<table>
<thead>
<tr>
<th>Title</th>
<th>Comparative evaluation of a point-of-care immunochromatographic test SNAP 4Dx with molecular detection tests for vector-borne canine pathogens in Hong Kong</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Wong, SSY; Teng, JLL; Poon, RWS; Choi, GKY; Chan, KH; Yeung, ML; Hui, JJY; Yuen, KY</td>
</tr>
<tr>
<td>Citation</td>
<td>Vector-Borne And Zoonotic Diseases, 2011, v. 11 n. 9, p. 1269-1277</td>
</tr>
<tr>
<td>Issued Date</td>
<td>2011</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10722/157642</td>
</tr>
<tr>
<td>Rights</td>
<td>This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. This is a copy of an article published in the [Vector-Borne And Zoonotic Diseases] © [2011] [copyright Mary Ann Liebert, Inc.]; [Vector-Borne And Zoonotic Diseases] is available online at: http://www.liebertonline.com.</td>
</tr>
</tbody>
</table>
Abstract

There are no comprehensive studies on the performance of commonly used point-of-care diagnostic enzyme immunoassays for common arthropod-borne canine pathogens. A comparative evaluation of an immunochromatographic test for these infections with a comprehensive polymerase chain reaction (PCR) test panel was performed on 100 pet dogs and 100 stray dogs without obvious clinical symptoms. Of the 162 positive test results from both immunochromatographic test and PCR, there was 85.2% concordance. The 24 discordant results between serology and PCR occurred in tests involving *Ehrlichia canis* (14) and *Anaplasma platys* (10), which may be related to the time of infection. No positive cases of borreliosis or rickettsiosis were detected. One important limitation of the immunochromatographic test was its lack of testing for babesiosis and hepatozoonosis. The former is the most prevalent arthropod-borne canine infection in our cohort (41%). Coinfections were found in 19% stray dogs and 6% of pet dogs with both tests (*p* < 0.01). Seventeen and 8 samples from stray and pet dogs, respectively, were initially positive in the PCR test for *Ehrlichia*. However, on sequencing of the PCR amplicon, 10 from stray and 2 from pet dogs were found to be Wolbachia sequences instead, with 100% nucleotide identity to the 16S rRNA sequence of *Wolbachia* endosymbiont of *Dirofilaria immitis*. The presence of *Wolbachia* DNAemia (6%) correlated well with the molecular test and immunochromatographic antigen test for *D. immitis*.

Key Words: *Anaplasma platys*—*Babesia*—*Dirofilaria immitis*—*Ehrlichia*—*Wolbachia*.

Introduction

Ehrlichiosis, Anaplasmosis, borreliosis, and dirofilarialis important arthropod-borne canine infections that are often diagnosed on the basis of the results from point-of-care testing at the veterinary practice. Immunochromatographic assays such as SNAP 3Dx and 4Dx (IDEXX Laboratories, Westbrook, ME) are commonly used for rapid diagnostic purposes. Most of the tests detect antibodies that may indicate past exposure instead of active infection. Only the test for *Dirofilaria immitis* detects specific parasitic circulating antigen. There are, however, few comparative evaluations on the performance of these assays against other diagnostic techniques. Previous studies on zoonotic pathogens suggested that nucleic acid amplification tests are both sensitive and specific for active infection (Littman 2003, Lau et al. 2005, 2008, 2010, Woo et al. 2009, Ayoob et al. 2010, Gioia et al. 2010, Irwin 2010, Little 2010, Veir and Lappin 2010). Although some pathogens may not cause symptomatic disease, accurate diagnosis is still important, as the infected animals may serve as transport hosts for dissemination of the pathogens or infected ectoparasitic vectors. The primary aim
Table 1. Sequences of Primers Used in the Study

