<table>
<thead>
<tr>
<th>Title</th>
<th>Optimal control for semi-active suspension with inerter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Hu, Y; Li, C; Chen, MZ</td>
</tr>
<tr>
<td>Issued Date</td>
<td>2012</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10722/160294</td>
</tr>
<tr>
<td>Rights</td>
<td>Chinese Control Conference. Copyright © Institute of Electrical and Electronics Engineers.; ©2012 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.; This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.</td>
</tr>
</tbody>
</table>
Optimal control for semi-active suspension with inerter

Yinlong Hu1, Chanying Li2, and Michael Z. Q. Chen1,3,*
1. School of Automation, Nanjing University of Science and Technology, Nanjing, China.
2. Academy of Mathematics and Systems Sciences, Chinese Academy of Science, Beijing, China.
3. Department of Mechanical Engineering, The University of Hong Kong, Hong Kong. Email: mzqchen@hku.hk.

Abstract: The benefits of the inerter in passive suspension have been well demonstrated. To investigate suspension performances with the inerter in semi-active suspension, eight well studied passive suspension configurations with a parallel connection to a variable shock absorber are analyzed in this paper. By applying the optimal control theory, an optimal solution for each configuration is obtained and numerically solved by the forward/backward sweep method. The result shows that under the considered performance measure, the use of inerter can improve ride comfort in general, where the effect can even be significant for some specific configurations, but has no obvious advantage in road holding and suspension travel performance compared with the conventional semi-active suspension.

Key Words: Inerter, semi-active suspension, optimal control.

1 Introduction

Semi-active suspensions have attracted much attention because of the low energy consumption when compared with the active ones and their high performances when compared with the passive ones. The conventional semi-active suspension configuration, that is, a spring in parallel with a variable shock absorber, has been investigated by many researchers and a large number of meaningful results have been obtained [1–4].

Inerter is a recently proposed concept and device with the property that the applied force at the two terminals is proportional to the relative acceleration between them [5, 6]. The inerter expands the class of mechanical realizations of complex impedances compared with the ones using only springs and dampers and has been applied to various mechanical systems, including vehicle suspensions [7, 8], motorcycle steering systems [9] and building vibration control [10]. It has also rekindled interest in passive network synthesis [11–14].

To investigate the benefits of using inerter in semi-active suspensions and what performance level the semi-active suspension involving inerter will be achieved, eight well studied passive suspension configurations [7, 8] with a parallel connection with a semi-active damper are analyzed in this paper. By applying the optimal control theory, an optimal solution of each configuration is obtained and numerically solved by the forward/backward sweep method [20]. Two kinds of road excitations [15, 22], the randomly profiled road and single bump road, are employed to test the performance of each configuration using a well defined performance measure, which combines ride comfort, road holding and suspension travel. After being compared with the conventional semi-active suspension configuration, the effects of semi-active suspension with inerter are highlighted.

The organization of this paper is as follows. In Section 2, the optimal control problem is formulated under a quarter car model with the considered semi-active suspension configurations. The algorithm to solve such a problem is also included in this section. Section 3 presents two simulation results with two kinds of road excitations. Some general remarks for semi-active suspension with inerter are also given in this section. Conclusions are drawn in Section 4.

2 Vehicle model and optimal control problem formulation

2.1 Quarter-car model

Consider the quarter-car model in Fig. 1. As an elementary model to study suspension systems, the quarter-car model consists of the sprung mass m_s, the unsprung mass m_u and the tyre vertical stiffness k_i [8, 15, 18, 19]. The suspension strut provides an equal and opposite force on the sprung mass and unsprung mass. In this study, the suspension system consists of two parts, the passive part and the semi-active part. The passive part is one of the conventional passive suspension configurations shown in Fig. 2, which have been widely investigated in passive suspension design [7, 8]. The admittance for each configuration is $Y_i(s) = \frac{k_i}{s^2 + Q_i(s)}$, $i = 1, \ldots, 8$ and $Q_i(s)$ is shown in Table 1. The semi-active part is involved a variable shock absorber such as Electrohydraulic Dampers (EH Dampers), Magnetorheological Dampers (MR Dampers) and Electrorheological Dampers (ER Dampers) [16]. Here, $F_d = c_v(\dot{z}_s - \dot{z}_u)$ with $c_v \in [c_{\min}, c_{\max}]$.

