<table>
<thead>
<tr>
<th>Title</th>
<th>Revisiting the marrow metabolic changes after chemotherapy in lymphoma: a step towards personalized care</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Tang, B; Patel, MM; Wong, RH; Wood, D; Wong, CO; Wu, D; Khong, PL; Wong, CYO</td>
</tr>
<tr>
<td>Citation</td>
<td>International Journal of Molecular Imaging, 2011, v. 2011, article no. 942063</td>
</tr>
<tr>
<td>Issued Date</td>
<td>2011</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10722/163934</td>
</tr>
<tr>
<td>Rights</td>
<td>This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.</td>
</tr>
</tbody>
</table>
Research Article

Revisiting the Marrow Metabolic Changes after Chemotherapy in Lymphoma: A Step towards Personalized Care

Bingfeng Tang,1 Malaykumar M. Patel,2 Regina H. Wong,2,3 Daniel Wood,2 Christiana O. Wong,2,4 Dafang Wu,2 Pek Lan Khong,5 and Ching Yee Oliver Wong2,6

1 Department of Radiology, The Ohio State University College of Medicine, Columbus, OH 43210, USA
2 Department of Radiology, Oakland University William Beaumont School of Medicine, Royal Oak, MI 48073, USA
3 LSA, The University of Michigan, Ann Arbor, MI 48109, USA
4 Saybrook College, Yale University, New Haven, CT 06511, USA
5 Department of Diagnostic Radiology, University of Hong Kong, Hong Kong, China
6 Positron Diagnostic Center and Medical Cyclotron, Department of Nuclear Medicine, William Beaumont Hospital, 3601 W, Thirteen Mile Road, Royal Oak, MI 48073, USA

Correspondence should be addressed to Ching Yee Oliver Wong, owong@beaumont.edu

Received 7 June 2011; Accepted 24 June 2011

Academic Editor: Jun Hatazawa

Copyright © 2011 Bingfeng Tang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Purpose. The aims were to correlate individual marrow metabolic changes after chemotherapy with bone marrow biopsy (BMBx) for its potential value of personalized care in lymphoma. Methods. 26 patients (mean age, 58 ± 15 y; 13 female, 13 male) with diffuse large B-cell lymphoma, referred to FDG-PET/CT imaging, who had BMBx from unilateral or bilateral iliac crest(s) before chemotherapy, were studied retrospectively. The maximal standardized uptake value (SUV) was measured from BMBx site over the same area on both initial staging and first available restaging FDG-PET/CT scan. Results. 35 BMBx sites in 26 patients were evaluated. 12 of 35 sites were BMBx positive with interval decrease in SUV in 11 of 12 sites (92%). The remaining 23 of 35 sites were BMBx negative with interval increase in SUV in 21 of 23 sites (91%). The correlation between SUV change over the BMBx site before and after chemotherapy and BMBx result was significant (P < 0.0001). Conclusions. This preliminary result demonstrates a strong correlation between marrow metabolic changes (as determined by FDG PET) after chemotherapy and bone marrow involvement proven by biopsy. This may provide a retrospective means of personalized management of marrow involvement in deciding whether to deliver more extended therapy or closer followup of lymphoma patients.

1. Introduction

Molecular imaging using 2-deoxy-2-[F-18]fluoro-d-glucose (FDG) positron emission tomography (PET) scanning has recently emerged as a major imaging modality for the staging and followup of patients with non-Hodgkin's lymphoma (NHL) [1, 2]. Diffuse large B-cell lymphoma is the most common subtype. Follicular lymphoma accounts for 22% of NHL in adults with high tendency to involve the bone marrow [3, 4]. Follicular grade I lymphoma is the most predominating histological subtype to involve the marrow [5]. Before initiation of treatment, distinguishing potentially curable (stage I/II) from advanced disease (stage III/IV) may guide the planning of management. The advanced stages III and IV correlate significantly with shorter overall or event-free survival, and treatment may have to be modified accordingly. In NHL, bone marrow involvement places the patient in the advanced disease (stage IV). Bone marrow biopsy (BMBx) is the established method for detection of bone marrow involvement in the initial staging and restaging of NHL. However, BMBx is a painful and invasive procedure and sometimes only a small sample can be obtained, which may be inconclusive due to sampling errors, despite bilateral iliac crest blind biopsy under anesthesia. Furthermore, even if the volume of the biopsy is adequate, focal lesions may be missed. Thus, although it is very specific, BMBx from
traditional biopsy sites (iliac crests) has low sensitivity in
detecting marrow involvement of lymphoma. It is essential
to have a supplementary prospective, and if not possible
even retrospective diagnostic procedure, possibly consisting
of a multistep approach, to reliably assess bone marrow
infiltration in patients with NHL to compliment the BMBx.