<table>
<thead>
<tr>
<th>Pathogen</th>
<th>Gene</th>
<th>Sequence</th>
<th>Amplicon size (bp)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ehrlichia spp.</td>
<td>16S rRNA</td>
<td>Forward 5’ GTTAGTGCCGACGCGGTA 120 GGAATAGGTTATACGAG</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reverse 5’ TCTCTGCTACGCTAACCTGACTG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ehrlichia canis</td>
<td>16S rRNA</td>
<td>Forward 5’ CAATTATTATAGCCTCTGGCTATAGGA 400</td>
<td>400</td>
<td>Murphy et al. (1998)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reverse 5’ TAAAATGTTGCTACTGACCTGTA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Babesia spp.</td>
<td>18S rRNA</td>
<td>Forward 5’ GTTCGGTAAATGGAAATGAG 560</td>
<td>560</td>
<td>Beck et al. (2009)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reverse 5’ CCAAGACCTTGGATTCTTCCT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Babesia canis</td>
<td>18S rRNA</td>
<td>Forward 5’ GTTTATTATGTTGAAACCCGC 650</td>
<td>650</td>
<td>Inokuma et al. (2004)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reverse 5’ GAACTCGAAAAAGCCAAACG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Babesia gibsoni</td>
<td>18S rRNA</td>
<td>Forward 5’ GCTGAAACTGAAAATAACCGGC 650</td>
<td>650</td>
<td>Inokuma et al. (2004)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reverse 5’ GGGCCGAACCCGATGCTAC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hepatozoon spp.</td>
<td>18S rRNA</td>
<td>Forward 5’ AAGCGCATAAAAGTCT 183</td>
<td>183</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reverse 5’ AAGCGCATAAAAGTCT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anaplasma</td>
<td>msp2 (outer membrane protein-2)</td>
<td>Forward 5’ CCGCGCCGATGCTAGGTAAGGTGAAA 334</td>
<td>334</td>
<td>Lin et al. (2004), Massung and Slater (2003), M’Ghirbi et al. (2009)</td>
</tr>
<tr>
<td>phagocytophilum</td>
<td></td>
<td>Reverse 5’ GGTTACACAAAGGCCCAGGAGTGT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anaplasma platys</td>
<td>groEL</td>
<td>Forward 5’ AGGCGATCGTTAATTTCTCTAGG 516</td>
<td>516</td>
<td>Beall et al. (2008)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reverse 5’ TGCCGATACGAGATGTAAGC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Borrelia burgdorferi</td>
<td>ospA (outer</td>
<td>Forward 5’ AATAGGCTAATAATTAGGCTTAATAGC 308</td>
<td>308</td>
<td>Demaerschalck et al. (1995), Shaw et al. (2005)</td>
</tr>
<tr>
<td>sensu lato*</td>
<td>surface protein A)</td>
<td>Reverse 5’ CTAGTTGTGGCTACTGGAGAAGT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spotted fever</td>
<td>gltA (rickettsial citrate synthase)</td>
<td>Forward 5’ GGGCGCGCTGACAGCGC 382</td>
<td>382</td>
<td>Regnery et al. (1991), Satoh et al. (2002)</td>
</tr>
<tr>
<td>group rickettsiae</td>
<td>rompA (SF2 rickettsial 190-kDa surface antigen)</td>
<td>Reverse 5’ ATGCGGAAATCTCCATTCTTCCCCCT 533</td>
<td>533</td>
<td>Regnery et al. (1991), Satoh et al. (2002)</td>
</tr>
<tr>
<td>Orientia tsutsugamushi</td>
<td>groEL</td>
<td>Forward 5’ AGATGATTACCGGATTTGAAAA 344</td>
<td>344</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reverse 5’ AACCCGACGCTACTGACCCTTA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wolbachia spp.</td>
<td>16S rRNA</td>
<td>Forward 5’ AGGCGCCGATCAAATGCTGTA 353</td>
<td>353</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reverse 5’ AGCAGCCTCGCTGCTGTA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dirofilaria</td>
<td>ITS (internal transcribed spacer)</td>
<td>Forward 5’ ATGATGATTACGGCTTAAATAGTGAG 290</td>
<td>290</td>
<td>Thanchomnang et al. (2010)</td>
</tr>
<tr>
<td>inmitis*</td>
<td></td>
<td>Reverse 5’ GATAATCTGTGGATATGACGGCTT</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
of our study is to evaluate the performance of the SNAP 4Dx kit against a panel of newly developed rapid molecular diagnostic tests for important canine vector-borne infections in Hong Kong. The secondary aim of our study is to determine the prevalence of these zoonotic infections in Hong Kong, which has not been systematically defined earlier. In addition to *Ehrlichia*, *Anaplasma*, *Borrelia*, and *D. immitis*, we also tested for *Babesia*, *Hepatozoon*, *Rickettsia*, and *Orientia tsutsugamushi*, for which there are currently no commercial point-of-care tests available.

