<table>
<thead>
<tr>
<th>Title</th>
<th>Predissociation of oxygen in the B 3Σ-u state</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Chiu, SSL; Cheung, ASC; Finch, M; Jamieson, MJ; Yoshino, K; Dalgarno, A; Parkinson, WH</td>
</tr>
<tr>
<td>Citation</td>
<td>The Journal Of Chemical Physics, 1992, v. 97 n. 3, p. 1787-1792</td>
</tr>
<tr>
<td>Issued Date</td>
<td>1992</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10722/147713</td>
</tr>
<tr>
<td>Rights</td>
<td>This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.; Copyright (1992) American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in (The Journal Of Chemical Physics, 1992, v. 97 n. 3, p. 1787-1792) and may be found at (http://jcp.aip.org/resource/1/jcpsa6/v97/i3/p1787_s1).</td>
</tr>
</tbody>
</table>
Predissociation of oxygen in the $B \, ^3\Sigma_u^{-}\,$ state

S. S.-L. Chiub and A. S.-C. Cheungb

Department of Chemistry, University of Hong Kong, Hong Kong

Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138

(Received 3 December 1991; accepted 22 April 1992)

The predissociation linewidths and level shifts of vibrational levels of three oxygen isotopic molecules $^{16}\text{O}_2$, $^{16}\text{O}^{18}\text{O}$, and $^{18}\text{O}_2$ arising from the interactions of the $B \, ^3\Sigma_u^{-}\,$ state with the four repulsive states $^3\Pi_u$, $^3\Pi_u^+$, $^3\Pi_u$, and $^1\Pi_u$ have been calculated. A set of parameters characterizing these interactions has been determined. Good agreement between calculated and experimental predissociation widths and shifts has been obtained for all the three isotopic molecules.

I. INTRODUCTION

The predissociation of the oxygen molecule in the Schumann-Runge bands ($B \, ^3\Sigma_u^{-}\, -X \, ^3\Sigma_g^{+}$) has been studied extensively, both experimentally and theoretically. The effect of predissociation on spectral features can be detected by measurements of linewidth and level shifts. Accurate spectroscopic constants and linewidths published for various vibrational levels of the three oxygen isotopic molecules, $^{16}\text{O}_2$, $^{16}\text{O}^{18}\text{O}$, and $^{18}\text{O}_2$, have been determined in recent experiments.

It has been shown7 that the predissociation is dominated by the interaction with the $^3\Pi_u$ state with lesser roles being played by the $^3\Sigma_u^+$, $^3\Pi_u$, and $^1\Pi_u$ states. Figure 1 shows the four repulsive states crossing the $B \, ^3\Sigma_u^{-}\,$ state.24

In this paper, we derive a single set of parameters, characterizing the interaction potentials, that fits simultaneously the predissociation linewidths and the second vibrational differences of the energy levels of the $B \, ^3\Sigma_u^{-}\,$ states of the three isotopic molecules.

II. METHOD OF CALCULATION AND RESULTS

A. Method of calculation

The rotation–vibration levels of the $B \, ^3\Sigma_u^{-}\,$ state are dissociated through spin–orbit coupling to the $^1\Pi_u$, $^3\Pi_u$, and $^3\Sigma_u^+$ repulsive states and through spin–orbit and electronic–rotational coupling to the $^3\Pi_u$ repulsive state. In an analysis of early linewidth data, Schaefer and Miller2 had concluded that electronic–rotational coupling is much weaker than spin–orbit coupling and Yang et al.21 have argued from a study of rotationally resolved spectra that the electronic–rotational coupling matrix element is two orders of magnitude smaller than the spin–orbit coupling matrix element. We have used the hypothesis of pure precession in an explicit evaluation of the matrix element and we confirm that electronic–rotational coupling is negligible at the low rotational levels $J < 10$ with which this paper is concerned.

The unperturbed $B \, ^3\Sigma_u^{-}\,$ potential curve is well established. In our calculations we used a Rydberg–Klein–Rees potential constructed from the observations of Cheung et al.22 We adopted the Born–Oppenheimer approximation so that the same potentials and couplings apply for each of the isotopes $^{16}\text{O}_2$, $^{16}\text{O}^{18}\text{O}$, and $^{18}\text{O}_2$. The spin–orbit couplings between the $B \, ^3\Sigma_u^{-}\,$ state and the repulsive states were assumed to be independent of internuclear distance.

