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Abstract: Dynamic Traffic Assignment (DTA) has been studied for more than four decades 
and numerous reviews of this research area have been conducted. This review focuses on the 
travel choice principle and the model classifications of DTA, and is supplementary to the 
existing reviews. The implications of the travel choice principle for the existence and 
uniqueness of solutions of DTA are discussed, and the interrelation between the travel choice 
principle and the traffic flow component is explained using the nonlinear complementarity 
problem, the variational inequality problem, the mathematical programming problem, and the 
fixed point problem formulations. This paper also points out that all of the existing travel 
choice principles reviewed are extended from those used in static traffic assignment and that 
there are many classifications of DTA models, in which each classification addresses one 
aspect of DTA modeling. Finally, some future research directions are identified. 
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1.  Introduction 
 
Dynamic Traffic Assignment (DTA) is a generalization of static traffic assignment. In simple 
terms, static traffic assignment is a problem of determining the number of vehicles entering 
each highway in a specific area per hour (i.e. the vehicular traffic flow or flow pattern on each 
highway), given the vehicular demand for travel from each of the origins to each of the 
destinations in the area. In other words, the problem is to assign traffic to different highways 
according to certain behavioral rules. However, this problem cannot capture the realistic 
changes in the number of vehicles on the highways over time or the departure time choices of 
travelers. Therefore, DTA generalizes static traffic assignment to determine the time-varying 
flow on each highway over a study period, given the overall demand for vehicular travel.  
 
A simple example of DTA is as follows. Figure 1 depicts a road network with two nodes and 
two links. Node A represents the origin and node B represents the destination. The links 
represent the highways connecting the origin and the destination. Any driver can go from A to 
B by car via one of the two routes, i.e., via either Link 1 or Link 2. However, the minimum 
travel time via Link 2 is 30 minutes less than that via Link 1. If the arrival rate of vehicles at 
the bottleneck in the middle of Link 2 at any instant is not greater than the capacity (i.e., the 
maximum number of vehicles that can pass through the bottleneck per hour) of 2000 vehicles 
per hour, all vehicles can pass through the bottleneck without delay and their travel time is 30 
minutes. Otherwise, a queue is formed behind the bottleneck and the travel time via Link 2 is 
increased. The longer the queue, the higher the travel time. There is also a bottleneck in Link 
1 with a capacity of 4000 vehicles per hour and the minimum travel time via Link 1 is 1 hour. 
It is known that between 6:00 am and 10:00 am, a total of 8000 drivers travel to B from A 
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along both routes. All of these drivers must reach B on or before 9:00 am. These drivers have 
a choice of departure time in addition to link (or route). They can select a departure time so 
that they arrive at B at 9:00 pm sharp but they waste a lot of time in queuing. They can also 
depart early to have less queuing time (or waiting time in queue) and arrive at B early. 
However, arriving at B too early is not desirable as the time between the arrival time and 9:00 
am is wasted at B, because the time can be reserved for other activities. Given that the 
demand from A to B during that period is 8000 vehicles, the problem is to determine the 
numbers of vehicles using Links 1 and 2 over the study period. In other words, the problem is 
to find out the time-varying demand splits. Note that the splits depend on the travel times on 
both links and the travel times also depend on the splits.  
 
 
 
 
 
 
 
 
 
 
 

Figure 1 Example network 
 
Figure 2 represents a solution for this simple example. The cumulative arrival curves 
represent the total number of drivers entering the links over time, whereas the cumulative 
departure curves represent the total number of drivers leaving the links over time. The vertical 
distance between the cumulative arrival and departure curves at a particular time gives the 
number of vehicles on the link at that time. The horizontal distance between two curves gives 
the travel time of a particular driver. As the minimum travel time on Link 2 is initially less 
than that on Link 1, drivers initially select Link 2. As the arrival rate of Link 2 is greater than 
the capacity of the bottleneck, the travel time on this link increases until it is equal to the 
minimum travel time of Link 1 of 60 minutes. Then, both links are chosen by drivers and all 
drivers can reach B before 9:00 am. As can be seen in Figure 2, the vertical distance between 
the cumulative arrival and departure curves is changing over time, meaning that the numbers 
of vehicles on the two links are changing over time. This is because the queuing time changes 
over time, which affects the departure time and route choice of drivers. The end result is that 
the minimum travel time from A to B is 30 minutes and the maximum travel time is 90 
minutes. Some drivers depart earlier to have less travel time and queuing time. The first driver 
to leave A can travel to B without facing congestion and arrives at B at 7:00 am, whereas the 
last driver leaves A at 7:30 am and requires a travel time of 90 minutes to arrive at B sharply 
at 9:00 am. Furthermore, the number of drivers using each of the two links (which is the 
height of the curve) is equal to 4000 and the sum is equal to the demand of 8000 vehicles. 
However, in general, the usage of each link may not be the same. 
 
