<table>
<thead>
<tr>
<th>Title</th>
<th>Frequency of oscillations of an error term related to the Euler function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Lau, YK; Pétermann, YFS</td>
</tr>
<tr>
<td>Citation</td>
<td>Mathematika, 2000, v. 47 n. 1-2, p. 161-164</td>
</tr>
<tr>
<td>Issued Date</td>
<td>2000</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10722/156101</td>
</tr>
<tr>
<td>Rights</td>
<td>This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.</td>
</tr>
</tbody>
</table>
Frequency of Oscillations of an Error Term related to the Euler function

Y.-K. LAU and Y.-F.S. Pétermann

Abstract

Let ϕ be the Euler function, and consider the error term H in the asymptotic formula

$$\sum_{n \leq x} \frac{\phi(n)}{n} = \frac{6}{\pi^2} x + H(x).$$

We prove that for any fixed real number A, there are at least $C_A T + O(1)$ integers $n \in [1, T]$ such that $(H(n) - A)(H(n + 1) - A) < 0$, where $0 < C_A < 1$ is a constant depending on A.
Let \(\phi \) be the Euler function (i.e. \(\phi(n) \) denotes the number of integers less than \(n \) which are relatively prime to \(n \)), and define
\[
H(x) = \sum_{n \leq x} \frac{\phi(n)}{n} - \frac{6}{\pi^2} x.
\]

In [2], it is shown that \(H(x) \) has a large number (of order \(T \)) of sign changes on integers \(n \leq T \). In this note, we prove that this phenomenon occurs as well for the changes in sign of \(H_A(n) = H(n) - A \), where \(A \) is any fixed real number. The value \(A = 3/\pi^2 \) plays a special role. It is indeed known that the distribution function \(\Delta \) of the values taken by \(H_3/\pi^2 \) at integers is symmetric [3], whence in particular \(\Delta(0) = 1/2 \): so one would expect the number of changes in sign of \(H_A(n) \) to be particularly important when \(A = 3/\pi^2 \). But the slightly surprising fact is that the only value of \(A \) for which a straightforward modification of the argument in [2] is uneficient is precisely \(A = 3/\pi^2 \).

Theorem. Let \(A \) be a fixed number. For all sufficiently large \(T \), we have
\[
|\{ n \in [1, T] : (H(n) - A)(H(n + 1) - A) < 0 \}| \geq C_A T
\]
where \(|\{\cdots\}|\) denotes the cardinality of the set and \(0 < C_A < 1 \) is a constant (depending on \(A \)).

We separate the proof into three cases: (i) \(A < 3/\pi^2 \), (ii) \(A = 3/\pi^2 \) and (iii) \(A > 3/\pi^2 \). Cases (i) and (iii) can be treated as in [2], §3. For case (i) replace in the argument there \(D(0) \) by \(D(A) \) where \(D(u) = \lim_{x \to \infty} x^{-1} |\{ n \leq x : H(n) \leq u \}| \), and note that if \(H(n) < A \) and \(H(m) < A \) for all integral \(m \in [n, n + 2h) \), then for any real \(t \in [n, n + h) \) we have
\[
\left| \int_t^{t+h} H(u) \, du \right| \geq \left(\frac{3}{\pi^2} - A \right) (h - 2),
\]
as soon as \(h \) is large enough. This comes from the fact that \(H(x) \) is a straight line of slope \(-6/\pi^2\) in every interval \([m, m + 1)\) when \(m \) is an integer. For case (iii) consider instead the proportion \((1 - D(A))\) of integers \(n \) for which \(H(n) > A \), and similarly note that if \(H(n) > A \) and \(H(m) > A \) for all integral \(m \in [n, n + 2h) \), then for any real \(t \in [n, n + h) \) we have
\[
\left| \int_t^{t+h} H(u) \, du \right| \geq \left(A - \frac{3}{\pi^2} \right) (h - 2),
\]
as soon as h is large enough. It is now clear why this method doesn’t work when $A = 3/\pi^2$.

From [1] and [3], we know that the distribution function $D(u)$ exists, $D(3/\pi^2) = 1/2$ and $D(u)$ is a continuous function of u. Hence, for all sufficiently large T, we have

$$|\{T \leq n \leq 2T : H(n) \leq 3/\pi^2\}| \geq \frac{3T}{T}.$$

Let h be a large parameter, which will be chosen later. We divide the interval $[T, 2T]$ into divisions of length h, and group every 8 divisions to form an interval. Then the number of these newly formed intervals is $\lceil T/(8h) \rceil$, which is at most $T/(7h)$ for all sufficiently large T. For convenience, we use the symbol I to designate a subinterval of I consisting of the initial 6 divisions. Define

$$C = \{I : H(n) \leq 3/\pi^2 \text{ for some } n \in I\}.$$

By (1), $|C| \geq (3T/7 - (2h) \times T/(7h))/(6h) = T/(42h)$. From the continuity of $D(u)$, we can find $\epsilon > 0$ such that the set $S = \{n \leq 2T : 3/\pi^2 - \epsilon \leq H(n) \leq 3/\pi^2\}$ has cardinality $|S| \leq T/168$. Consider $J_1 = \{I \in C : |I \cap S| \leq h/2\}$. Then

$$\frac{h}{2} |C \setminus J_1| \leq \sum_{I \in C \setminus J_1} |I \cap S| \leq |S| \leq \frac{T}{168}.$$

From this, we have $|J_1| \geq T/(100h)$. Then we can proceed with the argument in [2] on the collection J_1. Define

$$J_2 = \{I \in J_1 : H(m) \leq 3/\pi^2 \text{ for all integers } m \in [n, n+h] \text{ where } n \in I\}.$$

As $I \in J_2$ has at most $h/2$ elements in S and $H(m) < 3/\pi^2 - \epsilon$ if $m \notin S$, we have

$$\epsilon^2 h^3 \ll \sum_{I \in J_2} \int_{n}^{n+h} \left(\int_{t}^{t+h} H(u) \, du \right)^2 \, dt \leq \int_{T}^{2T} \left(\int_{t}^{t+h} H(u) \, du \right)^2 \, dt$$

where the implied constants are independent of ϵ and h. The first inequality comes again from the fact that $H(x)$ is a straight line in every interval $[m, m+1)$ when m is an integer. But the last integral is $\ll Th$ by [2, Main Lemma]. Thus,

$$|J_1 \setminus J_2| > \frac{T}{100h} - O\left(\frac{T}{\epsilon^2 h^2} \right).$$

Our assertion follows by taking h to be a sufficiently large constant.

Last Remark: This method can be applied to the error term

$$E(x) = \sum_{n \leq x} \frac{\sigma(n)}{n} - \frac{\pi^2}{6} x + \frac{1}{2} \log x$$
associated with the sum-of-divisors function σ as well. In this case the critical value for which the argument of case (ii) applies is $A = \pi^2/12$.

References

11N64, 11N60: NUMBER THEORY;
Sign changes, Error Terms, Euler function.

Yuk-Kam Lau,
Institut Élie Cartan
Université Henri Poincaré (Nancy 1)
54506 Vandoeuvre lès Nancy Cedex, France.
lau@antares.iecn.u-nancy.fr

Y.-F.S. Pétermann,
Université de Genève,
Section de Mathématiques,
2-4, rue de Lièvre, C.P. 240,
1211 Genève 24, SUISSE
peterman@sc2a.unige.ch