We used the exponential form of the repulsive state potentials suggested by Julienne and Krauss6 as did Cheung et al.17

\[
V(R) = V_x \exp \left[-(M_x/V_x)(R - R_x) \right],
\]

where R denotes the internuclear distance, V_x and M_x are the energies and slopes at the crossing points, R_x, and the potential energy is measured from the $O(3P) + O(3P)$ energy of infinite separation. For each of the four repulsive states we determined the parameters R_x and M_x and the coupling strength, A_x, to the $B \, ^3\Sigma_u^{-}\,$ state. The predissociation width and level shift contribution are calculated for the F_2 component of the Schumann–Runge band and are independent of the Hund’s coupling case. The calculated spin–orbit coupling matrix element for the $B \, ^3\Sigma_u^{-}\, -^5\Pi_u$ interaction has to be multiplied by an angular factor $(7/6)^{1/2}$ in the determination of the width and shift (see Table II of Julienne and Krauss6). The direct couplings of the repulsive states are negligible. Measurements have been made of the widths18,19 and shifts17,22,23 of many rotational–vibrational levels of the upper $B \, ^3\Sigma_u^{-}\,$ state for all three isotopes. We adjusted the twelve parameters (R_x, M_x, and A_x for each repulsive state) to make our theoretical predictions of the widths and shifts match as closely as possible the measured values. We searched the twelve-dimensional space to get the best least-squares fit using the calculated parameters of Julienne and Krauss6 ($R_x = 1.875$ Å, $M_y = 40000 \text{ cm}^{-1} \text{ Å}^{-1}$, $A_x = 65 \text{ cm}^{-1}$) as starting values for the dominant $^3\Pi_u$ state. For this research, we took the rotational quantum number N to be 0.
FIG. 1. Some potential energy curves of O₂. The curves are labeled by the molecular state designations.

Because all the couplings are small, we used a sequence of two-state approximations to determine the theoretical widths and shifts for each repulsive state and for each set of trial parameters and we assumed the effects to be additive. For the widths it was necessary to average over the three fine-structure components \(F_i \) to produce the total widths; the weighting factors are given by Julienne and Krauss.\(^5\) The calculations of the shifts and widths were carried out by the method of Du et al.\(^25\) In it, the bound vibrational levels of the \(B^3Σ_u^- \) state and the Green’s function for the Hamiltonian of the relevant repulsive state are determined numerically. The Green’s function is obtained from the regular and irregular solutions of the Schrödinger equation for the repulsive state and the shift is given as a double quadrature. The relevant second order differential equations were solved by the Numerov method, the secant method was employed to find the energy levels in the \(B^3Σ_u^- \) potential and the quadratures were done by Simpson’s rule.

An initial search in the \(R_x, M_x, \) and \(A_x \) space was made in a comparison of the widths alone between theory and experiment. The best least-squares fit was made for the \(^3Π_u \) state only, since it is the dominant one for most of the vibrational levels. The other repulsive states were then introduced iteratively, all the parameters being adjusted by means of a trial and error search on the tabulated values to get the best least-squares fit. Of the three parameters the sensitivity to \(R_x \) was greatest and a finer grid was used in the \(R_x \) subspace than in the subspaces of \(M_x \) and \(A_x \). A good set of value of the parameters was found which is shown in Table I(a). The search was then extended to include the shifts. We attempted to find the smoothest fit for the deperturbed second vibrational energy level differences, obtained by adding the calculated energy shifts to the measured energies. The deperturbation technique is described in detail by Julienne and Krauss,\(^6\) by Cheung et al.,\(^17\) and by Lefebvre-Brion and Field.\(^26\) A least-squares fit was made to fit the deperturbed second differences for each isotopic molecule as a cubic polynomial function of the vibrational quantum number. The quality of the fits was measured by the statistical function 100% \(× \) \(Σ_i \) \((\bar{y}_i - \bar{y})^2/Σ_i(\bar{y}_i - \bar{y})^2 \), where the sums are over the measurements \(y_i, \bar{y}_i \) are the fitted values and \(\bar{y} \) is the mean. The search in the parameter space was made to maximize the statistical function. A slightly different set of values of the parameters was found which is shown in Table I(b). With the values of Table I(a), 54% of the shifts fall within the experimental data spread and those outside missed by an average of 0.14 cm\(^{-1}\). The parameters in Table I(b) are better for the shifts with 64% of them in the experimental spread and an average miss of 0.12 cm\(^{-1}\). The parameters listed in Table I(a) yielded the best compromise between a good fit to the widths and a smooth deperturbation of the shifts. At the present state of measurement and theoretical calculation we recommend the values reported in Table I(a).

