<table>
<thead>
<tr>
<th>Title</th>
<th>Electric currents induced step-like resistive jumps and negative differential resistance in thin films of Nd0.7Sr0.3MnO3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Wang, JF; Wu, ZP; Gao, J</td>
</tr>
<tr>
<td>Citation</td>
<td>56th annual conference on magnetism and magnetic materials / Fundamental properties and cooperative phenomena. In Journal of Applied Physics, 2012, v. 111 n. 7, article no. 07E131</td>
</tr>
<tr>
<td>Issued Date</td>
<td>2012</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10722/164503</td>
</tr>
<tr>
<td>Rights</td>
<td>This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.; Copyright (2012) American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in (Journal of Applied Physics, 2012, v. 111 n. 7, article no. 07E131) and may be found at (http://jap.aip.org/resource/1/japiau/v111/i7/p07E131_s1).</td>
</tr>
</tbody>
</table>
Electric currents induced step-like resistive jumps and negative differential resistance in thin films of \(\text{Nd}_{0.7}\text{Sr}_{0.3}\text{MnO}_3 \)

J. F. Wang, Z. P. Wu, and J. Gao

Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong

(Submitted 1 November 2011; received 22 September 2011; accepted 8 November 2011; published online 2 March 2012)

Electric-currents-induced emergent phenomena were found in microbridges of \(\text{Nd}_{0.7}\text{Sr}_{0.3}\text{MnO}_3 \). After the samples were processed by currents of high densities, a second metal-insulator transition appeared at low temperatures. This resistance peak was very sensitive to weak currents. More salient features were the step-like resistance jumps. At temperatures near these resistance steps, negative differential resistance was observed. Interfacial effects related to electrodes could be ruled out. These effects might be due to current-enhanced inhomogeneity. © 2012 American Institute of Physics. [doi:10.1063/1.3675998]

I. INTRODUCTION

Colossal magnetoresistance manganites have been a continuing focus for decades due to their correlated physics for fundamental research and tantalizing properties for potential applications.1–6 In these materials, there are complex interconnections between different degrees of freedoms and delicate balances between rich electronic phases. It is suggested that coexistence of competing phases with close energy at the core of colossal magnetoresistance and many other curious phenomena. An intriguing consequence of such competitions and couplings is that not only magnetic fields but also electric fields/currents and other external stimuli could modify the properties of manganites.7–15 These interplays can open a window for the understanding the physics of strong correlation and may lead to potential applications.

The effects of electric fields/currents could be dramatic and pronounced. The charge-ordered state in single crystals of \(\text{Pr}_{0.7}\text{Ca}_{0.3}\text{MnO}_3 \) was collapsed by the electric fields/currents.8 In such a process, the changes of resistance at low temperatures were as large as several orders. Electric currents/fields induced non-transient breakdown of charge-ordered state was found in single crystals of \(\text{Nd}_{0.5}\text{Sr}_{0.5}\text{MnO}_3 \).9 In thin films of \(\text{La}_{1-x}\text{Ca}_x\text{MnO}_3 \) (\(x = 0.2, 0.3 \)), highly resistive metastable states, which exhibited huge electroresistance, were excited by currents of high densities.10 Even asymmetric conduction could be induced by large currents from uniform virgin states.11 By controlling the current pulse pair, reversible resistance switching was achieved in bulk \(\text{La}_{0.22}\text{Pr}_{0.4}\text{Ca}_{0.375}\text{MnO}_3 \).12 For thin films of \(\text{Pr}_{0.7}\text{Sr}_{0.3}\text{MnO}_3 \), current processing yielded low-temperature persistent conductivity.13 In this paper, we report current-induced emergent properties, including metal-insulator transition, resistance steps and negative differential resistance, in thin films of \(\text{Nd}_{0.7}\text{Sr}_{0.3}\text{MnO}_3 \) (NSMO).

II. EXPERIMENTAL

Thin films of NSMO on (001) oriented \(\text{SrTiO}_3 \) (STO) were fabricated using pulsed laser ablation.16 During growth, the substrate holder was kept at \(\sim 720 ^\circ\text{C} \). Subsequent to deposition, the samples were annealed in \(\text{I}_2 \) at grown temperature for 30 min. As measured with a Dektak stylus profiler, the thickness is \(\sim 60\text{ nm} \). The films were patterned into microbridges with a width of \(\sim 20\text{ \mu m} \) and a length of \(\sim 100\text{ \mu m} \) (see the inset of Fig. 1) using photolithography. Silver (Ag) electrodes were deposited by thermal evaporation. The contacts between Ag and NSMO are ohmic. Four-probe method was adopted to measure the transport properties.

III. RESULTS AND DISCUSSIONS

Figure 1 shows the typical x-ray diffraction (XRD) pattern of NSMO on STO. There are no extra peaks other than (001) peaks of NSMO and STO. As calculated from the strongest reflection peak \(\text{[NSMO(002)]} \), the out-of-plane lattice constant of the NSMO film is \(c \sim 3.830 \text{\AA} \). A distinct transition from metal to insulator occurs at \(\sim 160 \text{K} \) (\(T_P \)) and the resistivity at the peak is about 1 \(\Omega \text{cm} \). These values are consistent with those reported in the literature.17 Increasing the measurement current from 1 \(\mu \text{A} \) to 50 \(\mu \text{A} \) did not influence the position of \(T_P \) and the value of peak resistance. This implies that a virgin state of NSMO is not sensitive to weak currents.

