<table>
<thead>
<tr>
<th>Title</th>
<th>Design of dual-magnet memory machines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Li, F; Chau, KT; Liu, C</td>
</tr>
<tr>
<td>Issued Date</td>
<td>2011</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10722/158755</td>
</tr>
<tr>
<td>Rights</td>
<td>International Conference on Electrical Machines and Systems Proceedings. Copyright © IEEE.; ©2011 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.; This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.</td>
</tr>
</tbody>
</table>
Abstract — The memory machine, which adopts the aluminum-nickel-cobalt (AlNiCo) as the permanent magnet (PM) material, has attracted a wide attention. In this paper, by incorporating two kinds of PM materials including the neodymium-iron-boron (NdFeB) and the AlNiCo, the dual-magnet memory machine is proposed, which has more distinguished merits than its single-magnet counterpart. Due to the high coercivity of the NdFeB, the overall power density is augmented notably. Also, the risk of accidental demagnetization is significantly reduced. Most importantly, the design on how to combine these two kinds of PMs is discussed in detail, with emphasis on their shape, thickness and relative position. Both simulation and experimentation are given to illustrate the validity of the proposed design.

I. INTRODUCTION

With more concerns about environmental protection and global warming, electric vehicles (EVs) have been gaining more and more attention. Due to the limitation of their battery energy storage, there is a pressing need on the development of energy-efficient machines [1-9]. Compared with conventional permanent magnet (PM) brushless machines, the memory machine [10-17] takes the advantage of tunable air-gap flux while retaining high efficiency and high power density. Moreover, compared with latest PM hybrid machines [18-23], the memory machine is not required to continually excite the DC field windings, hence improving the operating efficiency.

The memory machine does have some drawbacks. Firstly, the aluminum-nickel-cobalt (AlNiCo) PM has a relatively lower energy product than the neodymium-iron-boron (NdFeB) PM, thus degrading the overall power density. Secondly, the AlNiCo has a low coercivity which increases the possibility of accidental demagnetization. Thirdly, the demagnetization characteristic of the AlNiCo PM is very nonlinear which inevitably involves the hysteresis effect when performing electromagnetic field analysis. However, the distinguished merits and special performances of memory machines are still quite attractive for practical applications.

The purpose of this paper is to propose a dual-magnet topology for the memory machine, the so-called dual-magnet memory machine. The key is to use the NdFeB PM to complement with the AlNiCo PM in such a way that the overall power density can be maintained. And the time step finite element method (TS-FEM) [37] [38] is used to analyze the proposed machine under various dual-magnet arrangements. Then, the optimal design is prototyped and tested to verify the validity of the proposed machine design.

II. DESIGN

Fig. 1 shows the structure of the proposed dual-magnet memory machine. It adopts 5 phases, rather than the conventional 3 phases, aiming to offer smoother output torque which is desirable for direct-drive EV application. The outer-rotor includes 24 salient poles and the stator consists of 30 salient poles. The dual-magnet arrangement is located within each dashed box.

Three types of arrangements are shown in Fig. 2. The magnets in Fig. 2 (a) and (b) are placed closed together to obtain the maximum integrated magnetic field. The top aligned arrangement is often used in surface mount PM machines to have unified surface. The center aligned arrangement has more balanced flux distribution. But in Fig. 2 (c) the iron bridges between them can be tuned to amplify the flux weakening capability. These types are all analyzed in later content by TS-FEM simulation under the same motor structure.

Typically, the thickness of magnets is determined by rated design of Dual-Magnet Memory Machines

Fuhua Li, K.T. Chau, and Chunhua Liu
Dept. of Electrical and Electronic Engineering, University of Hong Kong, Hong Kong, China
E-mail: fhli@eee.hku.hk
power. The thicker the magnets, the stronger the ability is to resist demagnetization. The AlNiCo PMs should be thicker than the NdFeB PMs because of the low coercivity of AlNiCo. The thickness of AlNiCo PMs is determined by the needed magnetomotive force (MMF), rated current of magnetizing windings and slot fill factor. The 3H c MMF can be calculated by (1):

\[
F = 3F_{AlNiCo} + F_{airgap} = 3H_c 2H + \frac{B_\delta}{\mu_0} 2\delta
\]

where,

- \(H_c \) - The coercivity of AlNiCo.
- \(H \) - The thickness of AlNiCo magnet.
- \(B_\delta \) - The flux density of air-gap.
- \(\mu_0 \) - The permeability of free space.
- \(\delta \) - The thickness of air-gap.