B. Linewidths

The published studies on the linewidths of the Schuman-Rudge bands have been discussed in detail by Cheung et al.\(^18\) and Chiu et al.\(^19\) for \(^{16}O^{18}O \) and \(^{18}O_2 \). The linewidths presented in those papers are believed to be the most accurate currently available because they are independent of instrumental width and obtained from direct fitting of measured absorption cross sections with the best available molecular constants\(^17,22,23\) in calculating the line center positions of the fine structure components. These linewidths, \(\Gamma_{exp} \), were used to optimize the model parameters in this study.

Tables II–IV show, for \(^{16}O_2, ^{16}O^{18}O, ^{18}O_2 \), the calculated partial width due to each repulsive state, the total \(F_2 \) width \(\Gamma(F_2) \) and the average width \(\Gamma \) of the three \(F_i \) components with the same \(J \) (but different \(N \)). This average width is independent of \(J \) for each of the interactions and is equal to 20/21, 2/3, 4/3, and 2/3 of the \(F_2 \) width for interaction with the respective \(^3Π_u, ^3Σ_u^+ , ^3Π_u, \) and \(^1Π_u \)

TABLE I. Alternative sets of open channel parameters for the interactions with the \(B^3Σ_u^- \) state.

<table>
<thead>
<tr>
<th>State</th>
<th>(^3Π_u)</th>
<th>(^3Σ_u^+)</th>
<th>(^3Π_u)</th>
<th>(^1Π_u)</th>
<th>(^3Π_u)</th>
<th>(^3Σ_u^+)</th>
<th>(^3Π_u)</th>
<th>(^1Π_u)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A_x) (cm(^{-1}))</td>
<td>70</td>
<td>46</td>
<td>35</td>
<td>33</td>
<td>61</td>
<td>33</td>
<td>42</td>
<td>35</td>
</tr>
<tr>
<td>(R_x) (Å)</td>
<td>1.879</td>
<td>1.999</td>
<td>1.429</td>
<td>1.711</td>
<td>1.879</td>
<td>1.999</td>
<td>1.436</td>
<td>1.712</td>
</tr>
<tr>
<td>(M_x) (cm(^{-1}) Å(^{-1}))</td>
<td>38 600</td>
<td>49 000</td>
<td>74 000</td>
<td>25 000</td>
<td>38 600</td>
<td>49 000</td>
<td>74 000</td>
<td>25 000</td>
</tr>
</tbody>
</table>

\(^a\)The parameters in (a) give a superior fit to the widths.

\(^b\)The parameters in (b) give a superior fit to the shifts (see text).
States.\(^5\) Plots of the predissociation linewidths vs vibrational quantum number \(v\) from Tables II--IV are presented in Fig. 2 for \(^{16}\text{O}_2\), \(^{16}\text{O}^{18}\text{O}\), and \(^{18}\text{O}_2\). In order to illustrate that the oscillatory structure is different for each isotopic species, the widths are plotted against a mass-reduced scale, \(\rho (v + 1/2)\), where \(\rho\) is the square root of the ratio of the reduced masses of the isotope and \(^{16}\text{O}_2\). The dashed curve is a curve that passes through the theoretical widths of all three isotopes. The points are the experimental data of Cheung et al. (Ref. 18) and Chiu et al. (Ref. 19).

From Tables II--IV, it is evident that the \(^{3}\Pi_u\) interaction is the most important overall and it gives rise to the basic features of the width pattern with maximum widths at \(v = 4\) for all three isotopes and subsidiary maxima at \(v = 7\) and 11 for \(^{16}\text{O}_2\), and \(v = 7\) and 10 for \(^{16}\text{O}^{18}\text{O}\) and \(^{18}\text{O}_2\). The \(^{3}\Sigma_u^+\) state contributes significantly to the total width from \(v = 6\) to 12, and it contributes nearly the same amount as the \(^{1}\Pi_u\) state to the total width at \(v = 7\) for all isotopes. The contributions of the \(^{3}\Pi_u\) and \(^{1}\Pi_u\) states are quite similar, \(-0.1-0.4\,\text{cm}^{-1}\) from \(v = 5\) to 12. The \(^{3}\Pi_u\) state has a significantly larger contribution to the total width at \(v = 1\) for all the isotopes. Since the experimental linewidth is available only for \(^{16}\text{O}_2\) at \(v = 1\), the parameters determined for the \(^{1}\Pi_u\) state are not of high accuracy. The contribution of the \(^{3}\Pi_u\) state to the total width is not large but is significant. Wodtke et al.\(^{16}\) suggested that the \(^{3}\Pi_u\) gives the dominant contribution to the \(v = 11\) level of \(^{16}\text{O}_2\), in their dispersed laser-induced fluorescence spectra, but their conclusion is not supported in this study.