Define $F = Q(s)(\dot{z}_s - \dot{z}_u)$. The dynamic equations are as follows

$$
\begin{align*}
m_s \ddot{z}_s &= -k_s(z_s - z_u) - F - F_d, \\
m_u \ddot{z}_u &= k_s(z_s - z_u) + F + F_d - k_i(z_u - z_r).
\end{align*}
$$

* Corresponding author.
Fig. 2: The configurations in the passive part of the suspension.

The state space representation is then obtained

\[
\dot{x} = Ax + B_2 F + B_2 F_d + B_1 \omega, \tag{1}
\]

where \(x = \begin{bmatrix} z_s - z_u & \dot{z}_s & z_u - z_r & \dot{z}_r \end{bmatrix}^T \), \(\omega = \dot{z}_r \),

\[
A = \begin{bmatrix}
0 & 1 & 0 & -1 \\
-\frac{k_s}{m_s} & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
\frac{k_i}{m_r} & 0 & -\frac{k_i}{m_r} & 0
\end{bmatrix},
\]

\[
B_1 = \begin{bmatrix} 0 & 0 & -1 & 0 \end{bmatrix}^T,
\]

\[
B_2 = \begin{bmatrix} -1 & 0 & \frac{1}{m_u} & 0 \end{bmatrix}^T.
\]

Next, we will show that the state space representation (1) for each configuration can be transformed into a uniform bilinear state equations.

For \(C_1 \) and \(C_3 \), it is straightforward to obtain the representation below

\[
\dot{x} = A_1 x + D_1 x_c + B_2 \omega, \tag{2}
\]

where

\[
A_1 = \begin{bmatrix}
0 & 1 & 0 & -1 \\
-\frac{k_s}{m_s} & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
\frac{k_i}{m_r} & 0 & -\frac{k_i}{m_r} & 0
\end{bmatrix},
\]

\[
A_3 = \begin{bmatrix}
0 & 1 & 0 & -1 \\
-\frac{m_u k_s d}{m_s} & -\frac{m_u c d}{m_s} & -\frac{k_i b d}{m_s} & \frac{m_u c d}{m_s} \\
0 & 0 & 0 & -1 \\
\frac{m_u k_s d}{m_s} & \frac{m_u c d}{m_s} & -(m_s + b) k_i d & \frac{m_u c d}{m_s}
\end{bmatrix}.
\]

Table 1: \(Q(s) \) for each configuration in Fig. 2, where \(s \) denotes the Laplace variable.

\[
Q_1(s) = c \\
Q_2(s) = \frac{1}{s^1 + \frac{k_s}{m_s}} \\
Q_3(s) = bs + c \\
Q_4(s) = \frac{1}{s^2 + \frac{k_s}{m_s} + \frac{k_i}{m_r}} \\
Q_5(s) = \frac{1}{s^2 + \frac{k_s}{m_s} + \frac{k_i}{m_r} + \frac{k_s}{m_u} + \frac{k_i}{m_u}}
\]

Define \(l = \begin{bmatrix} 0 & 1 & 0 & -1 \end{bmatrix} \), then \(D_1 = D_3 = B_2 l \), \(B = B_1 \). Furthermore, \(A_1, D_1 \) and \(A_3, D_3 \) correspond to \(C_1 \) and \(C_3 \), respectively.

For \(C_2 \) and \(C_4-C_8 \), assuming

\[
Q(s) = \frac{b_{n-1} s^{n-1} + \ldots + b_1 s + b_0}{s^n + a_{n-1} s^{n-1} + \ldots + a_1 s + a_0} + d_p,
\]
a corresponding control canonical form is realized

\[
\dot{x}_p = A_p x_p + B_p u_p, \tag{3}
\]

\[
y = C_p x_p + d_p u_p, \tag{4}
\]

where \(u_p = \dot{z}_s - \dot{z}_u, y = F \) and

\[
A_p = \begin{bmatrix} 0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & \ldots & 0 \\
0 & 0 & 0 & \ldots & 1 \\
-a_0 & -a_1 & -a_2 & \ldots & -a_{n-1} \\
b_0 & b_1 & b_2 & \ldots & b_{n-1}
\end{bmatrix},
\]

\[
B_p = \begin{bmatrix} 0 & 0 & \ldots & 0 & 1 \end{bmatrix}^T,
\]

\[
C_p = \begin{bmatrix} b_0 & b_1 & b_2 & \ldots & b_{n-1} \end{bmatrix}.
\]

By (1), (3) and (4), we obtain

\[
\dot{y} = Ay + Dy c_v + B \omega, \tag{5}
\]

where \(y = \begin{bmatrix} x \ x_p \end{bmatrix}^T \) and

\[
A = \begin{bmatrix} A + B_2 d_p l & B_2 C_p \\
B_p l & A_p
\end{bmatrix},
\]

\[
D = B_2 l, \quad B = \begin{bmatrix} B_1 \ 0 \end{bmatrix}^T,
\]

where \(A, D, \) and \(B \) are of compatible dimensions.

