<table>
<thead>
<tr>
<th>Title</th>
<th>The far field transformation using the iterative SRM based on the phaseless data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Li, P; Jiang, L</td>
</tr>
<tr>
<td>Issued Date</td>
<td>2012</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10722/165329</td>
</tr>
<tr>
<td>Rights</td>
<td>IEEE Antennas and Propagation Society. International Symposium. Copyright © IEEE.; ©2012 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.; This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.</td>
</tr>
</tbody>
</table>
The Far Field Transformation Using the Iterative SRM Based On the Phaseless Data

Ping Li
Dept. of Electrical and Electronic Engineering
The University of Hong Kong
Pokfulam Road, Hong Kong, China
liping@eee.hku.hk

Li Jun Jiang
Dept. of Electrical and Electronic Engineering
The University of Hong Kong
Pokfulam Road, Hong Kong, China
jianglj@hku.hk

Abstract— Conventional equivalent source reconstruction methods (SRM) require both phase and amplitude information of the field data. However, there are situations where the phase information is not easy to obtain. Hence, developing novel SRM based on phaseless data is necessary. In this paper, a novel iterative SRM based on two sets of measured phaseless data is presented. It can reproduce the 3D radiation pattern with very good accuracy. Integral equation (IE) is employed to build reconstruct equivalent source. Combined field IE (CFIE) is also employed to obtain more physical current distribution.

I. INTRODUCTION

Source reconstruction method (SRM) is widely used as the near field measurement post processing technique to facilitate near-field far-field (NF-FF) transformation, hot spot identification and so on. The traditional SRM requires both amplitude and phase information [1]. However, the phase information is not always available or impractical to obtain, especially at millimeter wave frequencies or above where phase measurement is highly sensitive to the environment and instruments. To overcome these deficiencies, SRMs employing phaseless data are developed by researchers to conduct the antenna diagnosis and NF-FF transformation [2-3]. However, the methods in [2-3] do not involve any communication between the two measurement surfaces. The equivalent source is obtained by direct optimization.

In this paper, an novel SRM based on the phaseless data is presented. The equivalent source is expanded using RWG basis functions and mapped to the surface of the radiator. The amplitude measurements can be conducted over two concentric spheres. For each source construction step, we only use the field amplitude over one sphere to build the equivalent source. Then the reconstructed equivalent source is utilized to calculate the phase and amplitude of the field over another measured sphere. Next the phase information is kept but the amplitude is replaced by the measured data. The resultant field data containing both phase and amplitude are utilized to correct the equivalent source again. We call this new source reconstruction process the “iterative SRM”. Compared with the techniques in [2-3], the source update in our approach is facilitated by a forward and backward propagation over the two measurement surfaces. The field data over only one sphere is needed during each iteration step.

II. PRINCIPLES OF SRM OVER ARBITRARY SURFACE

A. SRM Using both Amplitude and Phase

Given a DUT or an AUT with arbitrary geometries, we assume that it is bounded by a surface S', and an equivalent current source distribution can be built over that surface. The equivalent source may be the electric current $\mathbf{J}_e(r')$ or magnetic current $\mathbf{M}_m(r')$ that reproduces the original radiation outside that surface. Referring to the inverse radiation procedure, the unknown source can be determined by the measured field data over an arbitrary domain, typically spherical surface or planar surface, etc.

The free space dyadic Green’s function associates the equivalent current source with the measured field data. The measured electric field has contributions from both $\mathbf{J}_e(r')$ and $\mathbf{M}_m(r')$:

$$\overline{\mathbf{E}}(\overline{r}_{\text{Meas}}) = \overline{\mathbf{E}}_{\mathbf{J}_e}(\overline{r}_{\text{Meas}}) + \overline{\mathbf{E}}_{\mathbf{M}_m}(\overline{r}_{\text{Meas}})$$ \hspace{1cm} (1)

where $\overline{\mathbf{E}}_{\mathbf{J}_e}$ is the field radiated by the equivalent electric current, and $\overline{\mathbf{E}}_{\mathbf{M}_m}$ corresponds to the field radiated by the magnetic current. They are formulated as

$$\overline{\mathbf{E}}_{\mathbf{J}_e}(\overline{r}_{\text{Meas}}) = -j\eta_0 k_0 \int_{S'} \left(\overline{\mathbf{J}}_e(r') + \frac{1}{k_0} \nabla \cdot \overline{\mathbf{J}}_e(r') \right) e^{-jkr'} ds'$$ \hspace{1cm} (2)

$$\overline{\mathbf{E}}_{\mathbf{M}_m}(\overline{r}_{\text{Meas}}) = \int_{S'} \overline{\mathbf{M}}_m(r') \times \nabla \frac{e^{-jkr'}}{4\pi R} ds'$$ \hspace{1cm} (3)

where k_0 is the free space wave number, η_0 is the free space intrinsic impedance, and R is the distance between the source point r' and observation r_{obs} or measurement position r_{Meas}.

The surface of the DUT is discretized into triangles and the equivalent current $\mathbf{J}_e(r')$ and $\mathbf{M}_m(r')$ are further expanded by RWG basis [4]. Through the point matching, the Eqn. (1) will be discretized into a matrix system shown as below:

$$\begin{bmatrix} \overline{E}_{t_1} \\ \overline{E}_{t_2} \end{bmatrix} = \begin{bmatrix} \overline{Z}(t_1, \overline{J}_e) \\ \overline{Z}(t_2, \overline{J}_e) \end{bmatrix} \begin{bmatrix} \overline{P} \\ \overline{Q} \end{bmatrix}$$ \hspace{1cm} (4)

$$\begin{bmatrix} \overline{P} \\ \overline{Q} \end{bmatrix} = [P_1, P_2, \ldots, P_N, Q_1, Q_2, \ldots, Q_Q]$$
A novel iteration SRM in a forward-backward fashion based on phaseless measurements is presented. The equivalent sources that can fit arbitrary surfaces are reconstructed using the amplitude-only information of the field. Numerical study shows the accuracy and effectiveness of our method.

ACKNOWLEDGMENT

We thank Professor W.C. Chew for his constructive suggestions. Also, this work was supported in part by the Research Grants Council of Hong Kong (GRF 711609, 711508, 711511 and 713011), HKU Small Project Funding (201007176196), HKU UDF-CSE grant, and in part by the University Grants Council of Hong Kong (Contract No. AoE/P-04/08).

REFERENCES

