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The combination of genetic algorithm and neural network approach �GANN� has been developed to
improve the calculation accuracy of density functional theory. As a demonstration, this combined
quantum mechanical calculation and GANN correction approach has been applied to evaluate the
optical absorption energies of 150 organic molecules. The neural network approach reduces the
root-mean-square �rms� deviation of the calculated absorption energies of 150 organic molecules
from 0.47 to 0.22 eV for the TDDFT/B3LYP/6-31G�d� calculation, and the newly developed
GANN correction approach reduces the rms deviation to 0.16 eV. © 2007 American Institute of
Physics. �DOI: 10.1063/1.2715579�

I. INTRODUCTION

First-principles quantum mechanical methods have be-
come indispensable research tools in chemistry, condensed-
matter physics, materials science, and molecular biology.1–3

Experimentalists rely increasingly on these methods to inter-
pret their experimental findings. Despite their successes,
first-principles quantum mechanical methods are often not
quantitatively accurate enough to predict the results of ex-
perimental measurements, in particular, on large systems.
This limitation is caused by the inherent approximations
adopted in first-principles methods. Because of computa-
tional cost, electron correlation has always been a difficult
obstacle for first-principles calculations. Finite basis sets
chosen in practical computations are not able to cover entire
physical space and this inadequacy introduces also inherent
computational errors.4 The accuracy of a density functional
theory �DFT� calculation is mainly determined by the
exchange-correlation functional being employed,2 whose ex-
act form is, however, unknown. Therefore, better methods
are required.

Nevertheless, the results of first-principles quantum me-
chanical calculation can capture the essence of physics. For
instance, the calculated results, despite that their absolute
values may agree poorly with measurements, are usually of
the same tendency among different molecules as their experi-
mental counterparts. The quantitative discrepancy between
the calculated and experimental results depends predomi-
nantly on the property of primary interest and, to a less ex-
tent, also on other related properties of the material. There
exists thus a sort of quantitative relation between the calcu-
lated and experimental results, as the aforementioned ap-
proximations to a large extent contribute to the systematic
errors of specified first-principles methods. Although it is

exceedingly difficult to be determined from the first prin-
ciples, the quantitative relationship can be obtained empiri-
cally.

Recently, Chen and co-workers proposed a neural net-
work based correction method DFT-NEURON to determine
the quantitative relationship between the experimental data
and the first-principles calculation results.5–8 The determined
relation will subsequently be used to eliminate the systematic
deviations of the calculated results on the optical absorption
energy.5 Hutchison et al.9 evaluated the absorption energies
of 60 heterocyclic organic molecules using Zerner’s interme-
diate neglect of differential overlap/configuration interaction
singles �ZINDO/CIS�, ZINDO/random phase approximation
�ZINDO/RPA�, Hartree-Fock/CIS �HF/CIS�, HF/RPA, and
time-dependent density functional theory/RPA �TDDFT/
RPA� calculations. They concluded that TDDFT/CIS and
TDDFT/RPA methods yield relatively accurate results upon
linear regression fit. Chen and co-workers employ the
TDDFT/B3LYP calculation to evaluate the absorption ener-
gies for those 60 organic molecules, too. Then the raw cal-
culated absorption energies are corrected by the DFT-
NEURON method and the multiple linear regression �MLR�
correction approaches. They concluded that the DFT-
NEURON method yield more accurate results. In their
scheme, the raw calculated absorption energy is the primary
descriptor. The number of electrons Ne in a molecule is ex-
plicitly included as an inputting physical descriptor. The os-
cillator strength Os is a measure of absorption strength and is
selected as the third and last descriptor. After the neural
network correction, the root-mean-square �rms� deviation
of the calculated absorption energies of 60 organic
molecules is reduced from 0.33 to 0.09 eV for the
TDDFT/B3LYP/6-31G�d� calculation. Their result is quite
promising.

In neural network calculation, the result is determined on
the synaptic weights that are determined iteratively by the
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neural network training procedure. The synaptic weights in-
clude all properties of the neural networks. So the different
synaptic weights of the neural networks may result in the
different outputs. However, for conventional neural network
algorithms, their initial synaptic weights are determined by
the educated guess or randomly. These usually lead to slow
convergence and poor performance. Also generally the final
synaptic weights might be trapped in local optimal solution
because of nonlinear multiextreme object function. So an
improved procedure to determine the synaptic weights is de-
sirable.