Materials and Methods

Animals

Two groups of dogs were included in the study. The first group were pet dogs (*n* = 100) brought to the care of veterinarians for routine health checking from March to July 2010. After clinical evaluation, relevant specimens were sent to a veterinary pathologist for laboratory investigations. Peripheral EDTA blood was taken, and the plasma was tested by the SNAP 4Dx for antibodies against *Anaplasma phagocytophilum*, *Ehrlichia canis*, *Borrelia burgdorferi*, and *D. immitis* antigen. The second group were stray dogs (*n* = 100) captured by the government Agriculture, Fisheries, and Conservation Department from June 2009 to January 2010. EDTA blood samples were collected by veterinarians in the kennels during euthanasia for polymerase chain reaction (PCR) and SNAP 4Dx testing.

Immunochromatographic assay

SNAP 4Dx test was performed according to the manufacturer’s instructions by the same investigator.

PCR and DNA sequencing for blood pathogens

DNA was extracted from EDTA whole blood samples using EZ1 mini kit (QIAgen, Hilden, Germany) according to the manufacturer’s instructions. The DNA was eluted in elution buffer and was used as the template for PCR. The primer sequences are listed in Table 1. The sequences of the PCR products were compared with known sequences by BLAST and was used as the template for PCR. The primer sequences were listed in Table 1. The sequences of the PCR products were compared with known sequences by BLAST analysis against the NCBI database (Yuen et al. 2001).

Quantitative PCR

Quantitative PCR was performed on the PCR-positive samples (14 for *E. canis* and 81 for *Babesia*) using TaqMan Universal PCR Master Mix with StepOnePlus Real-Time PCR System (Applied Biosystems, Foster City, CA) (Lau et al. 2009). The primers and probes are listed in Table 2. This set of quantitative PCR primers and probe for *Ehrlichia* does not cross amplify *Wolbachia*. Two plasmids containing the target sequences were used for generating the standard curves. The limit of detection for either species is 10 plasmid copies per reaction.

Phylogenetic characterization

Phylogenetic tree was constructed by the neighbor-joining method using Kimura’s two-parameter correction with ClustalX 1.83. The 316, 292, 338, 150, 264, and 171 bp of amplicons from the 16S rRNA of *E. canis*, 16S rRNA of *Wolbachia* endosymbiont of *D. immitis*, 185 rRNA of *Babesia*, 18S rRNA of *Hepatozoon canis*, *groEL* of *Anaplasma platys*, and ITS of *D. immitis*, respectively, from all positive samples were included in the analysis.

Data analysis

The chi-square test and Student’s *t*-test were used where appropriate to assess whether data obtained in the two groups of dogs significantly differed. A *p*-value of <0.05 is considered statistically significant.

Nucleotide sequence accession numbers

Partial nucleotide sequences of 16S rRNA gene (*E. canis* and *Wolbachia* endosymbiont of *D. immitis*), 185 rRNA gene (*Babesia gibsoni*, *Babesia canis*, and *H. canis*), *groEL* gene (*A. platys*), and ITS (*D. immitis*) obtained in this study have been lodged within the GenBank sequence database under accession numbers HQ718601 to HQ718730.

Results

Comparison between SNAP 4Dx and PCR

There were 162 positive test results from both SNAP 4Dx and PCR with 85.2% concordance between the two tests. The results were summarized in Table 3. Concordance between SNAP 4Dx and PCR with 85.2% concordance between the two tests. The results were summarized in Table 3. Concordance between SNAP 4Dx and PCR with 85.2% concordance between the two tests. Discrepancies between serologic and PCR results were observed for 24 test results (Table 4) involving *E. canis* and *A. platys*. Thirteen samples had positive serology but negative PCR for the respective pathogens, whereas 3 *A. platys* and 8 *E. canis* samples had positive PCR but negative serology results.

