practically used as optical recording materials, both isomeric forms must be thermally stable and possess excellent durability for reversible photochromic reactivity. Diarylthene is one class of photochromic compounds which possess these properties, and therefore is a suitable class of compounds for the construction of optical functioning devices. The cis-configuration of both aryl groups in the diarylthenes studied is generally fixed by an upper cycloalkene structure, such as fluorinated alicyclic group, aromatic group, anhydride and maleimide group. Apart from the difference in absorption characteristics and the like between the two forms and their thermal stabilities, the availability of desirable excitation wavelengths that can be tuned and selected for the photochromic reactions also represents an important aspect in the design of materials for optical functioning devices. It has been shown that with the more n-conjugated upper cycloalkene structures, such as maleimide derivatives, in the diarylthene compounds, the photocyclization proceeded with lower energy excitation in the visible region.

SUMMARY OF THE INVENTION

The present invention relates to the use of coordination compounds to perturb the properties of the diarylthenes in photochromic compounds. Described below is a report of the design, synthesis and studies of cis-diarylthene-containing ligands, with the upper cycloalkene being part of a mono- or poly-cyclic ring structure that contains one or more donor atom(s) or heteroatom(s), such as phenanthrolines, pyridines, diazines, triazines, polyglycolides, porphyrins and phthalocyanines and the like, for coordination compound formation.

In a preferred form, the photochromic coordination compound is expressed by the following general formula (I):

where unit B represents a mono- or poly-cyclic ring structure, such as phenanthroline, pyridine, diazine, triazine, polyglycolide, porphyrin and phthalocyanine and the like, that contains one to four donor heteroatom(s) X, such as nitrogen, oxygen, sulfur, phosphorus, selenium, i.e., n is integer from 0 to 3, [M] represents the coordination unit containing an acceptor atom M, such as rhenium(II), rhenium(I), ruthenium(II), osmium(II), rhodium(II), iridium(III), gold(III), copper(I), copper(II), platinum(II), palladium(II), iron(I), cobalt(III), nickel(III), cadmium(II), boron(III) and the like, R₁ and R₂ individually represent alkyl groups and alkoxy groups, and R₃ to R₄ individually represent atoms or groups selected from the group of hydrogen atom, halogen atom, hydroxyl group, alkyl group, alkoxy group, cyano group, nitro group, alkyloxycarbonyl group, alkoxyoxycarbonyl group, perthioketal group, alkyl group, cycloalkyl group, arylthioketal group, alkylcarboxylic acid group, alkoxyoxycarbonyl group, mono- or dialkylaminocarbonyl group, alkylcarboxylic acid group, arylcarboxyl group, arylaldehyde group, alkoxy group, alkoxyoxycarbonyl group, or the like. In general, any
alkyl or alkoxy group contains 1 to about 20 carbon atoms, any cycloalkyl group contains 3 to 8 carbon atoms, and any aryl group contains 6 to about 20 carbon atoms.

A non-limiting list of examples of diarylethylene compounds containing a heterocyclic ethene-containing ligand moiety includes 5,6-dithienyl-1,10-phenanthroline, 2,3,7,8, 12,13,17,18-octathiényl-5,10,15,20-tetraphenyl porphyrin, 6,7-dihenyl-dipyrind[3,2-a:2',3'-c] phenezine and the like.

A non-limiting list of coordination units includes chrotricarbonylrhenium(I), dithiolatozinc(II), dihaloplatinum (II), bipyrildiplatinum(II), bis[bipyridy]ruthenium(II), diphosphonocopper(I), bipyridylcupper(I) and the like.

One of the advantages of the formation of coordination compounds from their pure organic counterparts (free ligands) in this invention is the extension of the excitation wavelength for the photocyclization of the diarylethylene moiety from λ ≤ 340 nm to lower energy, so that the photodimeric forward reaction can proceed with visible light excitation by utilization of the low-energy absorptions characteristic of coordination compounds. In addition, the photodimeric reactions can be utilized to switch the photoluminescence properties characteristic of the coordination compounds.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a representative synthetic route for a diarylethylene-containing ligand and its coordination compounds using 5,6-dithienyl-1,10-phenanthroline and its chlorotricarbonylrhenium(I) and dithiolatozinc(II) compounds as illustrative examples.

FIG. 2 shows the overlaid electronic absorption spectra of the open form (—— ——) and the close form (—— ——) of a diarylethylene-containing nitrogen donor ligand (L1).

FIG. 3 shows the overlaid electronic absorption spectra of the open form (—— ——) and the close form (—— ——) of a diarylethylene-containing coordination compound (1).

FIG. 4 shows the photodimeric reactions of (a) a diarylethylene-containing ligand and (b) its coordination compound using 5,6-dithienyl-1,10-phenanthroline and its chlorotricarbonylrhenium(I) compound as illustration.