The coefficient 3 in (1) means it takes at least 3 times coercive force to fully magnetize the AlNiCo PMs. The coefficient 2 indicates there are two PMs and two air-gaps in a magnetic loop.

In this design, the rated power is 1500W; the NdFeB PMs are selected to be 4mm thick; each magnetizing winding has 200 turns. Three different models of AlNiCo PMs corresponding to three arrangements in Fig. 2 are simulated by TS-FEM as shown in Fig. 3-Fig. 5. All three models work in generating mode under no load 600rpm.

![Fig. 3. Flux distribution of model-1. W\text{AlNiCo} =24mm, H\text{AlNiCo} =10mm, W\text{NdFeB} = 20.4mm, H\text{NdFeB} = 4 mm, (a) Magnetizing Current I_m = 20A. (b) I_m = -10A.](image)

![Fig. 4. Flux distribution of model-2. W\text{AlNiCo} = 30mm, H\text{AlNiCo} = 8mm, W\text{NdFeB} = 17.4mm, H\text{NdFeB} = 4 mm, (a) I_m = 10A. (b) I_m = -10A.](image)

![Fig. 5. Flux distribution of model-3. W\text{AlNiCo} =30mm, H\text{AlNiCo} = 8mm, W\text{NdFeB} = 15.4mm, H\text{NdFeB} = 4 mm, (a) I_m =10A. (b) I_m = -10A.](image)

In Fig. 3, the thickness of top-aligned AlNiCo PMs is 10mm. After using 20A current to magnetize the AlNiCo PMs, the AlNiCo PMs have the same magnetic polar direction as the neighboring NdFeB PMs. On one hand, it can be seen there are few flux lines though the magnets shown in Fig. 3 (a). That means the AlNiCo PMs contribute little to transfer the energy to the air-gap, resulting in low power density. An important reason is that the width of one AlNiCo PM is too narrow comparing with the sum of the width of two neighboring NdFeB PMs and hence NdFeB PMs have significant effect on AlNiCo PMs. On the other hand, flux lines in top-aligned arrangement are not evenly distributed in corners of AlNiCo PMs, owing to the relative position with NdFeB PMs. Although it can realize flux weakening when AlNiCo PMs are reversely magnetized, shown in Fig. 3 (b), meaning that the AlNiCo PMs have reverse magnetic polar direction with the neighboring NdFeB PMs, the overall performance of model-1 is not preferred. Therefore, the center-aligned arrangement is adopted to achieve a more balanced flux distribution.

![Fig. 6. Cogging torques of three models](image)

In Fig. 5 (a), the model-3 with 2mm bridges has more concentrated flux lines through the middle part of AlNiCo PMs comparing with model-1 and model-2. It indicates that the effect of NdFeB PMs is reduced and AlNiCo PMs play a greater role in energy delivery. Fig. 5 (b) shows few flux lines pass through bridges during the reverse magnetization.

Fig. 6 shows the cogging torques of these models without skewing under 10A current magnetization. It can be seen that they have similar waveforms but different amplitudes owing to the same salient pole structure but different PM dimension.