Prevalence of individual pathogens

We did not find any *B. burgdorferi*, *Rickettsia*, and *O. tsutsugamushi* infection in our samples. The commonest pathogen detected is *Babesia*, which is present in 48% and 33% of stray dogs (Table 4) involving *E. canis* and *A. platys*. Thirteen samples had positive serology but negative PCR for the respective pathogens, whereas 3 *A. platys* and 8 *E. canis* samples had positive PCR but negative serology results.

<table>
<thead>
<tr>
<th>Pathogen (gene)</th>
<th>Primers/probes</th>
<th>Sequences</th>
<th>Product length (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ehrlichia spp.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(16S rRNA)</td>
<td>Forward</td>
<td>5’CGGCTGAGGTTAATGCCTAGGAAT</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
<td>5’CCCCRCGGGATTATACAGATTACC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Probe</td>
<td>5’[FAM]TATCTAGTAGGAAATAGCCAT[MGB]</td>
<td></td>
</tr>
<tr>
<td>Babesia spp.</td>
<td>Forward</td>
<td>5’GACTAGDGATTGAGGATTGCGCTCR</td>
<td>79</td>
</tr>
<tr>
<td>(18S rRNA)</td>
<td>Reverse</td>
<td>5’TCCCCCGAGAACCCCAAAG</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Probe</td>
<td>5’[FAM]CCTTCAGSAVCTTGAGAGA[MGB]</td>
<td></td>
</tr>
</tbody>
</table>
and pet dogs, respectively ($p<0.05$). Quantitative PCR test showed that there is a significantly higher Babesia DNA copy number in pet versus stray dogs (4.8×10^{7} vs. 2.26×10^{6} copies/mL) ($p<0.005$). Sequencing of the 18S rRNA gene showed that most of the Babesia positive cases are B. gibsoni (accounting for 91.6% [stray] and 93.9% [pet]) rather than B. canis, all of the latter are B. canis subspecies vogeli.

The prevalence of E. canis was of 8% and 6% in stray and pet dogs, respectively. There are no significant differences in the prevalence and DNA copy number between the two groups of dogs ($p>0.5$). E. canis antibodies were found in 2 stray and 10 pet dogs; 1 and 3 dogs, respectively, from the two groups were also positive for Anaplasma antibodies. In the two E. canis antibody-positive stray dogs, the one that was positive for Both Ehrlichia and Anaplasma antibodies was PCR-positive for E. canis (1.07×10^{5} copies/mL) but PCR-negative for Anaplasma. The one that was positive for E. canis antibody alone had a very weak color change on SNAP 4Dx, and the sample was PCR-negative for E. canis. In the 10 pet dogs with positive E. canis antibodies, 5 of them were PCR-negative, suggesting that the antibodies represented a past infection. On the other hand, 1 pet and 2 stray dogs had positive E. canis PCR (ranging from 1.13×10^{5} to 1.43×10^{6} copies/mL) but negative E. canis antibodies on SNAP 4Dx. We suspect that these may represent a hyperacute ehrlichial infection before detectable antibodies were developed in the infected dogs.

The prevalence of anaplasmosis was 8% and 0% in stray and pet dogs, respectively. Anaplasma antibodies were present in 12 dogs (9 stray and 3 pet), either alone (6 stray) or with heartworm (2 stray) or E. canis (1 stray and 3 pet) antibodies. All the pet dogs were PCR-negative for Anaplasma, signifying

<table>
<thead>
<tr>
<th>Table 4. Discrepant Results Between Serology and Polymerase Chain Reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pathogen</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>E. canis</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>A. platys</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
possible past infections. *Anaplasma* PCR was positive in 8 stray dogs, 6 of which were also PCR positive for *E. canis*. Sequencing of the *groEL* amplicon showed that there was 1 (0.2%) base difference between our samples and that of *A. platys* (AF4781291) but >16 (3.4%) base difference with that of *A. phagocytophilum* (HM7520981), indicating that all the PCR-positive cases were *A. platys* (Fig. 1A).

