<table>
<thead>
<tr>
<th>Title</th>
<th>Megainterstadial climate of the Salawusu valley - Milanggouwan stratigraphical section; 苏河流域末次间冰期气候 - 以米浪沟剖面为例</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Wen, X; Li, B; Zhang, DD; Fan, X; Ye, J; Du, S; Guo, Y; Chen, D</td>
</tr>
<tr>
<td>Citation</td>
<td>Acta Geologica Sinica, 2007, v. 81 n. 4, p. 553-562</td>
</tr>
<tr>
<td>Issued Date</td>
<td>2007</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10722/157886</td>
</tr>
<tr>
<td>Rights</td>
<td>This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.</td>
</tr>
</tbody>
</table>
北大西洋“冰筏”事件（Heinrich Events）和格陵兰冰芯千年尺度D/O振荡的发现揭示了北半球中高纬度地区末次间冰阶气候的不稳定性（Heinrich, 1988; Bond et al., 1992, 1993; Dansgaard et al., 1993; North Greenland Ice Core Project Members, 2004），且可能对当时曾生活于此的尼安德特人和现代人都产生了重要影响（Van Andel, 2002; Stewart, 2005）。近年来，我国末次间冰阶黄土、冰心、石笋、湖泊沉积等研究也发现类似的气候波动存在（康建成等, 1993; Yao et al., 1997; Wang et al., 2001; 陈一萌等, 2004; 蒋复初等, 2004; 吴中海等, 2004）。末次间冰阶气候的不稳定性逐渐为我国学者所认识。施雅风等根据格陵兰冰芯δ18O和青藏高原及其周边大湖期/青藏高原大湖期的湖相沉积，提出末次间冰阶晚期（30~40 ka BP）存在异常暖湿的“高冰期降水事件”（Yao et al., 1997; 李炳元, 2000; Shi et al., 2001; 张虎才等, 2002）；根据山地冰川的测年，认为末次间冰阶早期（44~54 ka BP）可能存在冰进现象（施雅风等, 2002）。位于鄂尔多斯高原毛乌素沙漠东南部边缘的萨拉乌苏河流域，蕴藏着丰富的末次间冰阶环境变化的地质信息。针对这一时期千年的气候波动提供一个高分辨率的地质记录。为此，我们选择该流域米浪沟湾剖面末次间冰阶地层作为代表，结合年代测定、粒度、化学元素和古生态等指标，探讨毛乌素沙漠末次间冰阶的气候变化。
1 米浪沟湾剖面末次间冰阶层序和年代

1.1

米浪沟湾剖面位于该河中游流域米浪沟湾村NE约500 m的河流左岸，37°45′47.2′′N，108°33′05.4′′E，剖面顶部海拔约1290 m，堆积厚度约83 m，时代属中更新世—全新世，自下而上包括离石组、萨拉乌苏组、城川组、大沟湾组和滴哨沟湾组。其中，城川组可分为下部、中部和上部。根据新近年龄测定，堆积深度13.63~28.42 m的城川组中部（图1a），即31S-49FL，时代大致为23~59 ka BP，相当于Marine Isotope Stage 3（MIS3）或末次间冰阶（Martinson et al., 1987）。该层系含19个层位：9层古流动砂丘砂，棕黄色（10YR 5/8），以细砂为主，松散、分选均匀，偶见植物残体和流水作用痕迹或铁质锈斑，有些层具明显的砂丘沉积的休止角；4层河流相，粉砂质细砂（2.5YR 6/2），暗灰黄色（10YR 5/6），常见钙板或钙结核、钙质夹层；4层湖沼相，粉砂质极细砂或粉砂质极细砂，暗灰色（2.5YR 6/2），含较多植物根系和软体动物化石，见钙板和铁质锈斑；2层古土壤，粉砂质极细砂，暗灰褐色（2.5YR 4/2），松散、分选均匀，偶见植物残体和流水作用痕迹或铁质锈斑。为便于阐述，古流动砂丘砂、河流相、湖沼相和古土壤分别以D、FL、LS和S表示。