This example also illustrates that DTA consists of two main components, namely travel 
choice and traffic flow. The travel choice component determines the traffic flow level on each 
road at each instant of time, given the road network performance in terms of the time-varying 
travel times on each road. The traffic flow component depicts how vehicular traffic 
propagates inside a road network, given the demand split to each route over time, and governs 
the performance of the road network, in the sense that more traffic on a link results in a higher 
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travel time. The output of the travel choice component is the input of the traffic flow 
component while the output of the traffic flow component is the input of the travel choice 
component. DTA is then used to determine the flow pattern that satisfies the two components 
simultaneously.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 Cumulative arrivals and departures on Links 1 and 2 
 
In this example, the demand of 8000 vehicles is required to propagate on either one of the two 
links. The travel choice component determines the split of the demand (or the number of 
vehicles entering each link) over time, based on the time-varying travel time of each link. 
Then, the traffic flow component propagates each vehicle on the respective links and 
determines the travel time. The travel time on each link over time must be the same as that 
used to determine the time-varying demand splits if the splits are optimal. Otherwise, a new 
set of splits based on the output of the traffic flow component should be used to determine the 
traffic flow on each link over time. 
 
While the above example is simple, DTA is generally a difficult problem, especially when the 
networks are large and the study periods are long. This is because the number of routes can be 
huge, even for a medium size network, and the route set chosen by drivers can be time-variant.  
When actual traffic behavior, such as queues spilling backward and lane changing, is captured, 
the problem becomes even more difficult. 
 
Although DTA is a difficult problem, it is practically important because DTA models have a 
wide range of applications. DTA models can be used for offline transportation planning and 
policy evaluation, and real-time traffic management, such as:  

 managing the congestion of freeways through ramp metering [1, 2],  
 controlling signal light setting [3, 4], 
 advising routes for travelers equipped with global positioning system or advanced 

traveler information systems [e.g., 5, 6], 
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 determining time-varying toll levels and the charging locations [e.g., 7, 8],   
 determining whether a new highway should be added or whether an existing highway 

should be expanded [e.g., 9],  
 forecasting the usage of highways for future scenarios [e.g., 10], and 
 evaluating the benefits of congestion mitigation schemes [e.g., 11].  

In these applications, DTA models are used to predict the dynamic traffic flow pattern in a 
study area, given a demand scenario with a transportation planning or traffic management 
strategy. Very often, this flow pattern is an important input to another model for determining 
the best planning or management strategy. In other words, DTA models are core components 
of transportation planning and traffic management models. 
 
Probably because of its wide application and complexity, the problem of DTA has drawn 
much attention in the literature. To illustrate this point, we conducted a keyword search of the 
SCOPUS database on 10 May 2011 to determine the number of DTA-related publications 
published each year. Other than the keyword dynamic traffic assignment, the final keywords 
chosen are related to the five categories namely, travel choice, traffic flow component, traffic 
simulation and software, DTA applications, and the queue modeling approach, as summarized 
in Table 1. Note that the traffic flow simulation software can be regarded as a traffic flow 
component of DTA. However, using those keywords alone will result in including non-
transport papers in the search result. Therefore, we excluded those papers with keywords for 
non-transport networks, logistics and telecommunication. These keywords are listed below: 

 Non-transport networks: neural, logistic, photonic, social, optical, communication, 
radio, electric, cellular, W-ATM MAC, LAN, IT, information, and ATM networks, and 

 Logistics and telecommunication: broadband, vehicle routing and scheduling, vehicle 
routing, vehicle scheduling, freight transport, protocol, and communication subsystem. 

Then, we read the titles and abstracts of the papers obtained to ensure that the papers are 
either addressing DTA or applying DTA models. A total of 1471 DTA-related publications 
were eventually found, of which 859 are journal articles. The earliest article was found to be 
published in 1971 by Yagar [12]. 
 
Table 1 Keywords used for literature review 
Category Keywords 
Travel choice  
 

dynamic user equilibrium, dynamic system optimal, dynamic system 
optimum, simultaneous route and departure time choice, 
simultaneous departure time and route choice 

Traffic flow 
component 

cell transmission model, link transmission model, traffic flow model, 
whole link model, dynamic link performance function, Vickrey’s 
model, Vickrey’s bottleneck model 

Traffic simulation  
models & software 

dynamic traffic simulation model, TRANSIMS, PARAMICS, 
VISSIM, DYNASMART, DynaMIT, CONTRAM, MITSIM 

DTA applications dynamic network design, dynamic equilibrium network design, 
dynamic pricing, dynamic toll, dynamic signal control, dynamic 
signal setting, dynamic OD demand estimation 

The queue modeling 
approach 

point queue, physical queue 

 
Figure 3 shows the numbers of DTA-related publications for each year from 1971-2011. 
During 1971-1992, the numbers of DTA-related publications remains roughly constant at 
below 10 per year. From 1993 onwards, however, the numbers of DTA related publications 
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increase almost monotonically. In 2009, for instance, there were over 200 publications, in 
contrast to about 20 in 1993. In 2010, the number was more than 180. These results seem to 
indicate that the number of DTA related publications is still increasing. 
 
