A Dimmable Light-Emitting Diode (LED) Driver
With Mag-Amp Postregulators for Multistring
Applications

Wu Chen, Student Member, IEEE, and S. Y. R. Hui, Fellow, IEEE

Abstract—Current imbalance should be avoided when multiple LED strings are connected in parallel. In this paper, a dimmable LED driver with magnetic-amplifier postregulators for multistring applications is presented. Powered by a common master source, parallel LED strings are individually regulated by their corresponding adaptive slave sources for current balancing in this proposal. Without linear current regulators, the proposed driver offers relatively high efficiency. Its structure is simpler than multiconverter structures for red, blue, and green LED applications, and is particularly suitable for LEDs with wide parameter variations. The performance of the proposed driver is experimentally verified by a 16.5-W prototype with a load of three 5.5-W LED strings.

Index Terms—Current sharing, light-emitting diode (LED), magnetic amplifier.

I. INTRODUCTION

RECENTLY, LEDs have been applied to liquid crystal display (LCD) backlight or display panel, streetlights, signage, and general-purpose lighting due to the rapid progress achieved in the solid-state lighting technology. Compared with existing conventional lighting sources such as energy-inefficient incandescent lamps and mercury-based fluorescent lamps, LEDs have relatively longer lifetime in the range of $80\,000$–$100\,000$ h [1]. Meanwhile, LEDs available in the market are encapsulated with less glass, which significantly improves their reliability and safety to the handler. Besides, mercury-free LEDs are environmentally friendly and can be disposed safely at the end of their lifetime. LEDs also have flicker-free, smooth-dimming, low-voltage operation, and good color rendering properties [2]–[4].

Presently, the power ratings of individual LED devices are a few watts, limited by the packaging technology and heat dissipation. To obtain sufficient luminance for some high-power applications, such as streetlight and large-scale LCD panels, many LEDs are connected and arranged in parallel LED strings. The general photoelectrothermal (PET) theory also indicates that a distributed LED system based on a plurality of relatively low-power LEDs can have advantages over a concentrated system consisting of a small number of high-power LEDs for the same system power [5], [6]. Therefore, using LED strings in parallel has been a common practice. The use of parallel LED strings inevitably leads to current imbalance problem due to the LED parameter variations, aging, and temperature changes, which will in turn affect the luminous intensity and even color in each string [7]. Most importantly, if the current imbalance causes one or more LED strings to exceed their rated current values, the lifetime of the LED strings (and hence, the LED system) will be drastically reduced.

Several current sharing methods for driving multistring LED systems have been previously proposed. The simplest approach is to add a ballast resistor in series with each LED string in order to minimize the current imbalance [8]. Capacitor can be used to replace the dissipative ballast resistor to reduce the resistive loss when the LEDs are driven by ac source or coupled with rectifier [9]–[11]. The main drawback of these methods is that the forward current of each LED string cannot be precisely controlled. Another approach is to employ a linear current regulator for each string [12]–[19]. An alternative method is to set up an individual voltage source for each LED string [20]–[22] to regulate the current at the expense of increased circuit complexity and costs. In [21] and [22], two modular power converter architectures based on parallel or series-input-connected converters with separate LED string loads have been suggested. Each LED string current is separately sensed and controlled for current matching. Without dissipative ballast resistor or linear current regulator, these two LED driver architectures have relatively higher conversion efficiency. However, the architectures are complex and expensive because each LED string needs a set of main power circuit and controller. In [23], an effective two-secondary-output-windings structure was proposed for multiple LED strings with independent brightness control. Although the LED driver with two-secondary-output-windings structure is relatively simpler and cheaper than the modular converter architectures, it still has some limitations. For example, it is only suitable for constant input voltage (the constant output of first-stage power factor correction regulator is supplied for the second-stage converter) and separate IC controller is needed for each LED string.

A dimmable driver for multiple LED strings is proposed in this paper to overcome the aforementioned limitations. With one
common bulk dc power supply for all LED strings, the proposed
driver employs a magnetic-amplifier (mag-amp) postregulator
as a partial and adaptive voltage for regulating the current
in each LED string. Since all LED strings share one common
majority power supply and the mag-amp postregulator handles
only a fraction of the LED power, the power ratings of the
mag-amp postregulators are small and the overall cost of the
system is reasonable for high-performance LED systems with
good current balance in parallel LED strings.