1.2

迄今该层序及其邻近层位共获得5个14C和4个TL年龄（图1a）。31S中部13C年龄19.570±0.366 ka，采用Calib5.0.1（Stuiver et al., 1998, 2005）校正为23.266±0.597 cal ka。其他4个13C年龄超出校正范围；4个TL年龄中，42D中部51.900±6.150 ka，相对于39LS和47LS的13C年龄明显偏老和年代颠倒。为此，在建立时间标尺时将不考虑这5个年龄，而采用31S中部13C校正年龄和其余3个TL年龄为时间控制点，参考Porter等（1995）提出的粒度模型，以>20 μm含量（%）代表沉积速率相对稳定的大气沉降组分；同时，运用线性内插方法建立沉积速率时间标尺。如图1b，两者时间标尺基本吻合，文中文统一采用粒度时间标尺。

2 采样及实验方法

自上而下以5 cm（少数3 cm或7 cm）间距采集样品299个，经室内低温烘干（<40°C）。所有样品在华南师范大学地理科学学院沉积物实验室进行有机质、碳酸钙和粒度分析。有机质用油浴K2Cr2O7（重铬酸钾）容量法测定。碳酸钙采用气量法，每个样品采用Boscomb Calcimeter平行测试3~4次，取其平均值（Bascomb, 1961）。粒度分析使用Malvern Mastersizer 2000 M激光粒度仪，测量范围0.02~200 μm，实验流程参考黄土粒度分析方法（鹿化煜等，1997）。

在中国科学院寒区旱区环境与工程研究所采用日本理学3020型X射线荧光光谱仪进行以15 cm间距选取的101个样品全量化学元素分析，常量氧化物以百分含量（%），微量元素以百万分之一（×10-6）表示。此外，采集含软体动物化石的湖相样品由中国科学院动物研究所鉴定。

3 结果分析

3.1

对不同类型沉积物的粒度特征进行统计分析（表1），并绘制图2。
Table 1 Grain-size composition (%) of different sedimentary facies of the megainterstadial sequence

<table>
<thead>
<tr>
<th>分类</th>
<th>粗砂</th>
<th>中砂</th>
<th>细砂</th>
<th>极细砂</th>
<th>粗粉砂</th>
<th>细粉砂</th>
<th>粘土</th>
</tr>
</thead>
<tbody>
<tr>
<td>粒径 (mm)</td>
<td>1.00~ 0.50</td>
<td>0.50~ 0.25</td>
<td>0.25~ 0.10</td>
<td>0.10~ 0.05</td>
<td>0.05~ 0.01</td>
<td>0.01~ 0.005</td>
<td>< 0.005</td>
</tr>
<tr>
<td>D</td>
<td>0~ 7.26</td>
<td>1.39~ 43.16</td>
<td>36.60~ 80.81</td>
<td>0.81~ 41.35</td>
<td>0~ 11.41</td>
<td>0~ 1.26</td>
<td>0~ 2.62</td>
</tr>
<tr>
<td>FL</td>
<td>0~ 5.10</td>
<td>0~ 35.44</td>
<td>29.41~ 60.45</td>
<td>8.72~ 44.88</td>
<td>0.91~ 22.42</td>
<td>0~ 2.30</td>
<td>0~ 4.85</td>
</tr>
<tr>
<td>LS</td>
<td>0~ 0.07</td>
<td>0~ 16.58</td>
<td>13.00~ 66.78</td>
<td>18.52~ 43.65</td>
<td>2.98~ 44.12</td>
<td>0.05~ 9.38</td>
<td>0~ 12.99</td>
</tr>
<tr>
<td>S</td>
<td>0~ 13.64</td>
<td>14.93~ 54.92</td>
<td>11.44~ 47.41</td>
<td>5.99~ 41.83</td>
<td>2.15~ 41.83</td>
<td>0.59~ 12.70</td>
<td>0.86~ 18.01</td>
</tr>
</tbody>
</table>

图 2 末次间冰阶粒度组成 (%) 与粒度参数

Fig. 2 Grain-size composition and parameters of the megainterstadial sequence

由表 1 可知，整个层序以砂物质 (> 0.05mm) 为主，砂含量 > 80% 的样品数占 80%，且不同沉积相在各粒级含量分布不均，波动幅度较大。以细砂 (0.25 ~ 0.10 mm) 含量最高，分布范围 13.00% ~ 80.81%，平均含量为 52.87%；次为极细砂 (0.10~ 0.05 mm)，分布范围 0.81% ~ 47.41%，平均 25.53%；中砂 (0.50~ 0.25 mm)、细粉砂 (0.05~ 0.01 mm)、粘土 (< 0.005 mm)，平均分别为 10.39%、9.51%、1.36%、2.15%；粗砂 (1.00~ 0.50 mm) 含量低，平均 0.19%。即使不同沉积相都以砂为主，然而古流动砂丘砂相比于河流相、湖沼相和古土壤，其粗中砂和细砂含量明显增加。极细砂含量则降低，在层序垂直方向上这几者呈现拉锯式高低波动，构成若干峰一谷交替的“粗一细”粒度韵律。