The ability of FDG-PET to evaluate bone marrow infil-
tration in patients with lymphoma has been investigated
extensively. Multiple prior studies showed that FDG-PET
has a high potential to detect bone marrow involvement
in high-grade malignant lymphoma with low sensitivity
for the detection of bone marrow infiltration in low-grade
NHLs [6, 7] despite the fact that bone marrow involvement
occurs in 30%–50% of patients with NHL. The majority
of these studies used visual interpretation of marrow FDG
uptake during whole-body staging PET scans to assess bone
marrow involvement. Since it is more common in indolent
histology [8, 9], the marrow activity may be not avid for
visual detection based on a single staging PET scan. In the
visual approach, the marrow was assumed to be abnormal
where the FDG uptake was equal to or greater than uptake
in the liver, which was usually greater than background.
This approach for assessing marrow involvement depends
on the extent of marrow infiltration by lymphoma and
has made no use of available information from pre-
and postchemotherapy intramedullary metabolic activities
due to changes in cell population.

The standardized uptake value (SUV) is a semiquantita-
tive measure of the glucose metabolism based on the degree
of FDG uptake, which is derived from the tumor activity
divided by dose per body mass in the attenuation-corrected
PET images [10]. It may improve the definition of abnormal
areas by reducing subjective assessment. It is common to
see the pattern of diffusely increased FDG uptake in normal
bone marrow after chemotherapy on F-18 FDG-PET scans
due to change in hematopoietic cell population. Decreased
FDG uptake after chemotherapy is noted in the areas with
PET evidence of bone marrow involvement due to reduction
in tumor population. The aims were to correlate individual
marrow metabolic changes after chemotherapy with bone
marrow biopsy (BMBx) for its potential value of personalized
care in lymphoma.

2. Materials and Methods

Database of patients referred for FDG-PET/CT scan for
initial staging and first restaging after chemotherapy who
had BMBx from unilateral or bilateral iliac crest(s) before
chemotherapy at a tertiary hospital and cancer center over a
period of two years was retrospectively searched with Human
Investigation Committee approval. Patients were excluded if
they had malignancies other than lymphoma or if they had
received prior radiation treatment or chemotherapy. Twenty-
six patients were eligible for this study. The mean age was
58 ± 15 years old with 13 females and 13 males. There were 16
follicular lymphomas (FL, grades I, II, and III) and 10 diffuse
large B-cell lymphomas (DLBCL). The maximal standardized
uptake value (SUV) was measured from BMBx site over the
same area on both initial staging and restaging FDG-PET/CT
scans. The interval changes of SUV were classified as decrease
or increase and correlated with BMBx result of positive or
negative for bone marrow involvement by lymphoma.