III. EFFECT OF BRIDGE

Since the interaction between AlNiCo PMs and NdFeB PMs is significantly intensive in adjacent sides, some flux lines of AlNiCo PMs near the interface are looped through NdFeB PMs. Inspired by this feature, if a bridge is added between an AlNiCo PM and a NdFeB PM, forming a narrow additional path to let the NdFeB PM release flux, it will reduce the effect on AlNiCo PMs. With this bridge, when AlNiCo PMs have the same polarity with neighboring NdFeB PMs, more flux lines will pass through AlNiCo PMs, which means more energy will be delivered by AlNiCo PMs. When AlNiCo PMs have reverse polarity with neighboring NdFeB PMs, the bridges will help to weakening the air-gap flux density. Generally by this means, the memory machine has
more capacity to realize the memory function, in other words, the flux weakening ability is augmented.

The model-3 with bridges of different widths, whose structure is in accordance with Fig. 5, is simulated in the condition of 200V DC drive voltage and 5A armature current. By using TS-FEM, the performances of different bridges are calculated and analyzed, including the magnetic field distribution, air-gap flux distribution and staring performance.

First, the dynamic magnetic field distribution is analyzed and shown in Fig. 7-Fig. 10. The relative positions of the rotor and stator are corresponding to the end time of simulation. Different positions are resulted by their own staring processes.

Assuming that the state of AlNiCo PMs is in the origin of coordinates of BH plane, when the magnetizing current is positive, AlNiCo PMs have the same polar direction as neighboring NdFeB PMs. It can be seen that with bridge width increased from 0 to 3.6mm; more flux lines pass through AlNiCo PMs and also more flux lines passing through the bridges. With the effect of NdFeB reduced by bridges, AlNiCo PMs play a greater role in energy delivery. It should be noted that the flux in bridges does not take part in useful energy delivery, which will reduce the rated load torque. So it is expected that the bridge be as narrow as possible while meeting the torque requirement.

Second, the air-gap flux density, corresponding to the simulation end time, is shown in Fig. 11. It indicates the energy delivering capacity and also the power density of the models. In the Fig. 11 (a), (c) and (e), the average values of positive air-gap flux density are similar, which in accordance with similar steady-state speed as described in later content. The model with 1.2mm bridges has the highest air-gap flux density amplitude exceeding 1.0T. In these two conditions, the 3.6mm bridge model has the lowest air-gap flux density, which means the lowest load capacity.

Third, the dynamic starting torque is presented in Fig. 12. The model with 1.2mm bridges has the highest staring torque shown in figure 12 (c). The starting torque of the model without bridges is lower than 1.2mm and 2.0mm bridge models by nearly 75 percent under 15A magnetization current.
and 15Nm load, so it has lower acceleration speed. For the reverse magnetizing, shown in Fig. 12 (b), (d), (f), because the flux of all models are reduced, it takes a short period about 0.12s to change the direction of flux lines, resulting in a short lasting negative torque, during which the models are standing still. The last model with 3.6mm bridges has poor performance lasting negative torque, during which the models are standing still. The last model with 3.6mm bridges has poor performance.

The models decline in steady state speed, but the 1.2mm model keeps higher. This demonstrates the merit of the bridge. While the AlNiCo PMs are weak magnetized, narrow bridges reduce the effect of NdFeB PMs and further retain higher speed simultaneously providing enough torque. Fig. 15 shows the reverse magnetization case. When AlNiCo PMs have reverse polarity with neighboring NdFeB PMs, most flux lines are inner looped not passing through rotor and the load capacity drops. The model without bridges can maintain higher flux density. It has higher speed than others under light load.

Finally, the dynamic starting processes are also simulated by applying different magnetizing current. The acceleration curves under different bridge width are shown in Fig. 13-Fig. 15. When the magnetizing current is 15A, in Fig. 13, the models with bridge width 1.2mm and 2.0mm have larger acceleration speed due to the weakened flux, but have the same steady-state speed with the one without bridges. This means when the AlNiCo PMs are fully magnetized, narrow bridges affect little the load capacity but increase the response speed. But if the bridge is broad like 3.6mm, the load capacity dropped significantly and the model cannot work under 15Nm load.