II. OVERVIEW OF EXISTING CURRENT SHARING METHODS

In this section, several current balance methods are briefly
reviewed. They are divided into three categories: 1) series
impedance method; 2) series linear-current-regulator method;

A. Series Impedance Method

Each LED string can be regarded as an equivalent dynamic
resistive load with its value equal to the ratio of the string voltage
to the string current. The extent of current imbalance among
parallel strings depends on the variation or mismatch of their
equivalent resistances. The simplest form of series impedance
method is to add a series resistor of identical resistance in each
LED string, as shown in Fig. 1 (a). If the current of a particular
string is higher than the others, then the voltage drop across
this series resistor increases. Consequently, the voltage drop
across the LED string will be reduced, resulting in a reduction
of string current. However, for effective reduction in current
imbalance, the value of the series resistor has to be sufficiently
large (e.g., series resistors of 60 Ω are used in [8]). To avoid
power loss introduced by the series resistor, lossless capacitor
can be connected in series with each antiparallel LED strings
driven by an ac source [9], [10]. However, each LED string
conducts only half of each mains cycle and such a utilization
rate of LEDs is relatively poor. To overcome this drawback,
Choi et al. [11] proposed a symmetric current balance circuit,
in which half-wave rectifiers are used to provide dc source for
each LED string. The main drawback of these series impedance
approaches is that the forward current of each LED string cannot
be precisely controlled. They may suit some applications, which
do not need strict requirement for current balance, such as street
lighting, but may not be suitable for some applications, such as
display, that require tight current control.

B. Series Linear-Current-Regulator Method

In order to precisely control each LED string current, a linear
current regulator can be used in each string, as shown in Fig. 1 (b). The LED string current is sensed and regulated with
closed-loop control. The power losses on the linear current reg-
ulators are considerable because the voltage $V_{dc}$ has to be high
enough to maintain all the strings at the desired current under
all conditions. In [12] and [13], a method was proposed to min-
imize the power losses on the current regulators. The lowest
voltage drop across the current regulators is sensed to deter-
mine the proper $V_{dc}$ for LED strings through feedback control.
An improved method was proposed in [14] to avoid the tem-
perature dependence of the forward voltage drop of the sensing
diodes and nonoptimal reference voltage, and hence, the con-
version efficiency can be improved. With an operating principle
similar to that of linear regulators, current mirror circuits can
also be applied to multiple LED strings application to reduce
current imbalance [19]. Although the improved efficiency can
be achieved [14], the linear-current-regulator method still dissi-
pates considerable power.

C. Dedicated DC/DC Converter Method

The voltage across each LED string can be provided with
separate dc source to eliminate the power dissipation on the cur-
rent regulator or current mirror circuits, as shown in Fig. 1 (c).
In [20], three dc/dc converters are provided for red, green, and
blue (RGB) LED strings, respectively. In [21], six synchronous
rectifier Buck converters are built up for six LED strings, respec-
tively, and each string current is sensed and controlled indepen-
dently to the same level. For high input voltage applications, Hu
and Zane [22] proposed a modular converter architecture based
on series-input-connected converter cells, which independently
drive the LED strings. These driver systems are relatively expen-
sive because each LED string needs a separate power converter.
In [24], a multioutput flyback converter is designed to provide
three output voltages for RGB LED strings, respectively. In [25],
Fig. 2. Block diagram of the proposed LED driver.

Fig. 3. Circuit diagram of the proposed LED driver.

Various topologies with independent multiple outputs have been previously proposed. Examples are the use of postregulators in the transformer secondary sides with mag-amp [26] or synchronous switch [27], multiple-winding flyback converters [28], and pulse width modulation (PWM)-pulse delay (PWM-PD) control method [29]. These methods have their own features and specific applications.

For the proposed LED driver with multiple outputs, some technical requirements have to be considered.