不同沉积相粒度参数与上述粒度组成也具有相似的变化性质。以平均粒径 (Mz) 为例，古流动砂丘砂，分布范围 1.88~ 3.30，平均 2.56，这与古流动砂丘砂以细砂为主粒级基本一致；河流相，分布范围 2.09~ 3.30，平均 2.79，属细砂—极细砂粒级；湖沼相和古土壤，分布范围分别为 2.61 ~ 4.76 和 2.94~ 5.26，平均为 3.81 和 3.62，属极细砂—粉砂粒级。再如分选系数 (R)，古流动砂丘砂，变化于 0.46~ 0.98，平均 0.69，属分选好～中等；河流相，变化于 0.66~ 1.42，平均 0.86，分选中等～较差；湖沼相，变化于 0.67~ 2.03，平均 1.38，分选中等～较差；古土壤，变化于 0.74~ 2.34，平均 1.25，分选中等～差。这表明，古流动砂丘砂分选最好，次为河流相，湖沼相和古土壤最差。从图 2 也可知，平均粒径 (Mz) 和分选系数 (R)
与极细砂、粉砂和粘土含量高低呈现很好地正相关变化趋势，与细砂及其以上颗粒呈显著负相关。

3.2

表2和图3列举了常量氧化物SiO₂、Al₂O₃、TOFE(全铁)、微量元素V、Sr、Cu含量和(Al₂O₃+TOFE)/SiO₂(铝铁硅比)的分布。可见，整个层序化学成分以SiO₂含量最高，次为Al₂O₃和TOFE，三者之和分布范围72.31%~97.61%，平均86.87%。常量氧化物SiO₂、Al₂O₃、TOFE分布范围分别为57.70%~90.35%、4.86%~10.86%、1.31%~3.87%，平均分别为77.23%、7.41%、2.23%；微量元素V、Sr、Cu分布范围分别为(18.30~76.60)×10⁻⁶、(96.00~315.00)×10⁻⁶、(1.20~18.90)×10⁻⁶，平均分别为39.91×10⁻⁶、150.94×10⁻⁶、9.47×10⁻⁶；铝铁硅比，分布范围0.13~0.25，平均为0.16。

如表2，无论在分布范围还是平均值，诸元素在各沉积相含量不等：古流动砂丘砂，SiO₂含量显著高于河流相、湖沼相和古土壤，Al₂O₃含量低于河流相、湖沼相和古土壤。这种元素含量“高一低”波动在图3中呈现出如前述粒度“粗一细”韵律的节拍：SiO₂在古流动砂丘砂中尽显峰值，在河流相、湖沼相和古土壤中尽显谷值；反之，Al₂O₃、TOFE、V、Sr、Cu含量和铝铁硅比在前者呈谷值，在后二者呈峰值。如此构成若干锯齿状元素波动过程线。其相关分析也体现了这一特征，SiO₂与其他元素相关系数变化于-0.70~0.86，为显著负相关；Al₂O₃、TOFE、V、Sr、Cu彼此相关系数均>0.52，多分布于0.60~0.85，较显著至显著正相关。

图4表示了该末次间冰阶层序和洛川黄土剖面S0~S5和L1~L6大陆风化程度的Al₂O₃+CaO+

Table 2 Contents of major elements (%) and trace elements(×10⁻⁶) and (Al₂O₃+ TOFE)/ SiO₂ of different sedimentary facies of the megainterstadial sequence