Fig. 14 presents the case under 5A magnetizing current. The models decline in steady state speed, but the 1.2mm model keeps higher. This demonstrates the merit of the bridge. While the AlNiCo PMs are weak magnetized, narrow bridges reduce the effect of NdFeB PMs and further retain higher speed simultaneously providing enough torque. Fig. 15 shows the reverse magnetization case. When AlNiCo PMs have reverse polarity with neighboring NdFeB PMs, most flux lines are inner looped not passing through rotor and the load capacity drops. The model without bridges can maintain higher flux density. It has higher speed than others under light load.

As shown above, the width of bridge plays an important role in the motor performance. Therefore, appropriate width could enhance the motor flux weakening performance, especially the staning torque. For the motor structure of this design, the best choice of bridge is between 1mm to 1.5mm.

IV. EXPERIMENT

The prototype of this dual-magnet memory motor, corresponding to the structure shown in Fig.1 and Fig. 2 (b) and the aforementioned model-2, has been made to verify the design. The PM material adopted AlNiCo 5DG and NdFeB.
N35. The test-bed is presented in Fig. 16, which includes the memory motor, a DC motor, a torque sensor, a laser tachometer, an electrical load and a 5-phase full-bridge circuit.

Firstly, the prototype is tested under the generating mode. It is driven by the connected DC motor and working as a generator. According to the calculation, 10A magnetizing current can realize 3Hc MMF. After magnetizing the AlNiCo PMs by 10A current, the AlNiCo PMs have the same polarity with the NdFeB PMs and have high remanent magnetism, so the compound magnetic field is intensified to a high level. Then the prototype is driven to 600rpm. The generated back electromotive force (EMF) of one phase is shown in Fig. 17 (a). It can be found the generated EMF has amplitude of 77V. After that, -5A current is used to reversely magnetize the AlNiCo PMs. The tested back EMF has amplitude of 44.4V shown in Fig. 18 (b). In this case, the AlNiCo PMs still have the same polarity with NdFeB PMs, but have lower remanence and hence the back EMF declines. This verifies the memory function and flux weakening ability in the first step.

Secondly, the prototype is tested in the no load motor mode. The overall DC drive current is limited to 3A by the control system. The AlNiCo PMs are reversely magnetized by -10A current. Increasing the DC drive voltage from 40V to 220V, the tested no load steady-state speed is shown by the curve with square symbols in Fig. 18. Then, the AlNiCo PMs are magnetized by10A current. The speed under the same DC voltage is shown by the round symbols. As can be seen that the no load performances are approximately similar in the two situations of fully same directional magnetization and fully reverse magnetization. That means the flux weakening operation does not demonstrate its function in the no load case. Additionally, the speed in the same directional magnetization case is a little faster when the voltage greater than 100V. This is because the PMs can provide higher flux density in the case of 10A magnetization.

Thirdly, the test was carried out by using different magnetizing current under the same 5Nm load exerted by the DC motor and the electrical load. The AlNiCo PMs were successively magnetized by 10A, -5A, -10A, 5A current. The corresponding steady-state speeds are shown in Fig. 19. It shows different magnetization levels result in different speeds when the DC drive voltage and load are fixed. That means this memory motor can tune its speed in a certain range to meet different speed requirements in no need to change the drive voltage, while providing the same torque. When operating in 220V voltage with 5Nm load, the speed range achieves 300rpm, 67% of the highest speed.

V. CONCLUSION

A design of memory machines with dual-magnet structure is presented in this paper. First, three types of arrangements are discussed. Subsequently, the effect of iron bridges are analyzed by TS-FEM and simulated in details. The result shows appropriate narrow bridges between AlNiCo PMs and NdFeB PMs promote the flux weakening capacity and hence the starting torque. The bridges enable a fast acceleration during a starting process, which is highly desired in EV applications. Finally, a prototype is made to verify the design. According to the experiment result, the memory motor can have a wide speed range achieved by flux-weakening operation - changing the magnetization level of AlNiCo PMs.
ACKNOWLEDGMENT

This work was supported by a grant (Project No. HKU710710E) from the Hong Kong Research Grants Council, Hong Kong Special Administrative Region, China.

VI. REFERENCES