D. immitis DNAemia was found in 12 dogs (10 stray and 2 pet, *p* < 0.025); all of them were positive for circulating heartworm antigen. Sequencing of the ITS showed that all cases have 100% nucleotide identity to those of the reported strains.

Hepatozoonosis is uncommon in our sample with only 2% and 1% prevalence in stray and pet dogs, respectively. Sequencing of the 18S rRNA amplicon showed that all belonged to *H. canis*.

Co-infection by 2 or more pathogens was observed in 19% of stray dogs and 6% of pet dogs (*p* < 0.01). The combinations of pathogens in dogs with co-infection are shown in Table 3.

Incidental finding of Wolbachia DNAemia

Seventeen and 8 samples from stray and pet dogs, respectively, were initially positive in the *Ehrlichia* PCR reaction. However, on sequencing of their PCR amplicons, 10 from stray and 2 from pet dogs were found to be *Wolbachia* sequences instead, with 100% nucleotide identity to the 16S rRNA sequence of *Wolbachia* endosymbiont of *D. immitis* (AF088187) (Fig. 1B). This can be explained by the significant homology between the *Ehrlichia* and *Wolbachia* 16S rRNA sequences (Fig. 2). Therefore, we designed another *Wolbachia*-specific 16S rRNA primer pair and found that all cases with *D. immitis* DNAemia also had *Wolbachia* DNAemia when tested again by *Wolbachia*-specific PCR test. Sequencing of the 16S rRNA gene of these amplicons showed that they are truly *Wolbachia* endosymbiont of *D. immitis* but not other dog arthropod-related *Wolbachia* species (Fig. 1B). False-positive *Ehrlichia* PCR results were eliminated by the Taqman quantitative PCR for *Ehrlichia* using a specific probe or PCR primers for *E. canis* that will not cross react with *Wolbachia*.

Discussion

Rapid and accurate detection of veterinary pathogens is important for clinical management of sick animals because of the limited sensitivity and specificity of clinical examination and problems associated with empirical treatment. This is the first systematic study to compare SNAP 4Dx against PCR and determine the prevalence of eight canine vector-borne pathogens in Hong Kong. It provides a better understanding of the strengths and limitations of serologic tests and the local prevalence of these pathogens.

The overall concordance between SNAP 4Dx and PCR is 85.2%. Discrepancies between the commercial immunochromatographic test and our PCR tests involved *E. canis* and *A. platys* (Table 4). We suspect that these PCR-positive and antibody-negative cases represented early infections before the development of antibody responses. For example, an *E. canis*-seronegative dog had one of the highest bacterial DNA load in blood (4.03×10^7 copies/mL). It was presumably diagnosed during acute infection before seroconversion, which shows that molecular tests do have an important role in diagnosis at the hyperacute stage of the disease and are not confounded by positive antibody response due to past exposures as in immunochromatographic tests. On the other hand, the antibody-positive but PCR-negative cases may represent past infections that may have been treated, spontaneously resolved, and progressed to the subclinical chronic stage with low levels of bacteremia, or due to cross-reacting antibodies.

Around 10% of dogs in our study had evidence of *Ehrlichia* and/or *Anaplasma* infection by serology or PCR. *E. canis* is the only *Ehrlichia* species found in Hong Kong, presumably due to the absence of Amblyomma americanum tick, which is the vector for *Ehrlichia ewingii* and *Ehrlichia chaffeensis*.

All the *Anaplasma* amplicons in our series belonged to *A. platys*, the vector of which is the brown dog tick *Rhipicephalus sanguineus*. *A. phagocytophilum* but not *A. platys* can cause human granulocytic anaplasmosis. The absence of *A. phagocytophilum* in our study suggests that the risk of autochthonous human granulocytic anaplasmosis is low in Hong Kong. In contrast to *A. phagocytophilum*, canine infection due to *A. platys* is often asymptomatic despite the presence of recurrent thrombocytopenia. This may explain the 8% prevalence among apparently healthy stray dogs, which is higher than the prevalence in pet dogs, presumably due to more intense exposure to tick vectors. *E. ewingii*, *E. chaffeensis*, *Neorickettsia risticii*, and *Neorickettsia helminthoeca* are other canine Anaplasmataceae pathogens, whereas *E. chaffeensis* and *A. phagocytophilum* also cause human infections.