<table>
<thead>
<tr>
<th>类型</th>
<th>SiO₂ (%)</th>
<th>Al₂O₃ (%)</th>
<th>TOFE (%)</th>
<th>V(×10⁻⁶)</th>
<th>Sr(×10⁻⁶)</th>
<th>Cu(×10⁻⁶)</th>
<th>Al₂O₃ + CaO +</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>73 14~90 35</td>
<td>4.86~7.93</td>
<td>1.31~2.37</td>
<td>18.30~53.90</td>
<td>96.00~155.00</td>
<td>1.20~12.10</td>
<td>0.08~0.13</td>
</tr>
<tr>
<td>FL</td>
<td>67 33~80 92</td>
<td>6.17</td>
<td>1.79</td>
<td>27.93</td>
<td>127.86</td>
<td>7.34</td>
<td>0.10</td>
</tr>
<tr>
<td>LS</td>
<td>63 77~90 92</td>
<td>7.72</td>
<td>1.74~2.65</td>
<td>24.17</td>
<td>150.77</td>
<td>9.89</td>
<td>0.13</td>
</tr>
<tr>
<td>S</td>
<td>59 67~13 13</td>
<td>8.84</td>
<td>1.82~3.87</td>
<td>2.77</td>
<td>181.98</td>
<td>11.97</td>
<td>0.17</td>
</tr>
</tbody>
</table>

![图3末次间冰阶层序常量氧化物、微量元素含量和铝铁硅比](http://www.cnki.net)
也即说，该层序湖相或古土壤发育时，除受自身元素的风化程度外，可能还聚集了当地及其邻区风化作用淋溶、迁移的可溶组分。

3.3 含较多软体动物化石的33LS、35LS和39LS层位鉴定结果表3，含7类陆生、3类水生共10类软体动物化石。

<table>
<thead>
<tr>
<th>末次间冰阶软体化石鉴定种类</th>
<th>33LS</th>
<th>35LS</th>
<th>39LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>钢属螺 Vallyonia patens Reinhardt</td>
<td>+</td>
<td>+</td>
<td>潮湿环境</td>
</tr>
<tr>
<td>多齿螺 Cibicides armigerella (Reinhardt)</td>
<td>+</td>
<td>+</td>
<td>潮湿环境</td>
</tr>
<tr>
<td>拉氏螺 Succinea erythropotana Anczy</td>
<td>+</td>
<td>+</td>
<td>暖喜暖湿</td>
</tr>
<tr>
<td>浅圆螺 Discus pauper</td>
<td>+</td>
<td>+</td>
<td>潮湿环境</td>
</tr>
<tr>
<td>中华螺科螺 Discus pauper (Gould)</td>
<td>+</td>
<td>+</td>
<td>潮湿环境</td>
</tr>
<tr>
<td>耳螺 Clavatula sinensis</td>
<td>+</td>
<td>+</td>
<td>暖喜暖湿</td>
</tr>
<tr>
<td>白云螺 Discus pauper</td>
<td>+</td>
<td>+</td>
<td>暖喜暖湿</td>
</tr>
<tr>
<td>福螺 Pupilla maczovum (Linne)</td>
<td>+</td>
<td>+</td>
<td>暖喜暖湿</td>
</tr>
<tr>
<td>育螺 Pearlystreta</td>
<td>+</td>
<td>+</td>
<td>暖喜暖湿</td>
</tr>
<tr>
<td>西伯利亚旋螺 Cibicides armigerella (Reinhardt)</td>
<td>+</td>
<td>+</td>
<td>暖喜暖湿</td>
</tr>
</tbody>
</table>

表3 Mollusk fossils from lacustrine facies of the megainterstadial sequence

讨论与结论

4.1 根据我们对毛乌素沙漠现代地表流动砂丘砂57个粒度分析结果，现代地表流动砂丘砂粒度组成以细砂为主，分布范围27.91%~92.60%，平均56.27%；次为极细砂，分布范围6.38%~32.96%，平均27.09%；中砂分布范围0.99%~40.32%，平均12.63%；含有少量的粗砂，平均3.85%，多数样品缺失；基本不含粉砂和粘土。粒度参数Mz分布于2.13~3.48，平均2.88；σ变化于0.35~1.03，平均0.68。