Genetic algorithm10 �GA� is an efficient, parallel, and
full search method with its inherent virtues of robustness,
parallel, and self-adaptive characteristics. It is applicable for
searching the optimization result in the large search space. It
has been applied in many fields. Genetic algorithm uses bio-
logically derived techniques such as inheritance, natural se-
lection, and crossover. Genetic algorithm is typically imple-
mented as a computer simulation in which a population of
abstract representations �called chromosomes� of candidate
solutions �called individuals� to an optimization problem
evolves toward better solutions. So we adopt it to optimize
the synaptic weights of neural networks.11–13

In the present work, we propose a genetic algorithm and
neural network �GANN� approach to improve the calculation
accuracy of absorption energies for 150 organic molecules.
The raw calculated absorption energies are evaluated by
TDDFT/B3LYP method. In this GANN approach, GA is
adopted in searching the optimal initial synaptic weights for
neural networks of prespecified topology, while back propa-
gation �BP� is employed in further training the neural net-
works to find the optimal final synaptic weights. Most of the
150 molecules we considered in this paper are organic con-
jugated molecules.

II. DESCRIPTION OF GANN APPROACH

It is proved that neural networks of three-layer architec-
ture can mimic any function.14 We adopt the three-layer ar-
chitecture for our neural networks �see Fig. 1�. This architec-
ture includes an input layer consisting of inputs from the
physical descriptors �X1 ,X2 . . . ,Xm� and a bias, a hidden layer
containing a number of hidden neurons �Y1 , . . . ,Yn�, and an

output layer that outputs the corrected value for the property
of interest. The numbers of descriptors and hidden neurons
are to be determined. The most important issue is to select
the proper physical descriptors, which are to be used as the
input for the neural networks. The calculated value of ab-
sorption energy contains the essence of exact values of ab-
sorption energy and is thus an obvious choice of the primary
descriptor for correcting values of absorption energy. Other
physical descriptors are selected according to their correla-
tion to optical absorption energies. If it is closely related to
absorption energies, the property is chosen as a physical de-
scriptor; otherwise, it is not. For the same set of oligomers,
when the number of repeating units is small �for example, 1
or 2�, the raw calculated absorption energies are higher than
the experimental counterparts, and when the number of re-
peating units is large, the calculated absorption energies red-
shift strongly compared to their experimental counterparts.
In other words, the oligomer size correlates strongly with the
deviation between the raw result and experimental counter-
parts. The number of electrons Nt is thus taken as the second
physical descriptor. The oscillator strength Os is a measure of
absorption magnitude and is selected as the third descriptor.
The dipole moment Dm correlated with the oscillator strength
and is taken as the fourth descriptor. The number of double
bonds Ndb is selected as the fifth descriptor to reflect the
chemical structure of a molecule. The highest occupied mo-
lecular orbital–lowest unoccupied molecular orbital energy
gap Eg affects the longest absorption spectrum and is se-
lected as the sixth descriptor. The orbital energy gap corre-
sponding to the dominant configuration of the excited state
E0 determined the absorption energies and is selected as the
seventh descriptor. The corresponding transitional coefficient
Tc is thus selected as the eighth descriptor. The number of
aromatic rings Na is selected as the ninth descriptor to reflect
the conjugating degree.

The number of neurons in the hidden layer is varied
from 1 to 10 to decide the optimal structure of our neural
networks. We find that the hidden layer containing five neu-
rons yields the best overall results. Therefore, the 10-5-1
structure is adopted for our neural networks. The input val-
ues at the input layers, x1, x2, x3, x4, x5, x6, x7, x8, x9, and x10,
are scaled with the raw calculated absorption energy, Nt, Os,
Dm, Ndb, Eg, E0, Tc, Na, and bias, respectively. The synaptic
weights �Wxij�s connect the input descriptors �Xi� and the
hidden neurons �Y j� while �Wyj�s connect the hidden neu-
rons and the output Z �i=1, . . . ,10; and j=1, . . . ,5�. The er-
ror BP learning algorithm15 is used to optimize the synaptic
weights. The output Z is related to the input �Xi� as follows:

Z =�
j=1

5

Wyj tan sig	�
j=1

10

WxijXi
 , �1�

where tan sig�v�=2/ �1+exp�−2v��−1. During the calcula-
tion, expect for the bias the input and output values are
scaled. The scaled values are between −1 and 1.