Table 2 shows the numbers and percentages of papers appearing in the top 3 journals and 
proceedings. According to this table, Transportation Research Record ranks number 1, with a 
share of 21% of all DTA related journal papers, whereas the IEEE Conference on Intelligent 
Transportation Systems Proceedings ranks number 1, with a share of 12% of all DTA-related 
proceedings papers. Good journals such as Transportation Science and Transportation 
Research Part C are not in the top three and only have a share of 2-3%. Most of the papers in 
the Proceedings of International Symposium on Transportation and Traffic Theory are not 
included in SCOPUS and hence we exclude those papers in Table 2. 
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Figure 3 The number of DTA-related publications over time 

 
Table 2 Top three journals and proceedings with respect to DTA related papers 

 
Table 2a Journals 

Rank Journal 
No. of 
papers 

Overall 
percentage

1Transportation Research Record  179 21%
2Transportation Research Part B- Methodological  69 8%
3Physica A: Statistical Mechanics and its Applications  33 4%

    
Table  2b Proceedings   

Rank Proceedings 
No. of 
papers 

Overall 
percentage

1
IEEE Conference on Intelligent Transportation Systems 
Proceedings (ITSC)  75 12%

2
Proceedings of the Conference on Traffic and Transportation 
Studies (ICTTS)  27 4%

3
Proceedings of the International Conference on Applications of 
Advanced Technologies in Transportation Engineering  20 3%
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Given the huge number of DTA-related papers, various review studies have been conducted 
to summarize the literature and to give future research directions. To the best of our 
knowledge, at least eight relatively comprehensive DTA reviews have been conducted thus 
far. Table 3 shows the reviews and their focuses. However, these reviews have not focused on 
the travel choice principle adopted in DTA models, which is one of the important components 
of DTA models for obtaining realistic solutions to practical applications. Ideally, this travel 
choice component should be behaviorally sound and reflect the route/departure time choice 
behavior of travelers. Moreover, the classifications of DTA have not been summarized. We 
believe that it is important to review different classifications to highlight the various 
considerations in DTA modeling, including realistic representation, solution efficiency and 
ease of analyzing the problem. 
 
Table 3 Recent comprehensive DTA reviews and their focuses 

 Review Focus 
1 Cascetta and Cantarella [13] focused on the DTA models and solution methods 

developed before 1991 
2 Peeta and Ziliaskopoulos 

[14] 
examined DTA papers published before 2000 

3 Boyce et al. [15] addressed analytical DTA formulations, with a focus on 
the variational inequality approach 

4 Szeto and Lo [16] compared the properties of DTA with different forms of 
traffic flow models, discussed their implications, and 
suggested future research directions 

5 Szeto and Lo [17] addressed the properties of DTA problems with and 
without considering the effects of spatial queues, and 
discussed their implications 

6 Mun [18] addressed the traffic flow component of DTA 
7 Jeihani [19] focused on the DTA models used in some well-known 

computer packages such as TRANSIMS, PARAMICS, 
VISSIM, DYNASMART, DynaMIT, and CONTRAM 

8 Szeto [20] outlined the latest developments in one type of DTA 
models, namely cell-based dynamic equilibrium 
models, of which the first model was proposed in 1999 

 
This paper reviews recent advances in the principles of travel choice and outlines the various 
DTA classifications, and is intended to serve as a supplementary reference to the existing 
reviews. In addition, the paper discusses the implications of the travel choice principles for 
the solution existence and uniqueness of the DTA model, and explains how the travel choice 
and traffic flow components are integrated. Some trends are identified and the limitations of 
existing models are briefly mentioned. 
 
The remainder of this paper proceeds as follows. Section 2 reviews the travel choice 
component used in static traffic assignment and DTA. Section 3 discusses and classifies 
various DTA models. Finally, Section 4 gives concluding remarks and potential future 
research directions. 
 
2. Travel choice component 
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Till now, the travel choice component of DTA is developed based on the route choice 
principle of static traffic assignment. Table 4 summaries the travel choice principles used in 
the travel choice components of static traffic assignment and DTA. The assumptions and 
criteria used to define the principles can be seen to vary. 
 
2.1  Wardrop’s principles for static traffic assignment  

Traditionally, the travel choice component of DTA is developed based on Wardrop’s first and 
second principles of static traffic assignment [21] (see also Type 1 in Table 4).  Wardrop’s 
first principle or the user equilibrium (UE) principle states that the journey times on all routes 
actually used are equal and are not greater than those which would be experienced by a 
single vehicle on any unused route. In other words, the travel times of all used routes between 
the same origin-destination (OD) pair are equal and minimal. This principle assumes that each 
traveler is identical, non-cooperative and rational in selecting the shortest route, and knows 
the exact travel time he/she will encounter. If all travelers select routes according to this 
principle the road network will be at equilibrium, such that no one can reduce their travel 
times by unilaterally choosing another route of the same OD pair. This principle has been 
extended to consider generalized travel cost instead of travel time, where generalized travel 
cost can include the monetary cost of in-vehicle travel time, tolls, parking charges, and fuel 
consumption costs, etc.  