16个现代流动砂丘砂，常量化学元素SiO2平均81.55%，变化于75.20%~90.22%；K2O平均7.85%，变化于4.62%~9.13%；TOF 平均2.15%，变化于1.51%~2.09%，铝铁硅比，分布
为了进一步说明古今流动砂丘状之特点，比较了两者的碎屑矿物成分。据14个该地现代流动砂丘状的碎屑矿物分析显示，石英含量最高，分布范围51.30%～81.90%，平均值72.18%，绝大部分样品在60%以上。其次是硅酸盐类矿物中含量最高的长石，分布范围5.80%～23.40%，平均值为18.66%，其绝大部分样品在13%以上；重矿物含量虽少，但2/3以上是硅酸盐类矿物，如普通角闪石、辉石、绿帘石等。18个晚第四纪古流动砂丘状碎屑矿物中石英含量最高（72.18%），其次是长石类，分布范围5.60%～30.40%，平均值为13%。石英含量最高分布范围0.07～0.13，以上。石英相对活动性高，这三者在风化过程中首先遭受淋溶、迁移而含量降低。但事实上，该层序中SiO₂含量外，Al₂O₃、TOFE、CaO、MgO、K₂O、Na₂O等含量都呈现不同程度增加。这种现象在前人研究中已给予较好解释（刘后信等，2002），认为这与该地处于黄土高原东部南洼地这一独特地貌位置有密切关系。由于受较强生物化学风化作用和生物活动性高一中等的元素CaO、MgO、K₂O、Na₂O首先从洼地周围较高的平坦、坡地乃至丘陵与高原等正地形位置淋失、迁移并随水流汇集到河湖沼泽沉积中，同时CO₂、Al₂O₃、TOFE、TiO₂则在此地形地貌部位上得以相对聚集。若某一瞬间大气降水增多，地表径流，特别是坡面水流作用加强，平时聚集在地表的Al₂O₃、TOFE、TiO₂等元素也同样可以随水流汇集到河湖沉积中。至于本区古土壤，其发育条件比较复杂，常年发育在低地或紧靠河湖岸边，使得地下水位时常影响古土壤的发育，此时古土壤的堆积环境及元素迁移聚集与湖沼相也颇为类似，这也许是为什么该地暖湿气候发育的河湖相和古土壤中同样富含CaO、MgO、K₂O、Na₂O等元素。与此同时，石英、长石类矿物中含量最高的角闪石、绿帘石，石英晶体分布范围0.07～0.13，以上。石英相对活动性高。
凸螺 Renalia convex iulus (Hutton) 主要生活在我国长江流通及其以南的亚热带 - 热带极喜温暖水域, 向南可达东南亚和南亚各国。至于位于该区的生物体动物化石可能跟陆生软体动物自身习性沉积物横向变动具有密切联系。据研究, 陆生软体动物的迁移能力非常强, 其生存主要依赖陆地上的植被, 以绿色植物、真菌和藻类为主要食物。其发育过程中不断从钙含量相对丰富的环境中摄取钙质 (陈德牛等, 1997)。在萨拉乌苏河流域。湖相与古土壤横向上正常为相变, 无论是湖相或古土壤发育时, 其植被郁闭度和环境湿度都较高, 加之含钙质较多碳酸钙, 使得有利于陆生软体动物在湖相或古土壤相变区生存。

4.3

综上所述, 该层由古流动砂丘至河湖相或古土壤构成的若干粒度或含量波动和古生态特征在很大程度上反映了末次间冰阶东亚冬、夏季风在萨拉乌苏河流域所在的毛乌素沙漠相互对峙、盛衰交替的产物。也就是说, 如果以 Mz()、SiO2、Al2O3 + TOFE 含量为代表, 基于文中所建立的时间标尺 (ka BP), 古流动砂丘沙 Mz() 含量峰值, Al2O3 + TOFE 含量代表了冬季风主导下的冷干气候, 标记为“C”事件, 则依次为 C1(23.47~23.77 ka BP)、C2(24.70~25.04 ka BP)、C3(25.41~26.23 ka BP)、C4(26.47~34.59 ka BP)、C5(39.55~43.10 ka BP)、C6(43.77~45.50 ka BP)、C7(47.58~48.98 ka BP)、C8(51.80~53.53 ka BP) 和 C9 (55.06~57.48 ka BP); 反之, 河湖相和古土壤 Mz() 峰值, SiO2 含量高峰。Al2O3 + TOFE 含量上限指示了冬季风主导下的冷干气候, 标记为“W”事件, 依次为 W1(23.07~23.47 ka BP)、W2(23.77~24.70 ka BP)、W3(25.04~25.41 ka BP)、W4(26.23~26.47 ka BP)、W5(34.59~39.55 ka BP)、W6(43.10~43.77 ka BP)、W7(45.50~47.58 ka BP)、W8(48.98~51.80 ka BP)、W9(53.53~55.06 ka BP) 和 W10(57.48~58.85 ka BP) (图 5)。图 5, 该地末次间冰阶至少经历了 9 次干冷和 10 次暖湿的气候波动, 并在波动频次, 持续时间上呈现 5 个亚段: ①MIS3b (34.59~26.47 ka BP), 含 C4, 持续 8.12 ka; ②MIS3a (26.47~23.07 ka BP), 含 W4/C3/W3/C2/W2/C1/W1, W 持续 2.029 ka, C 持续 1.654 ka。