In neural network calculation, their initial synaptic
weights are determined randomly. The synaptic weights in-
clude all the properties of the neural networks. The different
synaptic weights of the neural networks may result in the

FIG. 1. The structure of our neural networks.
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different outputs. These usually lead to slow convergence
and poor performance. Also generally the final synaptic
weights might be trapped in local optimal solution because
of nonlinear multiextreme object function.

“In general, any abstract task to be accomplished can be
thought of as solving a problem, which, in turn, can be per-
ceived as a search through a space of potential solutions,”16

Whereas traditional search techniques use characteristics of
the problem to determine the next sampling point �e.g., gra-
dients, Hessians, linearity, and continuity�, stochastic search
techniques make no such assumptions. Instead, the next
sampled point�s� is �are� determined based on stochastic
sampling/decision rules rather than a set of deterministic de-
cision rules. Genetic algorithms, more intelligent stochastic
search techniques than random restart, improve upon random
restart by mimicking the evolutionary process through the
use of a “survival of the fittest” strategy. In general, the fittest
individuals of any population tend to reproduce and pass
their genes on the the next generation, thus improving suc-
cessive generations. However, some of the worst individuals
do, by chance, survive and also reproduce. Genetic algorithm
has been shown to solve linear and nonlinear problems by
exploring all regions of the state space and exponentially
exploiting promising areas through mutation, crossover, and
selection operations applied to individuals in the
population.17 So we adopt the GA to optimize the initial
values of the synaptic weights.

The following are the procedures where the synaptic
weights are optimized by the GANN approach.

Step 1. Set generation counter i=0.
Step 2. Create the initial population, Pop�i�, by generat-

ing N random the initial values of the neural network’s syn-
aptic weights.

Step 3. Determine the fitness of each individual �i.e.,
each initial values of the network’s synaptic weights� by an
evaluation function in the population.

Step 4. Increment to the next generation, i= i+1.
Step 5. Create the new population, Pop�i�, by

�a� selecting N individuals stochastically based on the fit-
ness from the previous population, Pop�i−1�, and

�b� randomly selecting R �R�N� parents to produce chil-
dren through the application of genetic operators
�crossover and mutation operation�.

Step 6. Evaluate the fitness of the newly formed children
as in step 3.

Step 7. If i is less than the maximum number of genera-
tions to be considered, go to step 4.

Step 8. The best individual is decoded to the values of
the network’s synaptic weights.

Step 9. The BP algorithm is used to further train the
neural networks.

For any genetic algorithm, a chromosome representation

TABLE I. The structure of the 150 organic molecules.
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is needed to describe each solution or individual in the popu-
lation of interest. The representation scheme determines how
the problem is structured and which genetic operators are
used. Each individual �or chromosome� is made up of a se-
quence of genes from a certain alphabet. An alphabet could
be binary numbers, real �floating point� numbers, integer

numbers, symbols, matrices, etc. A floating point representa-
tion is used in the GA for the initial values of the synaptic
weights. An individual in the GA population would represent
all the synaptic weights of the neural networks. Each vari-
able Wxij and Wyj takes on real value

Individual �Wx11,Wx12, . . . ,Wx1j,Wx21,Wx22,...,Wx2j, ...,Wxi1,Wxi2, . . . ,Wxij,Wy1,Wy2 . . . ,Wyj�

�i = 1, . . . ,10; j = 1, . . . ,5� .