Table 4 Summary of equilibrium principles 
 
Type Equilibrium Principle Criterion in 

defining 
equilibrium 

Perception 
error 
extension 

Uncertain 
travel time 
extension 

Dynamic 
extension 

Bounded 
rationality 
extension 

User equilibrium (UE) 
[21] 

Travel time 1 

System optimal (SO) [21] Marginal travel 
time 

    

2 Stochastic user 
equilibrium (SUE) [23] 

Perceived travel 
time 

√    

Risk user equilibrium [24, 
25]  

Effective travel 
time, travel time 
budget  

Risk system optimum 
[26] 

Marginal travel 
time budget 

Mean excess traffic 
equilibrium (METE) [29] 

Mean excess 
travel time 
(METT) 

Reliability-based user 
equilibrium (RBUE) [32] 

Normalized path 
preference index 

Percentile equilibrium 
[33] 

Percentile travel 
time 

Risk-averse user 
equilibrium [35] 

Expected travel 
time  

Robust user equilibrium 
[40] 

Worst case travel 
time  

3 

Prospect-based user 
equilibrium [47] 

Travel prospect 
value 

 √ 
 

  

Generalized traffic 
equilibrium [48] 

Perceived 
expected 
disutility 

4 

Reliability-based Perceived travel 

√ 
 

√ 
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stochastic user 
equilibrium (RSUE) [49] 

time budget 

Stochastic METE [50] Perceived METT 
Dynamic user equilibrium 
(DUE) route choice [55]  

Travel time 

DUE departure time 
choice [56] 

Generalized 
travel cost 

DUE route/departure time 
choice  [57] 

Generalized 
travel cost 

5 

Dynamic system optimal 
(DSO) [58] 

Marginal travel 
time 

√ 
 

   

Stochastic dynamic user 
equilibrium (SDUE) 
departure choice [59] 

Perceived travel 
cost 

SDUE route choice [60] Perceived travel 
time 

6 

SDUE route/departure 
time choice [61] 

Perceived 
generalized 
travel cost 

√ 
 

 √ 
 

 

Dynamic generalized 
traffic equilibrium [62] 

Perceived 
expected 
disutility 

7 

Reliability-based 
stochastic dynamic user 
equilibrium (RSDUE) 
route choice [63] 

Perceived 
effective travel 
time 

√ 
 

√ 
 

√ 
 

 

8 Boundedly rational user 
equilibrium [67] 

Travel time & 
travel time 
difference 
threshold 

   √ 

 
Mathematically, the UE conditions can be expressed as the following complementarity 
conditions: 

 0, ,rs
pf p rs   ,        (1) 

 0, ,rs rs
pn u p rs   ,        (2) 

   0, ,rs rs rs
p pf n u p rs   ,       (3) 

where rs
pf  is the flow on route or path p  between OD pair rs; rs

pn  represents the travel time 

(or generalized travel cost) of route p between OD pair rs; and rsu  is the minimum travel time 

(or generalized cost)  between OD pair rs. Condition (1) is the flow non-negativity constraint, 
which means that the flow must be nonnegative. Condition (2) defines the minimum travel 
time for an OD pair, which must not be greater than the travel time of each route connecting 
that OD pair. Condition (3) requires that if route p carries flow (i.e. 0rs

pf  ), the travel time on 

this route must be equal to the minimum travel time.  
 
UE can also be explained from the economic concept of utility maximization [22], where 
utility measures the degree of satisfaction travelers derive from their choices. In the simplest 
case, a traveler’s utility equals his/her budget or income minus the travel time. In this sense, 
the assumption of Wardrop’s first principle can be viewed as travelers selecting routes to 
maximize their individual utility and, at equilibrium, no traveler can change his/her route to 
obtain a higher utility. 

Wardrop’s second principle or the system optimal (SO) principle states that at equilibrium the 
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total journey time is minimized [21]. This means that each traveler behaves cooperatively in 
choosing his/her route to ensure that the total travel time of all travelers is minimized. This 
principle is useful in planning large traffic studies, where traffic management techniques, such 
as signal timing, lane allocations, and road pricing, are used to discourage or encourage traffic 
so that the total travel time is at a minimum. This principle is also useful for depicting logistic 
flow as the route choice of the flow is centrally controlled by a logistic system manager. The 
SO principle can also be formulated as a complementarity condition using marginal route 
travel time, which is the derivative of total travel time on a route with respect to route flow. 

2.2  Stochastic extensions of Wardrop’s principles for static traffic assignment  
 
To capture more realistic travel behavior, Wardrop’s first principle has been extended or 
improved in two stochastic dimensions: 
1. travelers’ perceptions of travel time/cost (see Type 2 in Table 4), and 
2. uncertain travel times (see Type 3 in Table 4). 
The first stochastic extension is from the perspective of travelers’ perception (or the demand 
side) and is based on the fact that travelers may not have entirely accurate traffic information 
or sufficient knowledge of the actual traffic conditions. The second extension is from the 
perspective of stochastic road networks (or the supply side) and is based on the fact that travel 
times are uncertain due to the effects of random events, such as traffic incidents and traffic 
signal failure. 
 