PET-CT imaging was obtained by a dedicated 16-slice
body PET-CT scanner (GE Discovery DST, GE Medical
Systems, Milwaukee, Wis, USA). All patients had fasted for
4 to 6 hours before the intravenous injections of average of
15 mCi (555 MBq) F-18 FDG. PET scans were performed
around one and a half hours after injection right after
mapping CT. This choice of FDG uptake time was based
on the modified schedule of usual one-hour time of FDG
uptake to maximize the contrast between tumor, soft tissue,
and benign inflammation if any [11]. The PET images
were obtained at each bed position for 3 minutes with 6–8 beds
to cover the entire body. The PET images were obtained using
a two-dimensional high-sensitivity mode with an axial field
of view of 15 cm in a 256 × 256 matrix. A 3-slice overlap
was utilized between the bed positions. The PET images
were reconstructed iteratively on a 128 × 128 matrix using
ordered-subsets expectation maximization algorithm for 30
subsets and two iterations, with a 7.0 mm postreconstruction
filter. An initial scout scan was obtained first to define the
imaging field for the CT component of image acquisition,
which used the following imaging parameters: 140 kVp,
120–200 mA, 0.8 seconds per CT rotation, pitch 1.75 : 1, and
detector configuration of 16 × 1.25 mm, 3 mm slice thickness
with oral contrast only.

The serum glucose in mg/dL was recorded just before
PET, and the maximum SUV, defined as tumor activity
divided by dose injected per body mass, was measured by
searching the maximum value within a volume of inter-
est over BMBx sites (posterior iliac crests) by a nuclear
medicine physician. Bone marrow involvement was defined
by histopathologically proven bone marrow lymphoma
infiltration from marrow biopsy. Statistical analysis was
done using SPSS (SPSS Inc, Chicago, IL) for comparing the
changes of marrow before and after chemotherapy. A P value
of <0.05 was considered significant in all tests.

3. Results

Thirty-five BMBx sites from 26 patients were evaluated.
Twelve of 35 sites were BMBx positive with interval decrease
in SUV in eleven out of the 12 sites (92%) (Figure 1). For the
11 sites with true positive PET findings (decreased SUV on
BMBx positive sites), the magnitude of SUV decrease ranged
from 0.7 to 15.8 (−27 to −89%) for an average 8.3 ± 5.9
(−64 ± 24%).

The remaining twenty-three of 35 sites were BMBx
negative with interval increase in SUV in 21 of 23 sites (91%)
(Figure 2). In the 21 sites with true negative PET results
(increased SUV on BMBx negative sites), the range of SUV
increase was from 0.1 to 9.2 (+5 to +575%), average 1.7 ±
2.0 (+106 ± 128%).

The correlation between SUV change over the BMBx
site before and after chemotherapy and BMBx result was
Figure 1: 53-year-old female with follicular grade 3 lymphoma with clear marrow involvement (a). This patient had bilateral iliac marrow biopsy. The post-treatment PET-CT (b) shows diffuse uniform increase in marrow uptake. However, the SUV actually decreases (from 6.7 to 4.9) on the right iliac bone marrow with pathologic confirmation of marrow involvement (b). On the contrary, the SUV over the pathologically negative left iliac bone marrow increases (from 2.7 to 4.2) due to normal hematopoietic response.

4. Discussion

It is currently a common practice to use PET scan as a qualitative tool in the arena of lymphoma, supplemented by more clinically useful information extracted in the form of SUV, to aid in therapeutic decision making and prognostication. The clinical significance of the current study suggested that change in marrow SUV measurement after chemotherapy might provide a retrospective marrow staging, which may give the same information noninvasively as obtained from traditional BMBx regarding bone marrow involvement of lymphoma.

Bone marrow involvement in patients with lymphoma signifies extensive disease with less favorable prognosis. Although bone marrow biopsy is still the gold standard method for detection of bone marrow involvement in the initial staging or restaging of lymphomas, the potentially low sensitivity and invasive nature as well as other limitations of marrow biopsy make it nonideal diagnostic test in detection of marrow infiltration. A more reliable and sensitive noninvasive method of detecting marrow involvement would be desirable. FDG-PET imaging has become a major imaging modality for the staging and followup of patients with NHL.
Figure 2: 58-year-old female with follicular grade 3 lymphoma (a) without focal evidence of marrow involvement by PET. She had right iliac biopsy. The posttreatment PET-CT (b) again shows diffuse increase in marrow uptake. The SUV increases (from 1.7 to 3.8) on the right iliac bone marrow (red region) with pathologic examination negative for marrow involvement. The change of the SUV over bone marrow is all due to normal hematopoietic response to chemotherapy.