FIG. 5 shows the overlaid corrected emission spectra of the open form (—— ——) and the close form (—— ——) of (1) in benzene solution at 298 K.

FIG. 6 shows the overlaid corrected emission spectra of the open form (—— ——) and the close form (—— ——) of (1) in EtOH-MeOH (4:1 v/v) glass at 77 K.

FIG. 7 shows the absorption spectral changes of complex (4) in benzene upon excitation at λ = 300 nm.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

Example 1

The ligand (L1) is synthesized by the Suzuki cross-coupling reactions of 2.5 equivalents of 2,5-dimethyl-3-thienylboronic acid and 5,6-dibromo-1,10-phenanthroline in the presence of the palladium catalyst, Pd(PPh₃)₄, and sodium carbonate in a heterogeneous mixture of water and THF according to the synthetic route depicted in FIG. 1. Excitation of (L1) with 313 nm light resulted in the formation of the open form, corresponding to the photocyclization product. The overlaid electronic absorption spectra of the open and close forms of (L1) in benzene solution are shown in FIG. 2.

Upon coordination to a chlorotricarbonylrhenium(I) complex, the open form of the corresponding complex (1) undergoes photocyclization with the excitation of both the intraligand absorptions at λ ≤ 340 nm and the metal-to-ligand charge transfer (MLCT) absorption characteristic of this coordination compound up to λ ≤ 480 nm. The electronic absorption data of (L1) and complex (1) are summarized in Table 1. The close forms of these complexes are found to undergo thermal backward reactions. The half-lives of the close forms have been determined and summarized in Table 2. The quantum yields for both photocyclization and photoreversion of (L1) and its rhenium complex (1) are summarized in Table 3.

TABLE 1

<table>
<thead>
<tr>
<th>Compound</th>
<th>Configuration</th>
<th>λmax/nm (ε/cm³ mol⁻¹ cm⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L1)</td>
<td>Open form</td>
<td>304 (8650)</td>
</tr>
<tr>
<td>(L1)</td>
<td>Close form</td>
<td>366 (24300), 510 (4050), 540 (3880)</td>
</tr>
<tr>
<td>(1)</td>
<td>Open form</td>
<td>338 (4930), 396 (4690)</td>
</tr>
<tr>
<td>(1)</td>
<td>Close form</td>
<td>390 (36670), 540 (5390), 580 (5950)</td>
</tr>
</tbody>
</table>

TABLE 2

<table>
<thead>
<tr>
<th>Compound</th>
<th>Half-lives (t½) at 20° C.</th>
<th>Half-lives (t½) at 60° C.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L1)</td>
<td>143 hours</td>
<td>222 mins</td>
</tr>
<tr>
<td>(1)</td>
<td>77.7 hours</td>
<td>79.3 mins</td>
</tr>
</tbody>
</table>

TABLE 3

<table>
<thead>
<tr>
<th>Compound</th>
<th>φphotocyclization</th>
<th>φphoto-reversion</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L1)</td>
<td>0.486</td>
<td>0.129</td>
</tr>
<tr>
<td>(1)</td>
<td>0.552</td>
<td>0.028</td>
</tr>
</tbody>
</table>

*Values reported are corrected to the ratio of the photodimeric active configuration, i.e. with respect to the anti-parallel configuration

The photoluminescence properties of both the open and close forms were measured. FIGS. 5 and 6 display the overlaid emission spectra of the open form and the close form of complex (1) in benzene at 298 K and in EtOH-MeOH glass (4:1 v/v) at 77 K. The emission of complex (1) was found to change from metal-to-ligand charge transfer (MLCT) phosphorescence to ligand-centered (LC) phosphorescence upon photocyclization of the open form to the close form. These demonstrate the change of emission properties upon photodimeric reactions. Table 4 summarized the emission data of ligand (L1) and complex (1).

TABLE 4

<table>
<thead>
<tr>
<th>Compound</th>
<th>Medium (TK)</th>
<th>Open form</th>
<th>Close form (τ, μs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L1)</td>
<td>Benzene (298)</td>
<td>383 (e0.1)</td>
<td>644 (e0.1)</td>
</tr>
<tr>
<td></td>
<td>Glass (77)</td>
<td>577 (5.2)</td>
<td></td>
</tr>
</tbody>
</table>
TABLE 4-continued

<table>
<thead>
<tr>
<th>Compound</th>
<th>Medium (T/K)</th>
<th>Emission (\lambda_{\text{em}}) (nm)</th>
<th>Emission (\lambda_{\text{em}}) (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td></td>
<td>595 (0.36)</td>
<td>626 (0.61)</td>
</tr>
<tr>
<td>Glass</td>
<td>(77)</td>
<td>533 (7.2)</td>
<td>620 (6.4)</td>
</tr>
</tbody>
</table>

*Excitation wavelength at ca. 355 nm. Emission maxima are corrected values.