2.2.1 Travelers’ perceptions of travel time/cost 
One example of the extension of the first dimension is the principle of stochastic user 
equilibrium (SUE) [23]. According to this principle, travelers are assumed to choose their 
routes based on perceived travel times, rather than the actual travel time, where each traveler 
may perceive a different travel time for the same link. Perceived travel time is defined as the 
sum of expected travel time and the perception error, where the perception error is modeled 
by a probability distribution to capture the variation in the perception of travel time. SUE is 
reached when no traveler can improve his/her perceived travel time by unilaterally changing 
routes. SUE is more general than UE. If perceived travel times are assumed to be entirely 
accurate, all travelers will perceive the same travel time over the same link and SUE will be 
identical to UE.  
 
2.2.2 Uncertain travel times 
Regarding uncertain travel time, the following eight equilibrium concepts have been defined:  

 risk user equilibrium,  
 risk system optimum,  
 mean excess traffic equilibrium (METE),  
 reliability-based user equilibrium (RBUE),  
 percentile equilibrium, 
 risk-averse user equilibrium (RAUE),  
 robust user equilibrium, and 
 prospect-based user equilibrium. 

They have different behavioral assumptions that need to be verified for the dataset used. In 
general, they can be classified into five categories, namely (1) safety margin, (2) travel time 
reliability (3) travel time in the worst case scenario, (4) percentile travel time and (5) travel 
prospect value. 
 
(1) Safety margin  
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The safety margin is the extra time reserved to increase the chance of reaching a destination 
on time. This concept considers the fact that travelers can depart earlier to avoid late arrivals. 
This concept has been incorporated by risk user equilibrium, risk system optimum and METE. 
 
Risk user equilibrium is an extension of UE and is developed based on effective travel time 
[24] or travel time budget [25] instead of travel time as in UE. Effective travel time is defined 
as the sum of expected travel time and a safety margin. In this case, risk user equilibrium is 
reached when all used routes between the same OD pair have the same travel time budget [26]. 
Uchida and Iida [26] modeled the safety margin of a route as the product of the standard 
deviation of route travel time and a parameter representing the degree of risk aversion of 
drivers. A larger parameter value means that a driver is more risk-averse. When the parameter 
equals zero, a driver is risk neutral and ignores the variability of travel time. Jackson and 
Jucker [27] mentioned that in Brastow and Jucker [28] the safety margin can also be modeled 
using the variance of travel time instead of the standard deviation. This concept has been 
verified by many authors such as Jackson and Jucker [27], Lo et al. [25], and Szeto et al. [29]. 
 
Risk system optimum proposed by Uchida and Iida [26] is an extension of SO. Risk system 
optimum is defined by the sum of the travel time budget instead of total travel time as in SO. 
The first order condition can be defined by the “marginal” travel time budget, which is the 
derivative of the total travel time budget with respect to flow. This differs from of risk user 
equilibrium that defines the first order conditions by travel time budget. Risk system optimum 
is useful in planning large traffic studies, where traffic management techniques are used to 
discourage or encourage traffic under the travel time uncertainty. This principle is also useful 
for depicting logistic flow when the transport time is uncertain. 
 
METE is defined by the mean excess travel time (METT) [30]. Different from risk user 
equilibrium, the METE considers the penalty of being late in addition to expected travel time 
and the safety margin. METT is equal to the travel time budget plus the expected excess travel 
delay, in which the expected excess travel delay reflects the penalty of being late given the 
travel time budget selected. METE is said to be reached when all used routes between each 
OD pair have equal METT, and no unused route has a lower METT.  However, METT has 
not been verified from the empirical data satisfactory (see Franklin and Karlstrom [31] for 
details). 
 
(2) Reliability of travel time 
 
Reliability of travel time has been directly incorporated into the equilibrium concept proposed 
by Chan and Lam [32] called reliability-based user equilibrium (RBUE). This concept is 
characterized by a normalized path preference index (PI) instead of (path) travel time as in UE. 
The PI is defined as the weighted sum of the path travel time index (TI) and path travel time 
reliability index (RI). TI is defined as the value of a monotonously decreasing, non-negative 
exponential function of path travel time with a largest value of 100, in which the largest value 
occurs when the travel time of the path is equal to the free-flow path travel time (i.e., the 
minimum travel time required to traverse the path when there is no flow on the path). The RI 
equals path travel time reliability multiplied by 100, and path travel time reliability is defined 
as the probability that the actual path travel time is not larger than the acceptable travel time. 
The sum of the weights on the two indices is one and a larger weight is associated with a 
more important index. For a more risk-averse traveler, a larger weight is associated with RI 
whereas for a risk-neural traveler, the weight on RI equals 0. For the latter, RBUE becomes 
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UE, and at equilibrium, all used paths have the same PI, implying that all used paths have the 
same travel time. To the best of our knowledge, this concept has not been verified by 
empirical data. 
 