The partial width from the \(^{3}\Pi_u\) interaction is nearly zero at \(v = 9\) of \(^{18}\text{O}_2\), which implies that the assumption of using equal widths for the components in the least-squares fit to obtain experimental linewidths from absolute absorption cross sections is not appropriate.\(^6\) In fact, Cheung et al.\(^{18}\) reported having difficulty in fitting the \((9,0)\) band of \(^{16}\text{O}_2\) earlier. Further work to improve the fitting of the
TABLE V. The experimental and deperturbed second vibrational energy differences (in cm\(^{-1}\)).

<table>
<thead>
<tr>
<th>(v)</th>
<th>(\Delta^2S_v)</th>
<th>(\Delta^2G_v^a)</th>
<th>(\Delta^2G_v^b)</th>
<th>(\Delta^2G_v^0)</th>
<th>(\Delta^2S_v)</th>
<th>(\Delta^2G_v^e)</th>
<th>(\Delta^2G_v^f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.404</td>
<td>22.41</td>
<td>22.01</td>
<td>-0.506</td>
<td>-0.201</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>-0.192</td>
<td>23.90</td>
<td>23.71</td>
<td>-0.310</td>
<td>-0.342</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.529</td>
<td>23.76</td>
<td>24.29</td>
<td>0.374</td>
<td>22.51</td>
<td>22.88</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1.171</td>
<td>25.98</td>
<td>27.15</td>
<td>1.562</td>
<td>23.88</td>
<td>25.44</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>-2.532</td>
<td>29.79</td>
<td>27.26</td>
<td>-2.613</td>
<td>28.37</td>
<td>25.76</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2.453</td>
<td>28.42</td>
<td>30.86</td>
<td>2.070</td>
<td>26.42</td>
<td>28.49</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>-1.918</td>
<td>33.04</td>
<td>31.12</td>
<td>-1.582</td>
<td>31.06</td>
<td>29.48</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.570</td>
<td>33.98</td>
<td>34.55</td>
<td>0.686</td>
<td>31.20</td>
<td>31.89</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0.470</td>
<td>37.62</td>
<td>38.09</td>
<td>0.071</td>
<td>34.75</td>
<td>34.82</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>-0.788</td>
<td>40.59</td>
<td>39.80</td>
<td>-0.783</td>
<td>37.57</td>
<td>36.79</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0.136</td>
<td>42.72</td>
<td>42.86</td>
<td>0.697</td>
<td>39.10</td>
<td>39.80</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0.468</td>
<td>44.50</td>
<td>44.97</td>
<td>0.188</td>
<td>41.78</td>
<td>41.97</td>
<td></td>
</tr>
</tbody>
</table>

\(^a^{Obtained\ from\ Cheung \ et \ al. \ (Ref. \ 22).}\)
\(^b^{Obtained\ from\ Cheung \ et \ al. \ (Ref. \ 17).}\)
\(^c^{Obtained\ from\ Cheung \ et \ al. \ (Ref. \ 23).}\)

(9,0) band by using different predissociation widths for the fine structure components of a rotational line is in progress.

C. Level shifts

Besides the broadening of spectral lines the predissociation introduces perturbations into spectroscopic constants, such as rotational constants, fine structure parameters, and band origins.\(^5\)\(^6\)\(^6\)\(^6\) As discussed by Julienne and Krauss,\(^6\) it is easier to detect the level shifts introduced by the various interactions than the modifications in the spectroscopic constants. The second vibrational difference

\[
\Delta^2G_v = \Delta G_{v-1} + \Delta G_{v+1} - 2\Delta G_v
\]

(2)
is examined, which magnifies the effects. The level shift contribution to the second vibrational energy difference is given by

\[
\Delta^2S_v = \Delta S_{v-1} + \Delta S_{v+1} - 2\Delta S_v
\]

(3)
where \(S_v\) is the shift of the vibrational level with quantum number \(v\) due to the repulsive states interacting with the \(B^3\Sigma_u^-\) state. The deperturbed second difference is given by

\[
\Delta^2G_v^0 = \Delta^2G_v - \Delta^2S_v
\]

(4)
for the different isotopic molecules.