Observing (2) and (5), it is obvious that the state space equations for the considered configurations have a uniform representation. Hence, in the following sections, (5) will be used as a representation for all the eight configurations. It should be noted that a similar representation for \(C_1 \) appeared in [15, 19], but they all treat the variable damping ratio and the state together and obtained a piecewise equation relating to the states. In this study, we give a slightly different formulation, which rely on the damping ratio directly. Then the optimal control theory can be employed as a method to observe how the damping ratio changes with different road profiles.

2.2 Performance measure

It is well known that suspension system design is a compromise among a number of performance requirements such as passenger comfort, handling, road holding and limits of suspension travel. The objective of our problem is to control the variable damping ratio to minimize the performance defined in [15, 17, 19, 22]

\[
J = \int \left(\dot{z}_s^2 + \rho_1 (z_s - z_u)^2 + \rho_2 (z_u - z_r)^2 \right) dt, \tag{6}
\]

where \(\rho_1 \) and \(\rho_2 \) are weight coefficients determined by designer. Performance measure (6) is a combination of the RMS value of sprung mass accelerations, suspension travels and tire deflections, which indicate ride comfort, suspension travel and road holding, respectively. In this present work, we set \(\rho_1 = 10^3 \) and \(\rho_2 = 10^4 \), the same as in [15, 22].

2302
2.3 Optimal control formulation

Since we intend to obtain the best performance and benefits for semi-active suspension with inerter, some assumptions are made, similar to [18]:

1) The road disturbance information is fully obtained in advance for the whole time interval $[t_0, t_f]$.
2) There is no measurement noise and the state variables $(y(t))$ are measured perfectly.
3) System uncertainty is not considered, that is, the model is an accurate model of the real system.
4) The semi-active damper is ideal without actuating delay (infinite bandwidth) or force saturation.

Theorem 1. The objective index (6) can be written as

$$ J = \int_{t_0}^{t_f} (y^T P_2 y_c^2 + y^T P_1 y_c + y^T P_0 y)dt, $$

where

$$ P_2 = d(2)^T d(2), \quad P_1 = a(2)^T d(2) + d(2)^T a(2), $$

$$ P_0 = a(2)^T a(2) + \rho_1 l_1^T l_1 + \rho_2 l_2^T l_2, $$

$$ l_1 = [1 \ 0 \ 0 \ \ldots \ 0], \quad l_2 = [0 \ 0 \ 1 \ 0 \ \ldots \ 0]. $$

$a(2)$ and $d(2)$ are the second row of A and D, respectively.

Define the Hamiltonian

$$ H = y^T P_2 y_c^2 + y^T P_1 y_c + y^T P_0 y + \lambda^T (Ay + Dy_c + B\omega) $$

and the adjoint function

$$ \dot{\lambda} = -\partial H / \partial y = -((Q^T + Q)y + A^T \lambda + D^T \lambda u), $$

where $Q = P_2 c_0^2 + P_1 y_c + P_0$. The boundary condition and transversality condition is

$$ y(t_0) = y_0, \quad \lambda(t_f) = 0. $$

Denote

$$ c_{v_0} = -(2y^T P_2 y^*)^{-1}(y^T P_1 y^* + \lambda^* D y^*), $$

where y^* and λ^* are the solutions of (5), (9) and (10).

Then the optimal c_{v_0} to minimize (7) is

$$ c_{v_0}^* = \begin{cases} c_{\text{max}}, & c_{v_0} \geq c_{\text{max}} \\ c_{\text{min}}, & c_{v_0} \leq c_{\text{min}} \\ c_{v_0}, & \text{otherwise.} \end{cases} $$

Proof. By the Minimum Principle of Pontryagin, to minimize (7), it suffices to minimize H with respect to c_v. Considering (5), (9) and (10), we have

$$ \partial H / \partial c_v = 2y^T P_2 y_c v + y^T P_3 y + \lambda^T D y = 0, $$

$$ c_{v_0} = -(2y^T P_2 y^*)^{-1}(y^T P_1 y^* + \lambda^* D y^*). $$

y^* and λ^* denote the solutions of (5), (9) and (10). Since $\partial^2 H / \partial c_v^2 = 2y^T P_2 y = E(y_2 - y_1)^2 > 0$, E is a real positive constant value equal to $2d^2 m^2$ for C_3 and $\frac{m^2}{2}$ for the others, c_{v_0} is the optimal solution. Considering the damping ratio constraints, we obtain (11).