**EtOH-MeOH (4:1, v/v)

*Non-emissive

Example 2

Upon coordination of (L1) to a dithioloatozinc(II) complex, the open forms of the corresponding complexes (2), (3) and (4) undergo photocyclization with excitation at \(\lambda \leq 340 \) mm. Fig. 7 shows the absorption spectral changes of complex (4) upon excitation at \(\lambda = 300 \) nm. The electronic absorption maxima of both the open and the close forms of complexes (2), (3) and (4) are summarized in Table 5.

TABLE 5

<table>
<thead>
<tr>
<th>Complex</th>
<th>Configuration</th>
<th>Absorption maximum (in benzene)</th>
<th>(\lambda_{\text{abs}}) (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2)</td>
<td>Open form</td>
<td>302, 326, 378</td>
<td></td>
</tr>
<tr>
<td>(2)</td>
<td>Close form</td>
<td>366, 382, 536, 576</td>
<td></td>
</tr>
<tr>
<td>(3)</td>
<td>Open form</td>
<td>302, 326, 382</td>
<td></td>
</tr>
<tr>
<td>(3)</td>
<td>Close form</td>
<td>366, 382, 538</td>
<td></td>
</tr>
<tr>
<td>(4)</td>
<td>Open form</td>
<td>302, 336, 396</td>
<td></td>
</tr>
<tr>
<td>(4)</td>
<td>Close form</td>
<td>366, 384, 542, 584</td>
<td></td>
</tr>
</tbody>
</table>

Those skilled in the art will recognize that various changes and modifications can be made in the invention without departing from the spirit and scope thereof. The various embodiments described were for the purpose of further illustrating the invention and were not intended to limit it.

What is claimed is:

1. A photochromic compound which is a diaryletheneccontaining coordination compound in which the diarylethene contains part of a mono-cyclic ring structure with one or more donor atom(s) or heteroatom(s) coordinated to a coordination unit \([M] \), which contains an acceptor atom, \(M \), expressed by the general formula (I):

where unit \(B \) represents a mono-cyclic ring structure that comprises phenanthroline and contains two nitrogen, \(n = 1 \), \([M] \) represents a coordination unit containing an acceptor atom \(M \), \(R_3 \) and \(R_4 \) individually represent an alkyl group or an alkoxy group, and \(R_3 \) to \(R_4 \) individually represent atoms or groups selected from the group of hydrogen atom, halogen atom, hydroxyl group, alkylo group, alkoxy group, cyano group, nitro group, alkylcarbonyl group, alkoxybenzyl group, perfluoroalkyl group, aryl group, cycloalkyl group, arylcarbonyl group, arylxoybenzyl group, monoo- or dialkylaminocarboxyl group, alkoxybenzyl group, aryloxycarboxyl group, arylcarbonyloxy group, aryloxycarboxyl group, and arylxoybenzyl group.

2. A photochromic compound in accordance with claim 1, wherein \(R_3 \) and \(R_4 \) are selected from the group consisting of rhenium(I), zinc(II), ruthenium(II), osmium(II), rhodium(III), iridium(III), gold(III), copper(I), copper(II), platinum(II), palladium(II), iron(II), cobalt(III), chromium(III), cadmium(II) and boron(III), and wherein the photochromic coordination compound excludes zinc azaporphyrin, magnesium azaporphyrin, palladium azaporphyrin, magnesium phthalocyanine and zinc phthalocyanine.

3. A photochromic compound in accordance with claim 1, wherein \(R_3 \) and \(R_4 \) represent methyl groups, and \(R_3 \) and \(R_4 \) represent hydrogen atoms.

4. A photochromic compound in accordance with claim 1, wherein \(R_3 \) and \(R_4 \) represent hydrogen atoms.

5. A photochromic compound in accordance with claim 1, wherein \(R_3 \) and \(R_4 \) represent methyl groups.

6. A photochromic compound in accordance with claim 1, wherein \(R_3 \) and \(R_4 \) represent bromine atoms.

7. A photochromic compound in accordance with claim 1, wherein \(M = \) represents rhenium(I).

8. A photochromic compound in accordance with claim 1, wherein \(M = \) represents rhenium(I).

9. A photochromic compound in accordance with claim 1, wherein \(M = \) represents zinc(II).

10. A photochromic compound in accordance with claim 1, wherein \(M = \) represents platinum(II).

11. A photochromic compound in accordance with claim 1, wherein \(M = \) represents zinc(II).

12. A photochromic compound in accordance with claim 1, wherein \(M = \) represents platinum(II).