Although we initially did not specifically look for *Wolbachia* DNA in our samples, the *E. canis* primers unexpectedly picked up *Wolbachia*, which can only be differentiated from *E. canis* by sequencing the PCR product. This cross reaction could be due to significant homology between their 16S rRNA sequences (Fig. 2). The 16S rRNA primers for *Ehrlichia* and *Anaplasma* are known to amplify *Wolbachia*, and sequencing of the PCR products is essential for differentiating the 3 genera of Anaplasmataceae (Unver et al. 2003, Little 2010). Similar findings have also been previously reported when *H. canis* was unexpectedly detected using *Babesia* primers due to a high degree of homology between the 18S rRNA sequences of the 2 organisms (Spolidorio et al. 2009). *Wolbachia* are endosymbionts of arthropods and filarial nematodes. Humans and animals with filariasis develop immune responses to *Wolbachia* antigens, and the pro-inflammatory antigens from *Wolbachia* participate in the pathogenesis of filariasis and affects the clinical outcome of Dirofilariasis infections (Bandi et al. 2001, Bazzocchi et al. 2003, Kramer et al. 2008, Dingman et al. 2010). Elimination of *Wolbachia* with tetracyclines is clinically beneficial in the treatment of filariasis and can possibly reduce transmission (Rossi et al. 2010).

The prevalence of *D. immitis* is highly variable, ranging from 0.24% to over 50% in different countries (Lee et al. 2010). The prevalence of canine heartworm infection is 6% in Hong Kong, with a significantly higher prevalence among stray than pet dogs, possibly related to the intensity of exposure to mosquito vectors. Accurate diagnosis is important, because the infection can result in severe cardiopulmonary disease. Diagnosis is commonly made by either blood smear examination by the modified Knott’s method or antigen detection. In recent years, molecular diagnosis by using PCR to detect *D. immitis* DNA in canine blood is also possible. We found 100% concordance between SNAP 4Dx and PCR for the diagnosis of *D. immitis* infection, and all dogs with *D. immitis* infection also had positive *Wolbachia* PCR. Unfortunately, since the detection of *Wolbachia* DNAemia was not initially planned as part
FIG. 1. Phylogenetic relationships based on sequences identified in this study. (A) *Anaplasma platys*, groEL gene; (B) *Wolbachia* endosymbiont of *Dirofilaria immitis*, 16S rRNA gene. The trees were constructed by the neighbor-joining method and bootstrap values calculated from 1000 trees. The scale bar indicates the estimated number of substitutions per 100 and 500 nucleotides as indicated. All names and accession numbers are given as cited in the GenBank database.
of the study, we did not perform blood film examination for microfilaremia and, hence, could not correlate the presence of Wolbachia DNAemia with microfilaremia. Although the use of antigen detection kits provides rapid results for immediate management decisions and most of the antigen detection tests are highly sensitive and specific (Nelson et al. 2005), PCR for D. immitis DNA is a potentially useful adjunct in cases with low levels of microfilaremia, as the sensitivity of antigen detection tests may be lowered in such cases (Vezzani et al. 2008). However, the added benefits of PCR over serology need to be demonstrated by further studies. On the other hand, in certain parts of the world where other filarial parasites are endemic, these point-of-care tests (primarily targeted against D. immitis) may not be clinically useful. With careful selection of primers and/or the use of sequencing, molecular testing could be a better diagnostic test in these areas where non-D. immitis filariases are common. Wolbachia PCR may provide additional information, because the sensitivity of D. immitis antigen detection tests could be limited in dogs with only male or young female worms, as the antigens are derived from the genital organs of adult female worms.