Note that there is a singular point in (11), $2y^T P_2 y = E(y_2 - y_1)^2 = 0$, that is $\dot{z}_v - \dot{z}_u = 0$. Practically, it means that the relative velocity of the sprung mass and unsprung mass is zero, where it is reasonable to set the damping ratio equal to the previous one [15].

The problem formulated using (7)–(11) defines a two-point boundary value problem, which can be numerically solved by the forward/backward sweep method [20].

Algorithm statement:

Step 1 Make an initial guess for c_v over the interval.

Step 2 Using the initial condition $y(t_0) = y_0$ and the guess c_v, solve y forward in time according to its differential equation in the optimality system.

Step 3 Using the transversality condition $\lambda(t_f) = 0$ and the previous c_v and y, solve λ backward in time according to its differential equation in the optimality system.

Step 4 Update the control by entering the new y and λ values into the characterization of c_v.

Step 5 Check convergence. If values of the variables in this iteration and the last iteration are negligibly small, output the current values as solutions. If not, return to Step 2.

3 Numerical results

The parameters in [21] for the quarter-car model is employed as shown in Table 2.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sprung mass</td>
<td>400 kg</td>
</tr>
<tr>
<td>Unsprung mass</td>
<td>50 kg</td>
</tr>
<tr>
<td>Static stiffness, K</td>
<td>20 kN/m</td>
</tr>
<tr>
<td>The minimum damping ratio for c_v</td>
<td>300 Ns/m</td>
</tr>
<tr>
<td>The maximum damping ratio for c_v</td>
<td>4000 Ns/m</td>
</tr>
<tr>
<td>Damping ratio c in passive part</td>
<td>1500 Ns/m</td>
</tr>
<tr>
<td>Relaxation spring stiffness, k_0</td>
<td>2 K</td>
</tr>
<tr>
<td>Centering spring stiffness, k_1</td>
<td>0.4 K</td>
</tr>
<tr>
<td>Centering spring stiffness, k_2</td>
<td>0.2 K</td>
</tr>
<tr>
<td>Primary spring stiffness, k_s</td>
<td>0.866667K for C_6</td>
</tr>
<tr>
<td></td>
<td>0.875K for C_7</td>
</tr>
</tbody>
</table>

To see the performance level of the eight configurations, the suspension performance was evaluated under two types of road inputs: randomly profiled road and a single bump. The two road profiles have been well defined in [15, 22] described as follows.

The randomly profiled road is a stationary stochastic process with spectral density

$$ S_\omega(\omega) = \frac{\sigma^2}{\pi} \times \frac{\alpha v}{\omega^2 + (\alpha v)^2}, $$

where v is vehicle forward velocity, ω is circular frequency and α, σ are constant parameters dependent on the type of road surface. The process $\omega(t)$ in (12) can be generated by passing a white noise process through the filter

$$ \dot{\omega} + \alpha\omega = \xi, $$

where ξ is a Gaussian white noise process with intensity $2\sigma^2 \alpha v$. In this example, $\alpha = 0.15 \ cm^{-1}$ and $\sigma^2 =
9×10^{-6} m2, the same as in [15, 22], the forward velocity is 25 m/s. The input signal is shown in Fig. 3.

The single bump road signal is generated by

$$
\omega(t) = \begin{cases}
 c(1 - \cos 20\pi(t - 0.3)), & t \in [0.3, 0.4], \\
 0, & \text{otherwise.}
\end{cases}
$$

where $2c$ is the bump height in [m] and t time in [sec], assuming $2c = 0.1$ m. The input signal is shown in Fig. 4.

The randomly profiled road is used to test the vehicle behaviors when traveling on the normal road. Similar to (6), a series of performance measures are defined in (14) to (16) to simulate the ride comfort, road holding and suspension travel performance, respectively.

$$
J_{com} = \int_{t_0}^{t_f} (\ddot{z}_a)^2 dt,
$$

$$
J_{rhd} = \int_{t_0}^{t_f} (z_a - z_0)^2 dt,
$$

$$
J_{str} = \int_{t_0}^{t_f} (z_a - z_r)^2 dt.
$$

In order to investigate the effects of employing the inerter, we set b, the inertance, ranging from 50 kg to 500 kg. After simulating 10 different road inputs for each inertance, the average performance measure of C_1 was used as a benchmark and the relative performance results of the other configurations are obtained shown in Fig. 5 to Fig. 7. The percentages of improvement or decrease for each configuration versus C_1 are shown in Table 3, where ‘+’ denotes improvement and ‘−’ denotes deterioration.