1) Electrical Isolation: Electrical isolation is necessary between the master source and the slave sources because their terminals cannot share the same ground. However, it is not necessary to carry out electrical isolation among the slave sources.

2) Regulated Outputs: The voltage across the LED string must be regulated to adapt to different forward currents and ambient temperature. Hence, independently and precisely regulated multiple outputs are required.

3) Modularity: It is required that the topology is easily expanded and therefore a modular approach is preferred.

4) Power Distribution: The majority of the LED power should be provided by the master source and the remaining power provided by the slave sources. The circuit implementation should achieve such power distribution.

Based on these considerations, the proposed LED driver topology with mag-amp postregulators in Fig. 3 is adopted. The mag-amp postregulator topology has been used in the high-performance power supplies with multiple outputs because of their high efficiency, high stability, high power density, simple control, and low electromagnetic interference [30]. In our proposal, only two secondary windings of the transformer are used to generate a plurality of outputs. One secondary winding output is used for the master source \(V_m\), which is PWM controlled by a power converter on the primary side. The other secondary winding output is used to generate multiple slave sources \(V_{s1}, V_{s2}, \ldots, V_{sn}\) (only two slave sources are shown in Fig. 3) based on separate mag-amp regulators with feedback loop through sensing LED forward current. It is worthwhile to note that the differences between the proposed structure in the paper and the

...
one presented in [25]. First, only two secondary windings are needed in this proposal to generate multiple outputs, thus resulting in simpler transformer structure, lower production cost, and less leakage inductance. Second, each mag-amp regulator is used to handle only a small portion of the power in each LED string. Therefore, the size of the mag-amp core is much smaller and its power loss is much less than those in [25].

IV. ANALYSIS AND DESIGN CONSIDERATIONS

The mag-amp regulators provide power regulation functions for a portion of the power in each LED string. If the string current $I_{s1}$ is larger than a reference current $I_{ref}$, then the duration of the blocking time of the mag-amp inductor $L_{m1}$ will be increased by adjusting the output of the reset circuit, leading to the decline of the $V_{s1}$, and the subsequent reduction of $I_{s1}$ to follow $I_{ref}$. As shown in Fig. 3, it can be seen that the power provided for each LED string is composed of two parts, the master source and the separate slave source. If the forward voltage drop of a LED string is constant, there are countless distribution combinations between the master source and the slave one. Hence, determining how to find the optimal distribution will be qualitatively analyzed here.

A. Power Distribution

First, the voltage of the master source must be lower than all the forward voltage drops of the LED strings under whole operating conditions because the master source should provide the majority (but not all) of the power for all the LED strings, i.e., $V_m < V_{ref,n}$. The slave sources should be able to adjust the part of the voltage across LED strings to regulate their forward currents.

Second, the lower the master source is, the higher the slave source becomes, because the sum of them should be equal to the voltage across the entire LED string. In the extreme case, if the voltage of the master source is equal to zero, the proposed circuit reduces to the conventional converter with multiple outputs, in which case each LED string is fully powered by a single source, as described in [25]. Two disadvantages arise from this extreme case. The voltage stress of the rectifier diodes in each source to meet the output current ripple requirement. Besides, the power losses on the mag-amp will be increased because it has to block a voltage high enough for the entire LED string. In this proposal, the common power supply provides $90\%$ of the master voltage, so the power provided for each LED string is composed of two parts, the master source and the separate slave source. If the forward voltage drop of a LED string is constant, there are countless distribution combinations between the master source and the slave one. Hence, determining how to find the optimal distribution will be qualitatively analyzed here.

\[ L_{fpi} = \frac{V_F (1 - D) T_s}{\gamma \cdot I_F / n} = \frac{V_F (1 - D) T_s}{\Delta I_{F,slave}} = \alpha \quad (i = 1, \ldots, n) \]

where $D$ is the duty cycle of the voltage pulse in secondary winding, $T_s$ is the switching period of the voltage pulse in secondary winding, and $n$ is the number of LED strings.

For convenience, the value of $V_F (1 - D) T_s / \Delta I_{F,slave}$ in (1) is defined as $\alpha$.