Table V lists these three second differences. Plots of the second vibrational energy differences \(-\Delta^2G_v\) and the deperturbed second differences \(\Delta^2G_v^0\) vs vibrational quantum number, \(v\), are presented in Figs. 3, 4, and 5, respectively, for \(16\text{O}_2\), \(16\text{O}^{18}\text{O}\), and \(18\text{O}_2\). The smooth deperturbation of the second differences of the three isotopes can be seen in these figures.

In the work of Cheung et al.,\(^17\) the calculated level shift contributions to the second vibration energy differences were based on only the \(5\Pi_u - B^3\Sigma_u^-\) interaction and they concluded that values of the parameters for the \(5\Pi_u\) state of

\[\text{FIG. 3. Plot of second vibrational difference, } - \Delta^2G_v \text{ vs } v \text{ for the } B^3\Sigma_u^- \text{ state of } \text{H}_2\text{O.} \text{ The experimental second differences } - \Delta^2G_v \text{ are represented by the open squares. The deperturbed second differences } - \Delta^2G_v^0 \text{ are represented by the filled circles.}\]

\[\text{FIG. 4. Plot of second vibrational difference, } - \Delta^2G_v \text{ vs } v \text{ for the } B^3\Sigma_u^- \text{ state of } \text{H}_2\text{O}^{18}. \text{ The experimental second differences } - \Delta^2G_v \text{ are represented by the open squares. The deperturbed second differences } - \Delta^2G_v^0 \text{ are represented by the filled circles.}\]
values obtained from the three isotopic molecules by Lewis et al.14,27,28 Since these parameters are isotopically invariant, one set of values should be sufficient to model the predissociation. The results of a recent evaluation of the spin–orbital integrals by Julienne29 using \textit{ab initio} methods based on multiconfiguration self-consistent field (MCSCF) plus first order configuration interaction (CI) wave function are also listed. Our procedure does not yield the sign of the coupling interaction. The agreement is satisfactory though our results favor a spin–orbit value of \(> 70 \text{ cm}^{-1} \) in the interaction between the \(^3\Pi_u \) state and the \(B ^3\Sigma_u^- \) state, higher than the value of 65 cm\(^{-1}\) reported by Julienne.7,29 Our value is in good agreement with the values published by Lewis et al. The two parameters defining the repulsive potential, \(M_x \) and \(R_x \) are consistent with the earlier results7,18 and agree with those of Lewis et al. except that our uncertainty estimates are smaller in many cases.

The experimental predissociation linewidths of \(\nu = 6,8,9,10,12 \) of \(^1\text{O}_2 \) reported by Cheung et al.18 and Lewis et al.14 show trends depending on the rotational quantum number, \(N \). With the results of the present study, it is possible to investigate in detail the rotational dependence of predissociation linewidths. We have work in progress to evaluate the linewidths as a function of \(N \) for all the three isotopic molecules of oxygen.

ACKNOWLEDGMENTS

We thank Dr. P. S. Julienne for providing unpublished \textit{ab initio} calculation results. A. S.-C. C. would like to thank the Smithsonian Institution for the International Exchange Scholarships and the Hung Hing Ying Physical Science Research Fund of the University of Hong Kong for financial support. The work of A. D. and M. J. J. was partly supported by the National Science Foundation, Division of Atmospheric Sciences under Grant No. ATM-9019188. M. F. was a visitor to the Harvard–Smithsonian Institute for Theoretical Atomic and Molecular Physics. This work re-

III. DISCUSSION

We have attempted to present a detailed analysis of the predissociation process affecting the Schumann–Runge bands of oxygen. A set of parameters is reported in this work, which gives a smooth deperturbation of the second vibrational energy differences and reproduces all the features in the linewidth pattern of the three isotopic molecules. A comparison of the present and previous parameters is given in Table VI, in which there are three sets of

TABLE VI. Comparison of present and previous model parameters.