As shown in Table 3, the use of inerter for C_3 has no advantage compared with C_1, though it can reduce the suspension travel space greatly, since for a normal inertance (100–350 kg) the ride comfort and road holding performance of C_3 are 50.80% to 839.06% worse than C_1. For this reason, C_3 was deleted from Fig. 5 and Fig. 6.

Observing Fig. 5, it is obvious that all the configurations provide a better comfort performance than C_1 (except C_6 with a large inertance), especially for C_8, 39.37% improvement was obtained with $b = 200$ kg as Table 3 shows. It is interesting to point out that two groups were classified with the increasing of inertance shown in Fig. 5 to Fig. 7, although it is not obvious in Fig. 7. The first group consists of C_4, C_6, and C_7, the three of which tend to coincide with C_1; while the other consists of C_5 and C_8 with a relaxation spring k_0,
which tend to coincide with C_2. It is understandable since, with the increase of inertance, the branch with the inerter will tend to ‘shorten’ or ‘stiffen’ the connection between sprung mass (or unsprung mass) and dampers, which will reduce the configurations of each group to C_1 or C_2, respectively. As for C_6, C_7 and C_8, when the inertance is large enough, the static stiffness of the suspension struts is no longer K but $k_s + k_i$ for C_6 and C_7, $k_s + (k_s^{-1} + k_i^{-1})^{-1}$ for C_8, the increase of static stiffness will explain why the ride comfort performance of C_6 is larger than C_1 as shown in Fig. 5 and Table 3. This is consistent with the passive suspension design in [7, 8] that the optimal ride comfort measure increases monotonically with static stiffness. Besides, by comparing C_1 and C_2, C_4 and C_5, C_7 and C_8, it is obvious that the use of relaxation spring k_b provides a better ride comfort in the considered suspension combination, which is different from the passive suspension design where relaxation spring is not intended to improve ride comfort [7, 8].

For the road holding and suspension travel performance, similar results have been obtained to the ride comfort performance. The formation of two groups indeed enrich the choice of suspension design. Considerable ride comfort, road holding and suspension travel together and comparing them with each other in Table 3, we find that the relaxation spring k_b does not bring any advantage in road holding and has very slight influence on suspension travel.

When comparing C_1 as shown in Fig. 6 and Fig. 7, and also in Table 3. By comparing C_1 and C_2, C_4 and C_5, C_7 and C_8 in pair in Fig. 6, Fig. 7 and Table 3 again, we find that the relaxation spring k_b does not bring any advantage in road holding and has very slight influence on suspension travel.

Table 3: The specific data for ride comfort (COM), road holding (RHD) and suspension travel (STR), where ‘+’ denotes improvement compared with C_1 and ‘−’ denotes deterioration compared with C_1.