We found no evidence of active canine infection due to Rickettsia, O. tsutsugamushi, and B. burgdorferi in our cohorts. Although the role of dogs as a reservoir host for these bacteria in Hong Kong is probably minor, we cannot completely exclude their existence, because past infections may not be detectable by PCR and serologic tests are required for confirmation. Rickettsia felis is an emerging zoonotic pathogen in many parts of the world, with reservoirs in both the cats and dogs. B. burgdorferi sensu stricto is primarily found in North America and Europe, and the main vertebrate reservoir hosts are small mammals (especially rodents). However, both B. burgdorferi sensu stricto and sensu lato have been isolated from animals in mainland China and Taiwan (Chao et al. 2002, Zhang et al. 1997, Shih et al. 1998a, 1998b). Dogs and humans are accidentally infected by hard tick bites, though neither are important reservoir hosts.

In previous studies from Spain, France, Italy, Czech, the United Kingdom, and the United States, coinfection of vector-borne pathogens in dogs ranged from 0% to over 50%, depending on the location, pathogens, and methods of detection (Shaw et al. 2005, Solano-Gallego et al. 2006, Amusategui et al. 2008, Beall et al. 2008, Kybicová et al. 2009, Pantchev et al. 2009, Couto et al. 2010, Otranto et al. 2010, Tzipory et al. 2010). Evidence of co-infection was found in 19% of stray and 6% pet dogs in our study (p < 0.01). The higher prevalence in stray dogs can be explained by the higher risk of exposure to arthropod vectors in the environment.

One of the most important limitations of the point-of-care test is the lack of testing for babesiosis, which is the commonest arthropod-borne infection in both pet and stray dogs in Hong Kong. Most of these are caused by B. gibsoni with only 7.3% due to B. canis. Although serologic diagnosis of babesiosis using immunofluorescent antibody testing is commercially available, it is rather cumbersome for most veterinarians and requires separate laboratory support. Canine babesiosis is
a tick-borne infection with a global distribution caused by
B. canis (subsp. canis, vogeli, and rossi), B. gibsoni, B. microti,
B. equi, and B. conrati. B. gibsoni generally causes hemolytic
anemia, fever, lethargy, hepatosplenomegaly, hemoglobin-
uria, and icterus. The other less important tick-borne infection
is hepatozoonosis. As expected, the Old World species
H. canis (transmitted by R. sanguineus) is the only species
found in our study, though the pathogen is not common in
our dog population. The absence of American canine hepato-
zoonosis (H. americanum) in Hong Kong is probably related
to the absence of its tick vector Amblyomma maculatum. The
American form of the disease is generally more severe, and
infected animals are more debilitated and often fatal.

Compared with conventional blood film examination, PCR
offers a highly sensitive means for detecting blood-borne
pathogens. A broad range of pathogens can be detected by
PCR studies. Sequencing studies also allow differentiation
of species or subspecies that may have similar morphological
appearances. The accurate speciation of the pathogens carries
epidemiologic or prognostic significance. Molecular studies
allow the detection of newly described pathogens for which
serologic tests are generally not available. However, at the
moment, the turnaround time for molecular testing is still
longer than blood film examination and point-of-care testing,
and the availability of molecular diagnostics for veterinary
service is still limited in many countries. A better organization
and delivery of such techniques is highly desirable not just for
better care of the sick animals but also to allow epidemiologic
study of these pathogens and their zoonotic potentials.

Acknowledgments

This work is partly supported by the Consultancy Service
for Enhancing Laboratory Surveillance of Emerging In-
fected Disease for the Department of Health, Hong Kong;
Tung Wah Group of Hospitals Fund for Research in Infectious
Diseases; the Research Fund for the Control of Infectious
Diseases of the Health, Welfare, and Food Bureau, Hong
Kong; and the Providence Foundation Limited in memory of
the late Dr. Lui Hac Minh. We are grateful for the generous
support of Mrs. Carol Yu, Professor Richard Yu, The Hong
Kong Sanatorium and Hospital, Mr. Hui Hoy, and Mr. Hui
Ming in the genomic sequencing platform. The support of Mr.
Alan C. K. Wong, Director of Agriculture, Fisheries, and
Conservation, is indispensable to the project; and all the work
from the staff of the Agriculture, Fisheries, and Conservation
Department, Hong Kong, including Dr. Thomas Sit and
Dr. Howard K. H. Wong, is gratefully acknowledged.