Then, for the proposed driver, the required output filter inductor for the master source is

\[ L_{fm} = \frac{V_m (1 - D) T_s}{\gamma \cdot I_F} = \frac{V_m}{n \cdot V_F} \cdot \alpha. \]

The required output filter inductor in each slave source is

\[ L_{fsi} = \frac{(V_F - V_m) (1 - D) T_s}{\gamma \cdot I_F / n} = \frac{V_F - V_m}{V_F} \cdot \alpha \quad (i = 1, \ldots, n). \]

Then, we can obtain the curves of $L_f$ versus $V_m$, as shown in Fig. 4. If the load has three LED strings, i.e., $n = 3$, if we set $V_m = 0.9 V_F$, i.e. the common power supply provides $90\%$ of the output voltage, then one inductor for $V_m$ with $0.3 \alpha$ and three inductors for $V_{s1} - V_{s3}$ with $0.1 \alpha$ each are needed in the proposed driver. These inductor requirements are compared with three output filter inductors with $\alpha$ each in the structure presented in [25].

Based on the core loss formula in [35], the core loss in the mag-amp core is

\[ P_{core} = (9.93 \times 10^{-6}) \cdot (f^{1.57}) \cdot (B^{1.70}). \]

Equation (4) indicates that the core loss is proportional to the magnetic flux density. In our proposal, the voltage of the slave source that uses the mag-amp core is much lower than the full voltage across the LED string. Therefore, (4) theoretically confirms that mag-amp power loss in this proposal is also reduced.
B. Dimming Methods

Traditionally, there are two kinds of dimming techniques for driving LEDs: amplitude mode and PWM mode. The main characteristics and differences between the two modes can be found in [31] and [32]. However, PWM dimming methods have been better received for high-performance applications such as display panels because the current level and hence the color temperature of the LED can be maintained, although the amplitude mode is acceptable for general public lighting applications.

In the proposal, dimming can be achieved through conventional PWM scheme and a phase-shift PWM (PSPWM) scheme. The circuit diagram of the proposed LED driver system with conventional PWM dimming function is shown in Fig. 5 (only two LED strings are shown), in which $R_{s1}$ and $R_{s2}$ are the current sensing resistors for LED string $S_1$ and $S_2$, respectively, $Q$ is the PWM dimming switch, and the circuit inside the dotted box is the reset circuit for mag-amp. Unlike the conventional PWM dimming method used with linear current regulators [15], only one MOSFET (dimming switch) is needed for all LED strings in this proposal and it is operated not in the linear ohmic region, but in the saturation region. Hence, the conduction power losses in the dimming process can be reduced. However, differential amplifiers (DA$_1$) are needed to sense the LED current signals because all the current sensing resistors do not share the common ground (as only one dimming switch $Q$ is used). The sensed current signal is compared with $I_{ref}$ to regulate the reset current of the mag-amp. Unlike the conventional PWM dimming method used with linear current regulators [15], only one MOSFET (dimming switch) is needed for all LED strings in this proposal and it is operated not in the linear ohmic region, but in the saturation region. Hence, the conduction power losses in the dimming process can be reduced. However, differential amplifiers (DA$_1$) are needed to sense the LED current signals because all the current sensing resistors do not share the common ground (as only one dimming switch $Q$ is used). The sensed current signal is compared with $I_{ref}$ to regulate the reset current of the mag-amp. The special use of the zener diode $Z_{d1}$ is to act as a voltage level shifter because the multiple output voltages of the converter may not be the same voltage level of the error amplifier. During the time interval when $Q$ is tuned off, the high-frequency switching operation of the primary main switches can be disabled to further reduce the switching loss. If the dimming switch $Q$ is shorted, then the amplitude-mode dimming can be achieved by regulating the current reference $I_{ref}$.