Once the initial population �of size N� is randomly cre-
ated, each individual is evaluated using an evaluation func-
tion to determine its fitness value. Evaluation functions of
many forms can be used, subject to the minimal requirement
that the function can map the population into a partially or-
dered set. The evaluation functions for optimizing the initial
synaptic weights of neural networks are expressed as fol-
lows:

fk = 1/Ek, �2�

Ek =�
l=1

n

�Zlk − dzlk�2, �3�

where fk is the fitness of one individual �k=1, . . . ,N�; n is
the number of overall training examples. Zik is the training
examples’ outputs for each random individual; dzlk repre-
sents the desired neural network response for the output neu-
ron. Ek is the sum of squared errors.

After the population �of size N� has been evaluated, a
new population of size N individuals is selected from the
previous generation. The selection of individuals to produce
successive generations plays an extremely important role in a
genetic algorithm. The normalized geometric ranking
scheme17 was used in the GA procedure described in this
paper. The individuals in the population are ranked from best
to worst according to their fitness value. Then, each indi-
vidual is assigned a probability of selection based on the
normalized geometric distribution,

P�selecting ith individual� = q��1 − q�r−1,

where q�=q / �1− �1−q�N�, q is the probability of selecting
the best individual, r is the rank of the individual �where 1 is
the best�, and N is the size of the population.

After the new population is selected, each genetic opera-
tor is applied a discrete number of times to create new solu-
tions based on existing solutions in the population. Mutation
and crossover are the two basic types of genetic operators.16

Mutation operators tend to make small random changes in
one parent to form one child. Crossover operators combine
information from two parents to form two offspring such that
the two children contain a “likeness” �a set of building
blocks� from each parent. The application of these two basic

types of operators, and their derivatives, depends on the
chromosome representation used. Two float operators de-
scribed by Michalewicz16 were employed to work with the
floating point representation: arithmetic crossover and non-
uniform mutation. The “arithmetic crossover” operator pro-
duces a complimentary pair of linear combinations produced
from random proportions of the parents. The “nonuniform
mutation” operator randomly selects one of the variables
from a parent and sets it equal to a random number from a
nonuniform distribution.16

The GA moves from generation to generation, repeating
steps 4–7 until the termination criterion is met. The stopping
criterion used is the specification of the maximum number of
generations to iterate through.

After the GA stopped, the BP algorithm is used to further
train the neural networks in our method. Many researchers
have shown that GAs perform well for a global search but
perform very pooly in a localized search.16,18 So we pro-
posed this combined GANN approach, where the good ap-
proximation performance of NN and effective and robust
evolutionary searching ability of GA are applied in hybrid
sense. That is, GA is adopted in searching the optimal initial
synaptic weights, while BP is employed in further training
the neural networks to find the optimal final synaptic
weights. This combined algorithm can overcome the GA’s
shortcomings of the poorly localized adjustive ability. The
GANN approach combines the good qualities of the GA and
the BP neural networks and is shown to be effective at solv-
ing the problem.

III. RESULTS AND DISCUSSION

In order to evaluate the effectiveness of the GANN ap-
proach for evaluating the optical absorption energies of 150
organic molecule problem, it was compared with the
TDDFT/B3LYP/6-31G�d� calculation and the BP neural
network approach on the same problems.

All experimental data are randomly divided into a train-
ing set �120 molecules� and a testing set �30 molecules�. The
structures of 150 organic molecules are shown in Table I.
The experimental absorption energies and differences be-
tween the calculated and experimental absorption energies
for the BP neural network �BPN� and GANN correction re-
sults are tabulated in Table II.

144101-4 Li et al. J. Chem. Phys. 126, 144101 �2007�

Downloaded 03 Jul 2013 to 147.8.230.100. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions



TABLE II. The experimental absorption energies and the differences be-
tween the calculated and experimental values of 150 molecules �in eV�.

