<table>
<thead>
<tr>
<th>Title</th>
<th>Comment on predissociation of O2 in the B state</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Freeman, DE; Cheung, ASC; Yoshino, K; Parkinson, WH</td>
</tr>
<tr>
<td>Citation</td>
<td>The Journal Of Chemical Physics, 1989, v. 91 n. 10, p. 6538-6540</td>
</tr>
<tr>
<td>Issued Date</td>
<td>1989</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10722/148531</td>
</tr>
<tr>
<td>Rights</td>
<td>This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.; Copyright (1989) American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in (The Journal Of Chemical Physics, 1989, v. 91 n. 10, p. 6538-6540) and may be found at (http://jcp.aip.org/resource/1/jcpsa6/v91/i10/p6538_s1).</td>
</tr>
</tbody>
</table>
In their paper on the predissociation of O$_2$ in the B state, Wodtke et al.1 attempt to match the observed excitation spectrum of some O$_2$ Schumann–Runge features with simulated spectra synthesized from triplet component line center spacings, obtained from the fine structure analysis of Bergeman and Wofsy2 and individual triplet component widths, based on the calculations of Julienne3 and Julienne and Krauss4 for curve crossings of the $B^3\Sigma_u^+$ states of symmetries $^3\Pi_u$, $^3\Pi_u^-$, and $^5\Sigma_u$ (or $^1\Pi_u$), respectively. For example, the $R(27)$ feature of the (11,2) band, which is partially resolved in the experimental excitation spectrum of Fig. 4 of Wodtke et al., is compared with three simulated spectra of which only one, viz., that corresponding to the curve crossing by the repulsive $^1\Pi_u$ state, is consistent, according to Wodtke et al., with the experimental result. In their Fig. 4, the relative peak heights of the individual R_1, R_2, and R_1 components are given by the ratios of the reciprocals of the line widths of Julienne. These relative peak heights are used together with the component widths of Julienne and the component spacings calculated from the spin constants of Bergeman and Wofsy2 to generate three Lorentzians that are added to produce the resultant $R(27)$ line profile, which is then convoluted with the (assumed Gaussian) laser profile for comparison with the experimental excitation spectrum.

We have verified that the relative peak heights of the components, shown in Fig. 4 of Wodtke et al. on the same ordinate as the resultant cross sections, are not the relative peak cross sections of the component Lorentzians, but are instead the relative integrated cross sections. This significant distinction, nowhere stated in their paper, confirms that the simulated spectra in their Fig. 4 are excitation spectra and not absorption spectra.

Wodtke et al. used the spin–spin and spin–rotation constants of the $\nu' = 11$ level of Bergeman and Wofsy2 to calculate the triplet spacings for the $R(27)$ feature of the (11,2) band. Those spacings, estimated from Fig. 4 of Wodtke et al., are $R_2 - R_1 \approx 0.9$ and $R_1 - R_2 \approx 1.2$ cm$^{-1}$. We have recently performed high resolution photographic absorption wavelength measurements of O$_2$ at ~ 520 K (unpublished), with the same spectrographic apparatus used in our earlier
work at lower temperatures; the $R(27)$ triplet of the (11,2) band is resolved, and the measured spacings are $R_2 - R_1 = 1.7$ and $R_3 - R_2 = 1.0$ cm$^{-1}$. The significant difference between our experimental spacings and those used by Wodtke et al. would lead to significantly different resultant simulated line profiles.

We have no data on the absorption cross section of the $R(27)$ triplet of (11,2) band. However, we have measured the absorption cross section of the (11,0) band of O_2 at 79 K. In Fig. 1, the discrete points show our measured values to which the uppermost curve has been fitted by an iterative least squares procedure in which the fine structure components of any given line are represented by Lorentzians of equal width with line center positions calculated from our spectroscopic constants. The component line widths (FWHM) producing this excellent fit are ~ 1.4 cm$^{-1}$ (cf. ~ 1.2 cm$^{-1}$ from absorption studies at lower resolution), and the Lorentzian components are shown in the lower part of Fig. 1. The assumed ratio of component line widths (1:1:1) is very close to that predicted for the $^{3}\Pi_u$ predissociative channel. In Fig. 2, the component line widths are in the ratios predicted for the $^{3}\Pi_u$ predissociative channel.

FIG. 1. Absorption cross section of part of the (11,0) Schumann-Runge band of O_2 at 79 K. Top curve, synthesized from lower fine structure component curves for a $^{3}\Pi_u$ predissociative mechanism, is fitted to measured cross sections (discrete points). Rotational assignments given in Fig. 2 of Yoshino et al. (1987) (Ref. 6).

FIG. 2. Same as Fig. 1 except for a $^{3}\Pi_u$ predissociative mechanism.
which is the mechanism inferred as predominant by Wodtke et al. Near the band head region, where our measurements show the most detailed structure, the fitting is clearly superior to that in Fig. 1. The other, relatively structureless, features in Figs. 1 and 2 are fitted comparably well in both cases, and do not provide discrimination between $3\Pi_u$ and $3\Pi_u$ predissociative mechanisms.

Our results near the $(11,0)$ band head, which are consistent with a $3\Pi_u$ but not a $3\Pi_u$ predissociative mechanism, do not necessarily apply to the $N' = 27$ level, but suggest that the predominance of the $3\Pi_u$ mechanism inferred by Wodtke et al. is not established, especially in view of the uncertainties in their simulated excitation spectra of $R(27)$.

In brief, we find the conclusions of Wodtke et al. concerning the predissociation of the $\nu' = 11$ level of the $B^2\Sigma_u^+$ state of O_2 to be unjustified. We have work in progress for the determination of the predissociation line widths of the $(1,0)-(12,0)$ Schumann–Runge bands from our high-resolution results for the absorption cross sections and spectroscopic constants for the B state.

We acknowledge useful discussions with R. Friedman and A. Dalgarano, and support from the NASA Upper Atmospheric Research Program under Grant No. NAG 5-484.

Reply to: Comment on predissociation of O_2 in the B state

A. M. Wodtke

Department of Chemistry, University of California, Santa Barbara, California 93106

L. Hüwel

Department of Physics, Wesleyan University, Middletown, Connecticut 06457

(Received 19 May 1989; accepted 17 July 1989)

In their comment on our paper Freeman et al. questioned the interpretation of the line-profile measurements of the $\Sigma R 11-2$, $R(27)$ triplet. We have consequently remeasured this and a number of other triplets ($\nu' = 10$ and 11, $J' > 15$) with much higher signal to noise. The $F_1:F_2:F_3$ spacings are 1.7 and 1.2 cm$^{-1}$, respectively. This is in close agreement with calculations based on Freeman's molecular constants derived from new high resolution absorption data.

We are also able to derive the absolute spin-state dependent predissociation lifetimes, which have been shown to be very sensitive to the predissociation mechanism. It is impossible to rationalize these data on the basis of spin–orbit coupling to a repulsive $3\Pi_u$ surface. This is the mechanism that is used to explain the absorption spectra at 79 K, where only low rotational states are seen and the individual triplets are not resolved.

A real discrepancy between the experiments could be explained if significant predissociation via the orbit–rotation mechanism occurs, which would show a large rotational state dependence. We are analyzing our data in this context and the results, which may be able to unify the measurements of absorption and excitation spectroscopy, will be forthcoming.