To avoid the drawback of the conventional PWM dimming such as large pulsating input/output current and degraded EMI performance, PSPWM dimming function can be adopted [33], [34]. The proposed LED driver system with PSPWM dimming function is shown in Fig. 6, in which one dimming switch is used for each LED string. In the reset circuit of Fig. 6, a PNP transistor ($Q_{r1}$) is added to the output of the error amplifier. Its role is explained as follows. Taking LED string $S_1$ as an example. During the time interval when $Q_1$ is turned off, the sensed current is zero and the output voltage of $EA_1$ is high if no $Q_{r1}$ is used. This situation will result in a reset current...
too small for the saturable reactor $L_{m1}$, and $L_{m1}$ will lose its mag-amp function and $V_s1$ will rise far from its desired value, i.e., $V_s1$ is out of control. When $Q_{r1}$ is added, the output voltage of EA1 is almost zero, and then, the reset current for $L_{m1}$ will increase to block the voltage pulse from the secondary winding $N_{s2}$. Hence, the saturable reactor must be designed to have the ability to withstand the entire volt-second product of the input waveform. The design procedures for the saturable reactor and the reset circuit can be found in [35] and [36]. In the case, where all the PWM dimming signals are simultaneously low, the main switches in the primary side of the transformer can be turned off to reduce the switching losses. All the PWM dimming signals are OR-ed via $D_{r1}$ through $D_{rn}$ to detect the signal.
V. EXPERIMENTAL RESULTS

The performance of the proposed LED driver was verified by a prototype with a 120-kHz single-ended forward converter with tertiary transformer reset winding operating from a voltage source in 20–30 V. Three parallel strings of Cree cool white LEDs (model number: XREWHT-L1-WG-Q5–0-04) with six LEDs connected in series in each string are used to evaluate the performance of the proposed LED driver. The typical forward voltage of each LED is 3.3 V with 350 mA, and the desired $V_m$ is set as 17 V. The key components of the circuit are listed in Table I. The inductor values are determined by (1)–(3).

Fig. 7 shows the key waveforms of the LED driver. Fig. 7 (a) shows the waveforms of the primary switch current $I_P$ and secondary rectifier voltages $V_{r_1}$, $V_{r_2}$, and $V_{r_3}$. It can be seen that the pulse widths are not identical. The pulse width of $V_{r_3}$ is slightly shorter than that of $V_{r_1}$ and $V_{r_2}$. The measured voltages are $V_m = 17.06 V$, $V_{s_1} = 1.87 V$, $V_{s_2} = 1.88 V$, and $V_{s_3} = 1.72 V$. In order to demonstrate the ability of the proposed LED driver to adjust the drive voltage for reducing current imbalance, resistors of 2.2 and 3.9 Ω are added to the second and third LED strings, respectively, so that an exaggerated mismatch situation among the three LED strings is created. Fig. 7 (b) shows the new waveforms under this situation. As expected, the pulse width of $V_{r_3}$ is widest because the third string has the highest extra resistor; the pulse width of $V_{r_2}$ is wider than that of $V_{r_1}$, which remains unchanged. The new measured voltages are $V_m = 17.06 V$, $V_{s_1} = 1.87 V$, $V_{s_2} = 2.52 V$, and $V_{s_3} = 2.94 V$.

Fig. 8 shows the measured LED string currents with conventional PWM dimming approach (see Fig. 5) under different duty cycles. Identical amplitude of 300 mA can be achieved for the...
three LED strings under different duty cycles by regulating the voltages of three slave sources, while having only one dimming switch. Fig. 9 shows the waveforms of the proposed LED driver under PSPWM dimming approach (see Fig. 6) under different duty cycles. Again, good current balance has been practically achieved under all these conditions.

A conventional LED mag-amp regulated driver based on [25] is built for comparison purpose. Fig. 10 shows the measured overall efficiency of the proposed LED driver and the conventional one under different input voltages. Due to the use of a common power supply and the relative low-power handling requirements of the mag-amp postregulators, higher energy efficiency has been achieved by the proposed scheme.