<table>
<thead>
<tr>
<th>Inerter</th>
<th>$b=700$ kg</th>
<th>$b=750$ kg</th>
<th>$b=200$ kg</th>
<th>$b=250$ kg</th>
<th>$b=300$ kg</th>
<th>$b=350$ kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>COM</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>STR</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>C_1 RHD</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>C_2 RHD</td>
<td>-25.87%</td>
<td>-25.87%</td>
<td>-25.87%</td>
<td>-25.87%</td>
<td>-25.87%</td>
<td>-25.87%</td>
</tr>
<tr>
<td>STR</td>
<td>-10.57%</td>
<td>-10.57%</td>
<td>-10.57%</td>
<td>-10.57%</td>
<td>-10.57%</td>
<td>-10.57%</td>
</tr>
<tr>
<td>C_1 RHD</td>
<td>-166.34%</td>
<td>-381.17%</td>
<td>-516.55%</td>
<td>-671.52%</td>
<td>-839.06%</td>
<td>-1031.25%</td>
</tr>
<tr>
<td>STR</td>
<td>-18.39%</td>
<td>-15.63%</td>
<td>-21.82%</td>
<td>-30.07%</td>
<td>-34.06%</td>
<td>-35.15%</td>
</tr>
<tr>
<td>C_4</td>
<td>+9.36%</td>
<td>+4.85%</td>
<td>+0.69%</td>
<td>+5.58%</td>
<td>+6.99%</td>
<td>+8.90%</td>
</tr>
<tr>
<td>STR</td>
<td>-13.50%</td>
<td>-10.87%</td>
<td>-8.78%</td>
<td>-6.98%</td>
<td>-5.75%</td>
<td>-4.84%</td>
</tr>
<tr>
<td>C_2 RHD</td>
<td>-38.31%</td>
<td>-37.70%</td>
<td>-37.22%</td>
<td>-36.60%</td>
<td>-35.39%</td>
<td>-34.39%</td>
</tr>
<tr>
<td>STR</td>
<td>+32.15%</td>
<td>+32.04%</td>
<td>+32.03%</td>
<td>+32.02%</td>
<td>+32.01%</td>
<td>+32.00%</td>
</tr>
<tr>
<td>C_5</td>
<td>-23.38%</td>
<td>-24.45%</td>
<td>-25.03%</td>
<td>-25.25%</td>
<td>-25.35%</td>
<td>-25.42%</td>
</tr>
<tr>
<td>STR</td>
<td>-15.66%</td>
<td>-14.47%</td>
<td>-13.32%</td>
<td>-12.52%</td>
<td>-12.02%</td>
<td>-11.57%</td>
</tr>
<tr>
<td>C_6</td>
<td>+9.34%</td>
<td>+5.67%</td>
<td>+1.35%</td>
<td>+0.10%</td>
<td>-0.11%</td>
<td>-0.18%</td>
</tr>
<tr>
<td>STR</td>
<td>-11.50%</td>
<td>-9.68%</td>
<td>-7.37%</td>
<td>-5.11%</td>
<td>-3.28%</td>
<td>-4.14%</td>
</tr>
<tr>
<td>C_7 RHD</td>
<td>+10.07%</td>
<td>+7.17%</td>
<td>+5.20%</td>
<td>+3.63%</td>
<td>+2.39%</td>
<td>+1.39%</td>
</tr>
<tr>
<td>STR</td>
<td>-14.45%</td>
<td>-10.77%</td>
<td>-7.62%</td>
<td>-4.51%</td>
<td>-1.94%</td>
<td>-0.05%</td>
</tr>
<tr>
<td>C_8 RHD</td>
<td>+40.40%</td>
<td>+40.01%</td>
<td>+39.37%</td>
<td>+38.81%</td>
<td>+38.39%</td>
<td>+38.00%</td>
</tr>
<tr>
<td>STR</td>
<td>-18.45%</td>
<td>-17.39%</td>
<td>-16.37%</td>
<td>-15.37%</td>
<td>-14.23%</td>
<td>-13.49%</td>
</tr>
</tbody>
</table>

![Fig. 8: The performance for bump profiled road.](image8)

![Fig. 9: The sprung mass displacement.](image9)
the other seven configurations compared with heavily. Improve ride comfort heavily but also reduce road holding and suspension travel performance compared with tradeoff for using the inerter is the decrease of road holding. In conclusion, for various performance requirements in suspension design, the considered configurations with inerter indeed enrich the choices for semi-active suspension design.

Acknowledgment

This work is supported in part by NNSFC 61004093, HKU CRCG 201008159001, and “973 Project” 2012CB720200.

References

Fig. 10: The unsprung mass displacement.

4 Conclusions

A theoretical research on semi-active suspension design with inerter was carried out. To investigate the benefits of semi-active suspension employing inerter, the suspension strut was divided into two parts. Eight configurations, some of which employ inerter, constitute the passive part and the semi-active part was a variable shock absorber. Optimal control theory was applied to obtain the optimal bound for such a construction with inerter with respect to ride comfort, road holding and suspension travel performance for a quarter car model. After using the forward/backward sweep method to solve the two-point boundary problem numerically, some simulation results were obtained with two different kinds of road profile excitations. The results showed that inerter can provide better ride comfort than the conventional layout of semi-active suspension C1, especially for C2, C5 and C6 which have a relaxation spring, 35% to 40% improvement will be obtained compared to the conventional one C1. The tradeoff for using the inerter is the decrease of road holding and suspension travel performance compared with C1. For the other seven configurations compared with C1, C4, C6, and C7 can improve ride comfort slightly but reduce road holding slightly as well. In comparison, C2, C5 and C8 can improve ride comfort heavily but also reduce road holding heavily. C3 has no improvement in either ride comfort or road holding. In conclusion, for various performance requirements in suspension design, the considered configurations with inerter indeed enrich the choices for semi-active suspension design.