(3) Percentile travel time 
 
A percentile of travel time is the travel time below which a certain percent of travel time can 
be found. A specified percentile of travel time (instead of mean travel time as in UE) was 
proposed by Ordóñez and Stier-Moses [33] to define percentile equilibrium, and is used to 
reflect the risk-averse behavior of travelers. A larger percentile means that travelers are more 
risk-averse. In the special case, when travelers are risk neutral, the percentile is the 50th 
percentile travel time. In this equilibrium concept, travelers are assumed to choose routes that 
minimize a specified percentile of travel time. At equilibrium, the percentile of travel time is 
equal for all travelers between the same OD pair. This percentile equilibrium seems to be a 
better representation of the reality than risk user equilibrium since Lam and Small [34] found 
that percentile is a better measure of reliability than the standard deviation in a route choice 
experiment. However, percentile equilibrium is more difficult to be computed since it 
involves convolution of link travel time distributions. 
 
(4) Travel time in the worst case scenario 
 
Two equilibrium concepts were proposed based on worst case scenarios, including risk-averse 
user equilibrium and robust user equilibrium. The risk-averse user equilibrium, proposed by 
Bell and Cassir [35], is based on a Nash game framework in which there are two types of 
players, namely travelers and demons. Travelers aim to minimize the expected travel time and 
demons aim to maximize the total travel time of all travelers. In this game, it is assumed that 
there is only one demon per OD pair and the number of travelers is fixed. The assumption of 
one demon per OD pair was relaxed by Szeto et al. [36,37], where there can be any number of 
demons in a network but they are non-cooperative. Szeto [38] further relaxed the non-
cooperative assumption so that all demons are cooperative. On the other hand, Szeto et al. [39] 
also relaxed the assumption of a fixed number of travelers. The travel time in the game theory 
framework can be considered as the expected travel time in the worst case scenario defined by 
the number of demons and the degree of cooperation.  
 
Robust user equilibrium is defined based on the worst-case travel time [40]. The worst-case 
travel time (of a path) is computed assuming that the number of arcs (on the path) along with 
their maximum travel times does not exceed the budget of uncertainty. The budget of 
uncertainty is a parameter associated with every driver and represents his/her degree of risk 
aversion. A higher budget implies a more risk-averse driver. This version of robust user 
equilibrium differs from the one proposed by Zhang et al. [41], which is for forecasting from 
the viewpoint of transport network planners, not for modeling the route choice behavior of 
drivers. This version is also different from risk averse user equilibrium in the sense that robust 
user equilibrium considers worst-case travel time deviation for “every” path. The robust user 
equilibrium and risk user equilibrium were viewed as two different approximations of 
percentile equilibrium [40]. 
 
(5) Travel prospect value  
 
Travel prospect value, which is derived from the cumulative prospect theory proposed by 
Tversky and Kahneman [42], is a weighed expected utility, and is defined by a nonlinear 
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function that can depict the following three behavioral principles observed in many 
experiments:  

(i) People distinguish gains from losses before making choices and the payoffs are 
framed as gains or losses with respect to some reference points [e.g., 43]. 

(ii) The losses looms larger than the gains, i.e., people generally care more about 
potential losses than potential gains. At the same time, they are risk-averse in 
regard to gains and risk-seeking in regard to losses [e.g., 44]. 

(iii) People tend to overweight the significance of extreme but unlikely events. At the 
same time, they underweight “average” events [e.g., 45]. 

Travel prospect value was validated by empirical experiments [e.g., 46] and used to define 
prospect-based user equilibrium [47]. A prospect-based user equilibrium is said to be 
achieved when no traveler can improve his or her travel prospect value by unilaterally 
changing his/her route.  
 
2.2.3 Simultaneous consideration of two stochastic extensions 
 
A number of equilibrium principles have been extended from Wardrop’s first principle in both 
stochastic dimensions (see Type 4 in Table 4). For example, the generalized traffic 
equilibrium proposed by Mirchandani and Soroush [48] considers travelers’ perception errors 
and probabilistic travel times. The route choice criterion is to minimize the perceived 
expected disutility, which is a function of the random travel time. The traveling risk is 
implicitly included in the disutility function. Another example is the reliability-based 
stochastic user equilibrium (RSUE) proposed by Shao et al. [49] which is extended from risk 
user equilibrium using perceived travel time budget to define RSUE. The third example is 
stochastic METE proposed by Chen and Zhou [50], which is an extension from METE where 
perceived METT is used instead of METT. 
 
2.3  Dynamic extensions of Wardrop’s principles 
 
Compared with static traffic assignment, travelers have one additional consideration, which is 
departure time, no matter it is fixed or not. Hence, many studies focused on the choice of 
departure time (see [51-54] for the literature) and all the dynamic extensions capture the 
departure time consideration.  
 