Disclosure Statement

No competing financial interests exist.

References

Amusategui, I, Tesouro, MA, Kakoma, I, Sainz, A. Serological
reactivity to Ehrlichia canis, Anaplasma phagocytophilum, Neor-
ickettsia risticii, Borrelia burgdorferi and Rickettsia conorii in dogs
from northwestern Spain. Vector Borne Zoonot Dis 2008;
8:797–803.
Ayoob, AL, Hackner, SG, Prittie, J. Clinical management of ca-
Bandi, C, Trees, AJ, Brattig, NW. Wolbachia in filarial nematodes:
evolutionary aspects and implications for the pathogenesis
238.
Bazzocchi, C, Genchi, C, Paltrinieri, S, Lecchi, C, et al. Im-
munological role of the endosymbionts of Diroflaria immitis:
the Wolbachia surface protein activates canine neutrophils
Beall, MJ, Chandrashekar, R, Eberts, MD, Cyr, KE, et al. Ser-
ological and molecular prevalence of Borrelia burgdorferi,
Anaplasma phagocytophilum, and Ehrlichia species in dogs from
Babesia and Theileria species in symptomatic and asymptomatic
Borgo, SN, Sattler, EC, Hogardt, M, Adler, K, et al. PCR study
for Wolbachia in human and canine Demodex mites. Arch
Chao, LL, Shih, CM. Molecular characterization of Lyme disease
spirochetes (Borrelia burgdorferi sensu lato) isolated in Taiwan
by restriction fragment length polymorphism analysis of
study of selected vector-borne diseases in shelter dogs in
Central Spain using point-of-care assays. Vector Borne Zoonot
Demaerschalck, I, Ben Messaoud, A, De Kesel, M, Hoyois, B,
et al. Simultaneous presence of different Borrelia burgdorferi
genospecies in biological fluids of Lyme disease patients.
Dingman, P, Levy, JK, Kramer, LH, Johnson, CM, et al. Associa-
tion of Wolbachia with heartworm disease in cats and dogs.
multiplex PCR for simultaneous detection and discrimination
of Diroflaria immitis and Diroflaria repens in canine peripheral
Molecular survey of Babesia infection in dogs in Okinawa,
Irwin, PJ. Canine babesiosis. Vet Clin North Am Small Anim
influence on the pathology and immunology of Diroflaria im-
Kybicová, K, Schánilec, P, Hulinská, D, Uherková, L, et al. De-
tection of Anaplasma phagocytophilum and Borrelia burgdorferi
sensu lato in dogs in the Czech Republic. Vector Borne Zoonot
Lau, SK, Chan, KH, Yip, CC, Ng, TK, et al. Confirmation of the
first Hong Kong case of human infection by novel swine origin
influenza A (H1N1) virus diagnosed using ultrarapid, real-
time reverse transcriptase PCR. J Clin Microbiol 2009; 47:2344–
2346.
Lau, SK, Woo, PC, Li, KS, Huang, Y, et al. Severe acute respi-
atory syndrome coronavirus-like virus in Chinese horseshoe
Lau, SK, Woo, PC, Tse, H, Fu, CT, et al. Identification of novel
porcine and bovine parvoviruses closely related to human
Lau, SK, Woo, PC, Wong, BH, Wong, AY, et al. Identification
and complete genome analysis of three novel para-
myxoviruses, Tuhoko virus 1, 2 and 3, in fruit bats from China. Virology 2010; 404:106–116.

Address correspondence to:
Kwok-Yung Yuen
State Key Laboratory of Emerging Infectious Diseases
Department of Microbiology
The University of Hong Kong
Carol Yu Centre for Infection
University Pathology Building
Queen Mary Hospital
102 Pokfulam Road
Hong Kong

E-mail: kyyuen@hku.hk