[1, 2], and the potential ability of FDG-PET to evaluate both focal and diffuse bone marrow infiltration in patients with lymphoma is a natural choice for investigation and optimization. Though prior studies with pure visual interpretation of marrow FDG uptake to assess marrow have revealed a high potential to detect bone marrow involvement in malignant lymphoma [12–14], the sensitivity is still unacceptably low in low-grade non-Hodgkin’s lymphomas [6, 7, 15]. The present study was undertaken to investigate and optimize the efficacy of FDG-PET as a potentially improved and complimentary method to aid in evaluating marrow involvement in patients for personalized care of lymphomas by utilizing individual interval metabolic changes instead of detection of focal abnormal marrow uptake based on a single staging PET scan alone.

The strong correlation between SUV change after chemotherapy and BMBx result as demonstrated from this current study has notable potential clinical significance. PET-CT is more sensitive than marrow biopsy and can be employed routinely to assess the entire marrow [16]. In patients with initial obvious focal FDG-avid bone marrow lesions, FDG-PET may offer guidance to biopsy or can be used as direct evidence of bone marrow involvement. The bone marrow involvement of these lesions can be confirmed by analyzing SUV changes after chemotherapy. If initial FDG PET shows no definite focal marrow lesions and patient
needs chemotherapy clinically, then the retrospective analysis of SUV changes after chemotherapy over the traditional BMBx sites may offer similar if not better information as obtained from BMBx regarding bone marrow involvement by lymphoma and therefore potentially eliminate the error on management caused by false negative pretreatment BMBx due to sampling issue. Whether a blind marrow biopsy may still be warranted in patients with indolent lymphoma for whom chemotherapy may not be offered if there is no evidence of bone marrow involvement by lymphoma, or in patients with marrow population changes related to factors other than chemotherapy only, for example, G-CSF treatment, bone marrow dysplasia, prior chemo- or radiation treatment, and so forth, needs further clinical investigation. Nonetheless, the current study moves a step towards personalized care by employing retrospective evidence of marrow involvement in lymphoma patients. Since the current revised response criteria for lymphoma require clearance of infiltrative marrow lesions by repeated biopsy [17], the current study may offer an alternative insight for noninvasive marrow response criteria by requiring involved marrow sites to show decrease in SUV from hot or normal FDG uptake to reduced or cold metabolic activity on the marrow.

With PET-CT, the functional PET images are coregistered with the anatomic CT images obtained by the almost simultaneously acquired CT scan. This approach can result in a significant improvement in the accurate anatomic localization and the region of interest determination and therefore make sure that the measurement of SUV is over the same area before and after chemotherapy. The current study demonstrates that the change in metabolic behavior correlates well with marrow cell population change and suggests possible optimization of metabolic information by using intramedullary SUV change to countercheck or supplement the invasive limited sampling of histological examination to predict marrow involvement, which in turn may lead to the most appropriate subsequent management for each individual patient.

There are limitations of this current retrospective study, including small sample size, mixed histopathological classification, and significant variation of interval between chemotherapy and restaging PET scan. A comparison between bone marrow biopsy and evaluations of FDG-PET after treatment is not accomplished. This is partially because there will be little justification to repeat biopsy if there is already a good response to therapy. A well-designed prospective study overcoming the above limitations to further confirm the conclusion of this preliminary study is necessary and is currently being investigated.

5. Conclusion

This preliminary study demonstrates a strong correlation between marrow metabolic changes by FDG PET scan after chemotherapy and marrow cell population change. There is an inverse relationship between (positive) marrow involvement of lymphoma and SUV change (decrease) after chemotherapy. The potential clinical significance of this observation is to provide a noninvasive retrospective means of countercheck or replacement of the invasive limited sampling of histological examination in predicting marrow involvement, which in turn may help in personalized care of deciding whether to deliver more extended therapy or closer followup of lymphoma patients.

References