No. Expt.a Deviationb Deviationc Deviationd

1 5.10 0.83 0.35 0.17
2 4.11 −0.08 −0.12 −0.16
3 3.50 −0.23 0.01 −0.01
4 3.18 −0.34 0.04 0.11
5 2.98 −0.41 −0.01 0.00
6e 2.87 −0.49 −0.75 0.01
7 5.96 0.8 0.22 0.07
8 4.49 0.25 0.03 0.04
9 3.91 0.02 0.04 0.00
10e 3.38 −0.17 0.09 −0.36
11 3.25 −0.34 0.00 0.09
12 5.93 0.58 0.03 −0.16
13e 4.40 0.17 0.00 0.00
14 3.78 −0.07 0.04 0.03
15e 3.43 −0.2 0.08 0.06
16e 4.90 0.47 −0.06 0.16
17 3.76 −0.2 −0.14 −0.20
18 3.19 −0.18 0.19 0.14
19 2.96 −0.33 0.17 0.19
20e 3.81 −0.03 −0.04 0.03
21 3.23 −0.11 0.03 −0.05
22e 2.99 −0.24 0.10 0.06
23e 2.83 −0.32 −0.61 −0.23
24 5.58 0.46 −0.09 0.06
25 4.96 0.01 −0.29 −0.31
26 4.58 0.08 −0.03 −0.07
27 4.44 −0.23 −0.16 −0.04
28 4.35 −0.28 −0.05 −0.01
29 4.34 −0.42 −0.06 0.07
30 4.32 −0.5 −0.23 −0.03
31 4.82 0.5 −0.02 −0.02
32 3.87 0.03 −0.12 0.02
33 3.10 0.05 0.04 −0.02
34 4.38 0.31 −0.08 0.08
35 3.83 0.28 0.03 −0.01
36e 5.58 0.84 0.22 0.28
37 5.93 0.53 −0.10 0.01
38 5.90 0.55 −0.09 0.05
39 3.45 −0.01 0.04 −0.01
40e 3.60 −0.05 −0.18 0.04
41 3.32 −0.14 −0.12 0.08
42 3.43 −0.14 −0.17 0.03
43 3.63 −0.18 −0.06 0.10
44 3.01 −0.21 0.02 −0.02
45 2.89 −0.21 0.01 −0.06
46 2.73 −0.28 −0.02 0.07
47 3.15 −0.25 −0.23 −0.04
48 2.98 −0.2 −0.01 −0.15
49 2.69 −0.24 0.00 0.00
50 4.11 0.02 0.16 0.05
51 3.46 −0.12 0.18 −0.05
52 3.21 −0.33 0.09 0.08
53 2.95 −0.33 0.20 −0.13
54 4.07 0.05 0.10 0.01
55 3.43 −0.1 0.09 −0.02
56 3.09 −0.24 −0.09 0.14
57 3.09 −0.21 0.02 −0.08
58 2.71 −0.11 0.00 −0.06
59e 3.05 −0.21 0.13 −0.14