These microbridges exhibited interesting features after processed with currents of a high density (\(I_C \sim 5 \text{ mA} \) and \(J_C \sim 4 \times 10^5 \text{ A/cm}^2 \)) at room temperature. Figure 2(a) depicts the evolution of current-excited state with processing period. There are two peaks in R(T) curves for the metastable states induced with currents of short durations, e.g., \(\delta_t = 5 \) and 7 min. One peak is correlated with that in pristine state, and the other is located at a lower temperature. Similar to that in the initial state, the high-temperature peaks are not susceptible to weak currents. On contrary, the low-temperature peaks may be strongly influenced by currents, as shown in Fig. 2(b). With the increase of measuring current, the resistance at the low-temperature peak was greatly reduced.

1 Author to whom correspondence should be addressed. Electronic mail: jugao@hku.hk.
When the duration was extended to 10 min, the resistance of the excited state showed a monotonous increase with decreasing temperatures. There was no obvious change of conducting behavior in the whole temperature range but only an anomaly around the transition temperature of the virgin state. Intriguingly, this state did not show any susceptibility to weak currents [Fig. 2(c)]. Therefore, there was a clear evolution of low-temperature state during current processing. Initially, the low-temperature state was dominated by metallic phases. With the increase of processing durations, the insulating portions increased. The low-temperature resistance peaks manifest the competition between metallic phases and insulating ones. Finally, the portion of insulating phases was much larger than that of metallic ones. At the same time, the sensitivity to weak currents first increased and then decreased.

To see whether the interfacial effects are the origins, we measured two-lead R(T) and I(V) curves (not shown) between electrodes A(C) and B(D) (see the inset of Fig. 1) prior to and after each current processing. There was no substantial change, implying the interfacial effects are not relevant. Thus the changes should take place within the microbridge. The electric fields/currents-induced effects have not been well-understood. The reported consequences of electric fields/currents are diverse.8–15 Both decrease and increase of resistance were observed. To understand such effects, it may be useful to note the features of energy landscape. In manganites, different electronic ground states are energetically comparable to each other and constitute a multivalley energy landscape.5,6 Various electronic states may coexist in a single chemical phase. Stimuli like electric fields/currents might drive the system from one energy valley to another. At the same time, the transport properties would be modified.

The samples could be partly restored by negative currents (I~−5 mA) with a proper duration (∼1 min). Here, the direction of the processing current was defined as the positive one. As displayed in Fig. 2(d), the restored state was very close to the initial state except a kink at the lower shoulder of the resistance peak. Extending the duration of negative current re-excited the low-temperature peak. The re-excited resistance peak was also sensitive to small currents. A remarkable feature is the step-like features at the lower shoulder. For I = 0.15 μA, after several steps, the resistance changed about one order. For larger currents, the discrete steps were also evident though the magnitudes were smaller [see Fig. 3(a)].

To get some insights, current-voltage curves were also recorded for the re-excited state. At high temperatures, only linear relations (not shown) were observed. This is consistent with the expected behavior for metallic conductors. At low temperatures, however, the resistance showed a clear dependence on the applied current, indicating that the system is in a different state.

FIG. 1. (Color online) XRD pattern (θ-2θ scan) of NSMO/STO. The insets: the layout of the microbridge (upper) and R(T) curves recorded with different currents (lower).

FIG. 2. (Color online) (a) R(T) curves measured with a current of 0.15 μA subsequent to current processing (I~−5 mA and J~≤4 × 10⁵ A/cm²) with durations of 5, 7, and 10 min; (b), (c) R(T) curves for current-excited states measured with different currents; (d) the restoration (process R) and re-excitation (process X) induced by a large negative current (I~−5 mA).

FIG. 3. (Color online) (a) Temperature dependence of resistance measured with different currents for the re-excited state. The inset: magnified view around the resistance steps; (b) current-voltage curves at temperatures around the resistance steps. For reference, the I(V) curve at 290 K is also shown. The inset: magnified view for low bias voltages.
that after current processing there are finite conduction filaments through the microbridge in certain temperature range. The current densities in these conducting filaments are much larger than those in other parts. Severe heating in these filaments could consequently shut off the conduction path. At the points the conduction filaments are created/annihilated, resistive steps and negative differential resistance may appear.19–22 The exact origins of these current-induced emergent properties need a further study.

IV. CONCLUSIONS

In brief words, the current-induced effects in epitaxial thin films of Nd\textsubscript{0.7}Sr\textsubscript{0.3}MnO\textsubscript{3} were studied. Initially, the low-temperature state was dominated by metallic phases. The insulating portions increased while duration of current processing was extended. As a consequence, an additional resistance peak, which was very sensitive to weak currents, appeared in the R(T) curve. The samples could be partly restored and re-excited by negative currents with proper durations. For the re-excited state, discrete resistance steps in the R(T) curves were observed. At temperatures around these steps, there were negative differential resistance and complex electroresistance. These phenomena are probably due to current-enhanced inhomogeneity in the microbridges.

ACKNOWLEDGMENTS

This work was supported by a grant of the Research Grant Council of Hong Kong (Project No. HKU 702409P) and a Seed Funding from the University of Hong Kong.

4M. B. Salamon and M. Jaime, Rev. Mod. Phys. 73, 583 (2001).
17A. Barman and G. Koren, Appl. Phys. Lett. 77, 1674 (2000).
22J. C. Wu, H. Sun, H. X. Da, and Z. Y. Li, Appl. Phys. Lett. 91, 102501 (2007).