可选, MIS3c、MIS3d、MIS3a 以暖事件 (W) 频次 > 冷事件 (C), 暖事件持续时间 > 冷事件, 亚段 MIS3d 和 MIS3b 以暖事件 (W) 频次 < 冷事件 (C), 暖事件持续时间 < 冷事件。这些与我国古里雅冰心氧同位素 18 含量 59~50 ka BP、40~32 ka BP、26~22 ka BP 高值和 50~40 ka BP、32~26 ka BP 低值所指示暖湿和冷干气候性质和相位上都显示出高度的吻合 (Yao Tandong et al., 1997); 如果考虑测年手段和技术差异, 与北大西洋 V23-81 冷性浮游有孔虫数 59~44 ka BP、35~30 ka BP、26~23 ka BP 低值和 44~35 ka BP、30~26 ka BP 高值所反映的暖、冷变化趋势也较为类似 (Bond et al., 1993)。

若以 W/C 持续时间来看, 这些暖冷事件长者达 8.2 ka, 短则只有 240 a, 多数在 500~2000 a, 即该地末次间冰阶至少经历了 19 次近万年或数千年至数百年尺度的温湿和冷干气候波动。其中, 该地发生于 26.47~34.59 ka BP、39.55~43.10 ka BP、51.80~53.53 ka BP、39.55~43.10 ka BP, 含 C4, C5, C8, 从气候性质上与北半球 (尤其北大西洋地区) 诸多研究中揭示的极寒冷“冰筏”事件 H3、H4、H5 (Heinrich, 1988; Bond et al., 1993), 其新近 14C 测年分别为 26~28 ka BP、35~36.5 ka BP、50~52 ka BP (Bond et al., 1992), 与中国葫芦洞石笋确定 30 ka BP、39 ka BP、48 ka BP 冷期也较为一致的 (Wang et al., 2001)。同样, 这种千年尺度气候波动在格陵兰 GRIP 冰心、葫芦洞石笋 (Wang et al., 2001) 等表现为一系列间冰段和冰段波动, 即 D/O 振荡 (Bond et al., 1992; Dansgaard et al., 1993; North Greenland Ice Core Project Members, 2004)。图 5, 该地暖冷波动频次虽不及格陵兰 GRIP 冰心 (Bond et al., 1992; North Greenland Ice Core Project Members, 2004), 但如果考虑年代误差, 暖事件 W 和冷事件 C 都可以在 GRIP 冰心中一一对应到相应的间冰段和冰段。例如, 持续 5.0 ka, 2.82 ka 和 1.53 ka 的较显著暖事件 W5、W8 和 W9 分别对应 GRIP 冰心标称 Nedekamp (IS8)、Glinde (IS14) 和 Oerel (IS16) 暖事件, 弱暖事件 W6 对应于 Hengelo (IS12); 持续 1.73 ka C6 和 1.40 ka C7 大致对应间冰段 IS12、IS13、IS14 之间的冰段。
图 5 末次间冰阶萨拉乌苏河流域气候与北大西洋 V23-81、我国古里雅和 GRIP 冰心 $\delta^{18}O$ 比较

Fig. 5 Comparison of the megainterstadial climate between the Salawusu valley and $\delta^{18}O$ from V23-81 in North Atlantic, Guliya ice core and GRIP in Greenland islands

值得指出的是亚段 MIS3c 和 MIS3a。亚段 MIS3c 属于施雅风等提出的 30~40 ka BP “高温异常降水事件”(Shi et al., 2001) 时段内的 W5 事件，我国青藏高原、腾格里沙漠等地都发现这一时段的高湖面，黄土高原在大约 35~42 ka BP 的马兰黄土期则普遍发育一层古土壤(孙建中, 2005)，而从该地沉积厚达 1.65 m 的湖相以及含极喜暖的凸旋螺 Gyraulus convexiusculus (Hutton) 等判断，当时水热条件是相当可观的。亚段 MIS3a 在我国黄土高原地区也普遍发育一层古土壤，时代大约 22~27 ka BP，该地除发育一层类似古土壤外（孙建中，2005），还可见两层同样含极喜暖湿的岩间恰里螺 Kaliella rupicola Moellendorff 和凸旋螺 Gyraulus convexiusculus (Hutton)。