TABLE II. �Continued.�

No. Expt.a Deviationb Deviationc Deviationd

60e 2.88 −0.34 0.00 0.26
61 5.63 0.64 0.13 −0.09
62 5.47 0.59 −0.05 −0.10
63 4.66 0.05 0.30 0.25
64 4.83 −0.02 −0.10 −0.09
65 5.18 −0.52 −0.22 −0.15
66 5.91 0.13 −0.21 0.01
67 4.85 −0.31 −0.15 −0.24
68 4.96 0.15 −0.02 −0.11
69 4.96 0.41 0.00 −0.18
70 4.96 0.35 −0.04 −0.03
71 4.54 0.21 0.00 −0.01
72e 5.88 0.27 −0.12 −0.09
73 5.90 0.9 0.08 −0.12
74 3.90 0.13 0.16 0.10
75e 4.53 0.64 0.20 0.36
76e 5.99 0.44 −0.37 −0.23
77e 5.64 0.55 0.00 0.04
78 5.69 0.57 −0.08 −0.01
79 3.85 0.07 0.15 0.01
80 4.13 0.49 0.33 0.17
81 5.64 −0.1 −0.22 0.05
82 4.54 0.66 0.00 0.08
83 4.46 0.01 −0.20 0.00
84e 4.75 0.77 0.38 0.60
85 4.70 0.52 0.16 0.44
86 5.02 0.73 0.17 −0.03
87 4.13 0.27 −0.07 0.08
88 4.08 0.08 −0.15 −0.07
89 4.00 0.34 0.00 0.02
90 4.96 0.3 0.23 0.06
91 4.94 0.47 −0.07 −0.31
92 5.04 0.67 0.10 −0.04
93 2.82 0.5 0.10 −0.03
94 4.28 1.01 0.57 0.22
95 4.92 −0.17 −0.20 −0.16
96e 4.96 0.24 −0.11 −0.28
97 5.02 −0.35 −0.52 −0.10
98 4.96 0.4 −0.12 −0.01
99 4.98 0.25 −0.12 −0.22
100e 5.00 0.02 −0.31 −0.14
101 5.04 −0.06 −0.17 0.00
102 4.79 0.04 0.01 0.02
103 4.79 0.27 −0.04 0.04
104 4.29 0.24 0.22 0.05
105 4.79 −0.14 −0.35 −0.05
106 4.82 0.47 0.11 −0.06
107 4.37 0.66 0.32 0.24
108 4.66 0.12 −0.07 0.07
109 4.56 0.75 0.28 −0.04
110 4.48 0.59 0.18 0.17
111 5.08 0.29 −0.18 −0.20
112 5.10 0.77 0.20 0.16
113 5.15 0.16 −0.23 −0.05
114 5.93 −3.17 −0.04 −0.04
115 5.96 0.55 −0.03 −0.05
116 7.65 0.14 −0.17 0.00
117e 4.31 0.03 −0.30 −0.16
118e 3.73 −0.08 0.02 −0.39
119 4.43 0.03 0.00 −0.04
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The raw calculated absorption energy values versus their
experimental data are shown in Fig. 2�a�. The vertical coor-
dinate is the experimental absorption spectrum energies, and
the horizontal coordinate is the calculated values by DFT.
The dashed line is where the vertical and horizontal values
are equal. In Figs. 2�b� and 2�c� the horizontal coordinates
are for the BPN-corrected and GANN-corrected absorption
energies, respectively. Compared to the raw calculated val-
ues, the GANN-corrected results are much closer to the ex-
perimental values for both training and testing sets. More
importantly, the systematic deviation in Figs. 2�a�–2�c� is
eliminated. The insets are the histograms for the deviations
of various approaches in Figs. 2�a�–2�c�. Obviously, the raw
calculated absorption energies have large systematic devia-
tions, while the BPN- and GANN-corrected absorption ener-
gies have smaller systematic deviations. The rms deviation
of the BPN approach is slightly larger than that of the GANN
approach. This can be shown clearly by the error analysis
performed for all 150 organic molecules. For the training set,
the rms deviations before and after the BPN correction are

0.48 and 0.20 eV, respectively, while for the testing set, they
are 0.41 and 0.28 eV, respectively. For the GANN correc-
tion, the rms deviations of the training and testing sets are
reduced to 0.14 and 0.24 eV �see Table III�, respectively. The
GANN approach improved DFT calculation results in both
the training set and the testing set separately. But there exist
some data that the relative errors are bigger in the testing set.
The reason lies that this kind of sample data is fewer in the
training set and the features cannot be extracted in the train-
ing procedure of neural networks. The prediction accuracy of
this approach can be further improved as more and better
experimental data are available. The consistency between the
training and testing sets implied that the GANN results could
indeed predict the absorption energy with higher accuracy
than BPN.

The TDDFT/B3LYP/6-31G�d� calculations are carried
out to evaluate the absorption energies of the 150 organic
molecules, and their overall resulting rms deviation from the

TABLE II. �Continued.�

No. Expt.a Deviationb Deviationc Deviationd

120 6.05 −0.07 −0.35 0.07
121e 5.04 0.09 −0.29 0.07
122e 5.79 0.14 −0.34 −0.55
123 4.38 0.93 0.48 0.35
124 5.10 0.44 −0.01 0.08
125e 5.28 0.32 −0.26 −0.34
126e 4.96 0.68 0.17 0.23
127e 5.10 −0.12 −0.53 0.02
128 4.90 0.83 0.34 −0.05
129 3.22 −0.03 0.00 −0.02
130 3.23 0.36 0.00 −0.11
131 3.58 0.44 0.12 0.22
132 4.79 −0.04 −0.09 0.07
133 4.79 0.24 0.18 0.09
134 4.13 0.19 0.11 0.09
135 5.44 0.44 −0.10 0.08
136e 5.51 0.38 −0.14 −0.18
137 4.86 0.15 0.16 −0.07
138 5.54 0.95 0.12 0.09
139e 5.39 0.05 −0.23 −0.11
140 5.96 0.1 0.25 0.06
141e 5.28 0.51 −0.06 0.01
142e 4.86 1.32 0.53 0.00
143 4.90 0.36 −0.06 −0.02
144 5.54 −0.04 −0.03 0.00
145 6.05 −0.04 −0.13 0.00
146 5.99 0.75 −0.07 0.07
147 5.88 0.71 −0.05 0.04
148 6.78 0.07 0.29 −0.02
149 4.56 0.49 0.18 0.20
150 5.90 −0.89 −1.16 −0.80

