THE CARDIOPROTECTIVE EFFECT OF ISOSTEVIOL ON ENDOTHELIN-1-INDUCED HYPERTROPHY OF CULTURED NEONATAL RAT CARDIOMYOCYTES

K.L. Wong¹,²,³, C.C. Chao², C.W. Cheung³, P. Chan⁴, T.H. Cheng⁵, Y.M. Leung⁶
¹Dept. of Anesthesia, China Medical University & Hospital, Taichung, Taiwan,
²Dept. of Anesthesiology, Taishan Medical University, Taiwan, Shandong, China,
³Dept. of Anesthesiology, LKS Faculty of Medicine, University of Hong Kong, Hong Kong,
⁴Dept. of Cardiology, Taipei Medical University-Wan Fang Hospital, Taipei, Taiwan,
⁵Dept. of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan,
⁶Graduate Institute of Neural and Cognitive Sciences, China Medical University, Taichung, Taiwan

Aims: Isosteviol is an active derivative of stevioside and also possessing an anti-hypertensive effect in our previous report. Left ventricular hypertrophy is an independent cardiovascular risk factor related to cardiovascular complications in patients with hypertension. Therefore, a decrease in left ventricular mass is a therapeutic goal in these patients. In the present study, we elucidate the anti-hypertrophy and molecular mechanisms of isosteviol on endothelin-1(ET-1)-induced hypertrophy of neonatal rat cardiomyocytes.

Methods: Cultured neonatal rat cardiomyocytes were stimulated with ET-1, [3H]-leucine incorporation, and the beta-myosin heavy chain promoter activity were measured. We also examined the effects of isosteviol on ET-1-induced intracellular ROS generation and the NADPH oxidase activity. The influence of the stress pathway by isosteviol on the increase of ROS by ET-1 and ET-1-induced extracellular signal-regulated kinase (ERK) phosphorylation also examined. ANOVA was used for statistical analysis, p < 0.05 were considered significant.

Results: Isosteviol inhibited the increase of ET-1-induced of [3H]-leucine incorporation and intracellular ROS levels in a concentration-dependent manner. The increase of ROS and NADPH oxidase activity by ET-1 was significantly inhibited by isosteviol and N-acetylcysteine (anti-oxidant). Isosteviol also inhibited ET-1-induced ERK phosphorylation. These data indicate that isosteviol inhibits ET-1-induced the increase of ROS, NADPH oxidase activity, ERK phosphorylation, [3H]-leucine incorporation and subsequent hypertrophy via its antioxidant ability.

Conclusions: The inhibition of NADPH oxidase activity and ROS level in ET-1 stimulated cardiomyocytes by isosteviol were play an important part in its anti-hypertrophy effect. These results support the therapeutic potential of isosteviol in the prevention of cardiomyocyte hypertrophy.