<table>
<thead>
<tr>
<th>State</th>
<th>Parameter</th>
<th>This work</th>
<th>Julienne (1976)a</th>
<th>(^1\text{O}_2 b)</th>
<th>(^1\text{O}_2 + ^1\text{O}_2 c)</th>
<th>(^1\text{O}_2 d)</th>
<th>Juliennee</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^3\Pi_u)</td>
<td>(A_s) (cm(^{-1}))</td>
<td>70 (\pm) 2</td>
<td>65 (\pm) 7</td>
<td>70.9 (\pm) 1.5</td>
<td>69.2 (\pm) 1.8</td>
<td>70.1 (\pm) 2.2</td>
<td>-65</td>
</tr>
<tr>
<td></td>
<td>(M_s) (cm(^{-1}) Å(^{-1}))</td>
<td>38 600 (\pm) 500</td>
<td>40 000 (\pm) 4 000</td>
<td>39 700 (\pm) 1 000</td>
<td>39 000 (\pm) 1 000</td>
<td>38 700 (\pm) 1 100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(R_s) (Å)</td>
<td>1.879 (\pm) 0.001</td>
<td>1.875 (\pm) 0.002</td>
<td>1.880 (\pm) 0.001</td>
<td>1.880 (\pm) 0.001</td>
<td>1.881 (\pm) 0.001</td>
<td></td>
</tr>
<tr>
<td>(^3\Sigma_u^+)</td>
<td>(A_s) (cm(^{-1}))</td>
<td>46 (\pm) 2</td>
<td>55 (\pm) 5</td>
<td>38.8 (\pm) 4.2</td>
<td>40.7 (\pm) 5.0</td>
<td>39.8 (\pm) 3.7</td>
<td>-45</td>
</tr>
<tr>
<td></td>
<td>(M_s) (cm(^{-1}) Å(^{-1}))</td>
<td>49 000 (\pm) 1 000</td>
<td>45 000 (\pm) 2 500</td>
<td>42 300 (\pm) 8 000</td>
<td>53 000 (\pm) 12 000</td>
<td>34 000 (\pm) 4 000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(R_s) (Å)</td>
<td>1.999 (\pm) 0.001</td>
<td>2.000 (\pm) 0.010</td>
<td>1.996 (\pm) 0.008</td>
<td>1.999 (\pm) 0.005</td>
<td>2.004 (\pm) 0.004</td>
<td></td>
</tr>
<tr>
<td>(^3\Pi_u)</td>
<td>(A_s) (cm(^{-1}))</td>
<td>35 (\pm) 3</td>
<td>30</td>
<td>25.8 (\pm) 2.8</td>
<td>28.1 (\pm) 1.8</td>
<td>21.1 (\pm) 3.0</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>(M_s) (cm(^{-1}) Å(^{-1}))</td>
<td>74 000 (\pm) 4 000</td>
<td>80 000</td>
<td>62 700 (\pm) 5 000</td>
<td>55 000 (\pm) 2 000</td>
<td>39 000 (\pm) 3 000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(R_s) (Å)</td>
<td>1.429 (\pm) 0.010</td>
<td>1.425</td>
<td>1.441 (\pm) 0.006</td>
<td>1.459 (\pm) 0.003</td>
<td>1.483 (\pm) 0.009</td>
<td></td>
</tr>
<tr>
<td>(^1\Pi_u)</td>
<td>(A_s) (cm(^{-1}))</td>
<td>33 (\pm) 5</td>
<td>25 (\pm) 3</td>
<td>32.2 (\pm) 3.0</td>
<td>37.3 (\pm) 6.1</td>
<td>25.2 (\pm) 7.1</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>(M_s) (cm(^{-1}) Å(^{-1}))</td>
<td>25 000 (\pm) 3 000</td>
<td>23 000</td>
<td>22 400 (\pm) 1 300</td>
<td>34 000 (\pm) 2 000</td>
<td>21 000 (\pm) 2 000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(R_s) (Å)</td>
<td>1.711 (\pm) 0.010</td>
<td>1.730</td>
<td>1.731 (\pm) 0.003</td>
<td>1.695 (\pm) 0.004</td>
<td>1.725 (\pm) 0.008</td>
<td></td>
</tr>
</tbody>
</table>

aValues from Julienne (Ref. 7).
bValues from Lewis et al. (Ref. 14).
cValues from Lewis et al. (Ref. 30).
dValues from Lewis et al. (Ref. 31).
eResults based on MCSCF+first order CI wave function, Julienne (Ref. 32).
ported was also supported by the NASA Upper Atmospheric Research Program under Grant No. NAGS-484 to the Smithsonian Astrophysical Observatory. We are indebted to the referee for the suggestion that led to Fig. 2.