aExperimental data.
bDifferences between the raw calculated and experimental values.
cDifferences between calculated and experimental values for DFT-BPN cal-
culation.
dDifferences between calculated and experimental values for DFT-GANN
calculation.
eMolecules belong to the testing set.

FIG. 2. Calculated absorption energies vs experimental absorption energies
for all 150 molecules. Part �a� is for raw calculated absorption energies from
the DFT approach. Part �b� is for neural network corrected absorption ener-
gies for the BPN approach. Part �c� is for the combined neural network and
genetic algorithm corrected absorption energies for the GANN approach.
Triangles ��� are for the training set and crosses ��� are for the testing set.
Insets are the histograms for the differences between the experimental and
calculated absorption energies. All values are in units of eV.

TABLE III. rms deviation of TDDFT/B3LYP/6-31G�d�, DFT-BPN, and
DFT-GANN corrections �in eV�.

TDDFT/B3LYP/6-31G�d� BPN GANN

Training set 0.48 0.20 0.14
Testing set 0.41 0.28 0.24
Overall 0.47 0.22 0.16
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experimental data is 0.47 eV. Upon the traditional BP neural
network correction approach, the rms deviation of the calcu-
lated absorption energies of 150 organic molecules is re-
duced from 0.47 to 0.22 eV for the
TDDFT/B3LYP/6-31G�d� calculation. With the GANN
correction, the rms deviation is reduced from
0.47 to 0.16 eV �see Table III�.

In our GANN approach, the BP algorithm is used to
further train the neural networks after the GA stopped. Only
the GA, the rms deviation result is 0.31 eV for the 150 or-
ganic molecules using the optimal initial synaptic weights of
neural networks. The rms deviation is reduced to 0.16 eV
using the optimal final synaptic weights by the further train-
ing of the BP algorithm. The improvement shows that the
GANN approach combining the good qualities of the GA and
the BP algorithm is effective at solving the problem.

In the procedure of GA running, we find that the best
individual has no obvious improvement and the generation is
approximately 100 by many experiments. So the maximum
number of GA generations is set at 100 and size of the popu-
lation is N=150. The final values of the weights Wxij and
Wyj optimized by the GANN approach are shown in Table
IV. We use these weights to evaluate the absorption energies.

IV. CONCLUSION

To summarize, we have developed a promising new
GANN approach to improve the results of first-principles
quantum mechanical calculations. In this GANN approach,
GA is adopted in searching the optimal initial synaptic
weights for neural networks of prespecified topology, while
BP is employed in further training the neural networks to
find the optimal final synaptic weights. It is employed to
reduce the errors of calculated absorption energy of
150 molecules. This combined GANN correction approach
avoids being trapped at local minima of the traditional BPN
approach, thus leading to improved DFT calculation results
as compared to those of BPN. The rms deviation of TDDFT
calculated absorption of our 150 molecules is reduced from
0.47 to 0.16 eV. Simulation results and comparisons demon-
strate the feasibility and effectiveness of the approach. The
accuracy of this approach can be further improved as more
and better experimental data are available. The larger the
experimental database is, the more accurately the GANN ap-

proach predicts. In principle, the accuracy of our approach is
limited only by the precision and size of the experimental
database.

Besides the absorption energy, our GANN approach can
be generalized to calculate other properties such as heat of
formation, ionization energy, dissociation energy, etc. The
GANN approach combines the good qualities of the GA and
the BP neural networks and is shown to be effective at solv-
ing the problem. This combined GANN approach may be
employed practically as predictive tools in materials research
and design.
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