2.3.1 Simple dynamic extensions  
 
The following equilibrium principles, referred to as Type 5 principles in Table 4, for the travel 
choice component of DTA can be considered as simple dynamic extensions of the travel 
choice principles adopted in static traffic assignment: 

 the dynamic user equilibrium (DUE) or dynamic user optimal (DUO) route choice 
principle [55];  

 the DUE departure time choice principle [56]; 
 the DUE route/departure time choice principle [57]; and   
 the dynamic system optimal (DSO) principle [58]. 

The dynamic user equilibrium (DUE) route choice principle, which is the simplest dynamic 
extension of Wardrop’s [21] first principle, states that for each origin-destination pair, any 
routes used by travelers departing at the same time must have equal and minimal travel time. 
This principle is used when the demand at each departure time is known. That is, the principle 
is often used in the pure dynamic route choice problem. 
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The DUE departure time choice principle considers departure time choice instead of route 
choice. This principle requires that the generalized travel costs for travelers between the same 
OD pair departing at any time are equal and minimal. The principle is adopted when the route 
choice is pre-determined or there is no route choice for travelers (i.e., the pure departure time 
choice problem) and the generalized travel cost normally includes the penalty cost due to 
early and/or late arrivals in addition to the travel time cost.  
 
The DUE route/departure time choice principle considers departure time choice in addition to 
route choice, and considers generalized travel cost instead of travel time. This principle states 
that for each OD pair, the generalized travel costs incurred by travelers departing at any time 
using any route are equal and minimal. This principle is essentially a generalization of the 
DUE route choice principle and the DUE departure time choice principle, and can be used in 
the simultaneous route and departure time choice problem. In fact, the example discussed in 
the introduction is constructed using this principle. Assuming that 1 minute of travel time is 
equivalent to 1 dollar and the cost of early arrival is 0.5 dollar per minute, the minimum 
generalized travel cost is equal to 90 dollars for all drivers. The travel time cost for the last 
driver is 90 dollars as the travel time is 90 minutes. The penalty cost for the last driver is 0 
dollar, as he/she arrived at B at 9:00 am sharp. The travel time cost for the first driver is 30 
dollars and the penalty cost is 60 dollars (i.e., 120 minutes multiplied by 0.5 dollar per 
minute). If this driver chose Link 1 instead, he/she would arrive at B at 7:30 am, and his/her 
travel time cost and penalty cost would become 60 dollars and 45 dollars, respectively, 
leading to a general travel cost of 105 dollars. Therefore, the choice of departing at 6:30 am 
and going to B via Link 1 is not optimal and no driver picks this choice at equilibrium. 
 
The DSO principle is an extension of Wardrop’s second principle, and assumes that each 
traveler chooses his/her route cooperatively with other travelers to ensure the total system 
travel time over the modeling horizon is minimized. 
 
2.3.2  Stochastic extensions of DUE 
 
Examples can also be found based on the stochastic extension of DUE (See Type 6 in Table 
4). The stochastic dynamic user equilibrium (SDUE) for departure time choice [59] is the 
stochastic extension of DUE for departure time choice and considers perceived generalized 
travel cost instead of generalized travel cost.  The SDUE route choice principle proposed by 
Ran and Boyce [60] is the stochastic extension of the DUE route choice principle and 
considers perceived travel time instead of actual travel time. This principle can also be 
considered as the dynamic extension of the SUE route choice principle. Similarly, the SDUE 
route/departure time choice principle proposed by Vythoulkas [61] is a generalization of the 
DUE route/departure time choice principle and considers perceived generalized travel cost 
instead of actual generalized travel cost.  
 
There are a number of dynamic equilibrium concepts that consider both perception error and 
uncertain travel time (see Type 7 in Table 4). For example, Boyce et al. [62] considered the 
dynamic extension of the generalized traffic equilibrium. The reliability-based stochastic 
dynamic user equilibrium (RSDUE) route choice principle proposed by Szeto et al. [63] is 
extended from the RSUE principle, and considers the attitudes of travelers towards the risk of 
late arrivals due to uncertain travel times, in addition to variations in their perception of the 
travel times. Travelers are assumed to select routes with the lowest perceived effective travel 
times. This RSDUE principle states that for each traveler departing at the same time, the 
perceived effective travel time of their routes must be equal and minimal.  
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2.4 Bounded rationality-based principle 
 
The last type in Table 4 is Type 8, which is related to the extension of UE based on bounded 
rationality. The term ‘bounded rationality’ is used to describe rational choices that take into 
account the limitations of the decision-maker in terms of knowledge, computational capacity 
and time to make decisions [64]. This term also refers to the rational principles that underlie 
the non-optimizing adaptive behaviors of real people. The idea was originally proposed [65] 
and refined by Simon [66]. Based on this idea, Mahmassani and Chang [67] proposed the 
concept of a boundedly rational user equilibrium (BRUE), in which they analyze in relation 
to the departure time choice problem. The assumption is that travelers with bounded 
rationality tend to maximize their individual utility, but not necessarily to an absolute 
maximum level. Szeto and Lo [68] considered this concept in their dynamic traffic 
assignment problem with route choice only. Lou et al. [69] considered it in regard to 
congestion pricing, and defined BRUE as follows: 
 

“Travelers with bounded rationality are those who (a) always choose routes 
with no cycle and (b) do not necessarily switch to the shortest (cheapest) 
routes when the difference between the travel times (or costs) on their 
current routes and the shortest one is not larger than a threshold value.” 