VI. APPLICATION TO RGB LED DRIVER

For LCD backlight application, the RGB LEDs mixing three-color lights to white light are often employed. It has been pointed out in [12] that the nominal forward voltages of RGB LEDs are different. The forward voltage of red LED is lower than those of green and blue ones from the same manufacturer, and the forward voltage of green LED is approximate the same as that of the blue one. In the light of these factors, the proposed LED driver is suitable for RGB LED application. The proposed circuit can be used for such application. In Fig. 11, the red LED string is powered by the master source, and the green and blue LED strings are powered by the combination of the master source and corresponding slave sources. The currents of green and blue LED strings are separately regulated by corresponding adaptive slave voltage source for current sharing; however, the current of red LED string is just regulated by the master voltage source for current sharing. Compared with the multiconverter structures [20], the circuit in Fig. 11 is simpler. Compared with multioutput flyback converter [24], each output voltage across LED string is independently regulated to the optimal value, thus leading to higher efficiency.

VII. CONCLUSION

A dimmable LED driver with mag-amp postregulator for multistring applications has been proposed. A two-secondary-winding structure is proposed in the driver circuit to generate a master source and several slave sources. The master source provides the majority of power for all the LED strings, and the remaining power of each LED string is handled by the corresponding slave source. Each slave source is separately regulated by a mag-amp feedback loop to regulate the LED string forward current. Conventional PWM and PSPWM dimming methods have been successfully implemented in the proposed LED driver. Without linear current regulators, the proposed driver has relatively higher efficiency. Compared with multiconverter structures, the proposed circuit is simpler for RGB LED application. The proposed driver is particularly suitable for high-performance applications. The feasibility and advantageous features of the proposed driver have been practically verified by a prototype.

ACKNOWLEDGMENT

The authors are grateful to the Centre for Power Electronics, City University of Hong Kong (CityU), for its support for this project. The funding support of CityU for the patent application is also acknowledged.

REFERENCES


Wu Chen (S’05) was born in Jiangsu, China, in 1981. He received the B.S., M.S., and Ph.D. degrees in electrical engineering from the Nanjing University of Aeronautics and Astronautics, Nanjing, China, in 2003, 2006, and 2009, respectively.

From 2009 to 2010, he was a Senior Research Assistant in the Department of Electronic Engineering, City University of Hong Kong, China. He is currently a Postdoctoral Researcher in Future Renewable Electric Energy Delivery and Management Systems Center, North Carolina State University, Raleigh.

His main research interests include soft-switching dc/dc converters, inverters, and power electronic system integration.


From 1987 to 1990, he was a Lecturer at the University of Nottingham, U.K. In 1990, he joined the University of Technology, Sydney, and was appointed as a Senior Lecturer at the University of Sydney, in 1992, where he became a Reader in 1995. In 1996, he joined the City University of Hong Kong (CityU) as a Professor, where he became a Chair Professor in 1998. From 2001 to 2004, he was an Associate Dean at the Faculty of Science and Engineering at CityU. Since 2010, he holds the Chair Professorship at both CityU and Imperial College London. He is the author or coauthor of more than 200 published technical papers, including more than 140 refereed journal publications and book chapters. Over 45 of his patents have been adopted by industry.

Dr. Hui is a Fellow of the Institution of Engineering and Technology (IET). He has been an Associate Editor (Power Conversion) of the IEEE TRANSACTIONS ON POWER ELECTRONICS since 1997 and an Associate Editor (Lighting Technology) of the IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS since 2007. He has been appointed twice as an IEEE Distinguished Lecturer by the IEEE Power Electronics Society in 2004 and 2006. He was one of the 18 Administrative Committee members of the IEEE Power Electronics Society and was the Chairman of its Constitution and Bylaws Committee from 2002 to 2010. He is the recipient of the Excellent Teaching Award at CityU in 1998 and the Earth Champion Award in 2008. He won an IEEE Best Paper Award from the IEEE Industry Applications Society Committee on Production and Applications of Light in 2002, and two IEEE Power Electronics Transactions Prize Paper Awards for his publication in Wireless Battery Charging Platform Technology in 2009 and for his paper on LED system theory in 2010. His inventions underpin key dimensions of Qi the world’s first wireless power standard, with freedom of positioning and localized charging features. In Nov. 2010, he received the IEEE Rudolf Chope R&D Award from the IEEE Industrial Electronics Society, the IET Achievement Medal (The Crompton Medal), and was elected to the Fellowship of the Australian Academy of Technological Sciences and Engineering.