4.4 利用 Redfit38 (Schulz and Mudelsee, 2002) 对该剖面 Mz() 进行功率谱分析，揭示出 21.70 ka、1.05 ka、0.64 ka、0.50 ka 等周期（图 6）。其中，21.70 ka 通过红噪声 90% 的检验水平，其恰好是岁差周期(19~23 ka) 的平均值 (Imbrie et al., 1984)。1.05 ka、0.64 ka、0.50 ka 都通过红噪声 99% 的检验水平，1.05 ka 可能与北大西洋的浮冰事件揭示的 1450 a 有关 (Mayewski et al., 1997)。0.50 ka 与反映北大西洋热盐环流不稳定性的 512 a 周期相近 (Stuiver and Braziunas, 1993)。此外，还揭示了另一显著周期，大约 0.64 ka。由此可见，在千百年尺度上末次间冰阶萨拉乌苏河流域气候变化显然受北大西洋热盐环流引起的东亚冬、夏季风强弱影响。
图6 末次间冰阶平均粒径（Mz）的频谱

Fig. 6 Spectrum of the mean diameter (Mz) of the megainterstadial sequence

万年尺度主要受岁差周期变化所导致的太阳辐射变化控制。

中国科学院广州地球化学研究所热释光实验室卢良才女士和黄宝林先生进行了TL年代测试和化学元素分析，在此一并致谢。

张宇红

化控制。

万年尺度主要受岁差周期变化所导致的太阳辐射变化控制。

中国科学院广州地球化学研究所热释光实验室卢良才女士和黄宝林先生进行了TL年代测试和化学元素分析，在此一并致谢。

张宇红
Megainterstadial Climate of the Salawusu Valley

WEN Xiaohao¹, LI Baosheng², David Dian ZHANG³, FAN Xiaoping¹, YE Jianping¹, Du Shuhuan¹, GUO Yunhai⁴, CHEN Deniu⁵

¹) School of Geography, South China Normal University, Guangzhou, 510631
²) State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an, 710061
³) Department of Geography, the University of Hong Kong, Hong Kong
⁴) School of Geographic and Biological Sciences, Guizhou Normal University, Guiyang, 550001
⁵) Institute of Zoology, Chinese Academy of Sciences, Beijing, 100080

Abstract

The fluctuating rhythms of the megainterstadial grain sizes and chemical elements for the Milanggouwan stratigraphical section is fairly coincident with the sedimentary cycles of the paleo-mobile dune sands alternate with fluvial-lacustrine facies/paleosols. The paleo-mobile dune sands are compared with modern mobile dune sands that are products of cold and dry climate dominated by the East Asian winter monsoon. The fluvial-lacustrine facies/paleosols’ particles are finer, their geochemistry and weathering are strengthening, and especially they contain more mollusk fossils living in warm and wet environments, which indicate that they are controlled by the wet and warm climate of the East Asian summer monsoon. Hereby it seems that the megainterstadial climates of the Salawusu valley at least went through ten wet-warm events and nine cold-dry events and could be divided into five substages: MIS3e (58.85~ 48.98 ka BP), MIS3d (48.98~ 39.55 ka BP), MIS3c (39.55~ 34.59 ka BP), MIS3b (34.59~ 26.47 ka BP) and MIS3a (26.47~ 23.07 ka BP). Thereinto, nineteen cold/warm climatic fluctuations correspond with stadial/interstadial of GRIP, the five substages are rather consistent with the Guliya ice core in the climatic fluctuating features and phase as well as the North Atlantic climate reflected by the N. pachydem(a.s.) numbers of V23-81 core. The notable spectrums of the mean diameter are 21.70 ka, 1.05 ka, 0.64 ka and 0.50 ka, that is to say, the millennial-centennial climate is closely related with the relative growth and decline between the winter monsoon and the summer monsoon of East Asia controlled basically by the North Atlantic Deep-Sea Current, the ten millennial climate is closely linked to the Sun’s radiation under the precession period.

Key words: Salawusu valley; Milanggouwan stratigraphical section; megainterstadial; grain size, chemical elements; paleoclimate