 
2.5 Trends and observations 
 
Although the general trend is that the travel choice principles or the equilibrium concepts in 
DTA are extended from those in static traffic assignment, not all the equilibrium concepts in 
static traffic assignment have been extended. From Table 4, we can see that some of the travel 
choice equilibrium concepts used in static traffic assignment, such as risk system optimum, 
METE, percentile equilibrium, robust user equilibrium, RBUE, risk-averse user equilibrium, 
and stochastic METE, have not been extended to DTA. It is not surprising that percentile 
equilibrium, robust user equilibrium, METE, and stochastic METE have not been extended to 
DTA, given that these are relatively new concepts. They may be currently investigated and 
validated by empirical data.  However, the risk system optimum, RBUE, and risk-averse user 
equilibrium have been proposed for some time. They deserve to be extended to DTA and 
validated empirically. Overall, the equilibrium concepts that have not been extended to DTA 
can be improved in future studies and validated using real data. 
 
Another observation is that the recent (dynamic) travel choice components developed become 
more and more complicated to capture more and more realistic travel behaviors. However, to 
the best of our knowledge, the more realistic behavioral principles often introduce the 
convergent issues during the computation process when they are combined with even simple 
traffic flow component, since the resulting models do not satisfy the convergence requirement 
of existing solution algorithms. This implies that the existing DTA models become more and 
more complicated, and more and more difficult to solve. 
 
3 Dynamic traffic assignment: Model classifications  
 
The example given in Section 1 belongs to one class of DTA problems where route and 
departure time choices are both considered and the travel demand is fixed. In general, DTA 
can be modeled in different ways, and the DTA models can be classified based on the criteria 
such as choice dimension modeling, overall formulation approaches, and time dimension 
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modeling, as shown in Table 5. These criteria are further divided into sub-criteria.  
 
Table 5 Criteria for classifying DTA models 
Criteria Sub-criteria Categories 

Route and departure time 
choice 

 Pure departure time choice [e.g., 
56,59] 

 Pure route choice  
o En route adjustment/reactive [e.g., 

71-73]  
o no en route adjustment/predictive 

[e.g., 55,63,68,74,75].  
 Route and departure time choices 

[e.g., 57,70].   

Choice 
dimension 
modeling  

Whether travelers must travel 
or not (or demand elasticity) 

 Fixed demand [e.g., 76]  
 Elastic demand [e.g., 70]. 

Duration of the study horizon  Day-to-day [e.g., 73,77,78]   
 Within-day [e.g., 60,79,80]. 

Time 
dimension 
modeling  Study horizon modeling  Continuous [e.g., 55,80] 

 Discrete [e.g., 65,68]. 
Decision variable (or 
formulation) 

 Link flow (or link based) [e.g., 80-83] 
 Route flow (or route based) [e.g., 

63,75,84] 
Queue representation   Physical queue [e.g., 63,75,76,84] 

 Non-physical queue [e.g., 60, 80-83] 
Number of classes of travelers  Single class [e.g., 68,75] 

 Multi-class [e.g., 63,86] 

Overall 
formulation 
approaches 
 

Methodological approaches  Simulation [e.g., 87,88]   
 Analytical  

o NCP [e.g.,70],  
o VIP [e.g., 84], 
o MPP [e.g., 75],  
o FPP [e.g., 63]  
o OCP [e.g., 55] 
o CMP [e.g., 89-99].  

 
3.1  Choice dimension modeling 
 
3.1.1  Route and departure time choices available 
 
The first way of classifying DTA models is based on the route and departure time choices 
available. In general, DTA models can be classified into (1) the pure departure time choice 
model [e.g., 56,59], (2) the pure route choice model, and (3) the simultaneous route and 
departure time choice model [e.g., 57,70].  The pure departure time choice model only 
considers departure time choice and drivers have no alternative routes to their destinations. 
That is, drivers can decide to leave earlier or later to avoid congestion and to arrive at their 
destination on time.  The pure route choice model assumes that the departure times are fixed, 
but each driver has a choice of routes. The simultaneous route and departure time choice 
model considers both route and departure time choices, and includes the pure route and the 
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pure departure time choice models as two special cases. These DTA models can be further 
classified by the travel choice principle adopted (See section 2), such as the DUE route choice 
model and the SDUE route choice model.  
 
For the pure route choice model, it can be further classified into the en route adjustment 
model or the reactive DTA model [e.g., 71-73] and no en route adjustment model or the 
predictive DTA model [e.g., 55,63,68,74,75]. The en route adjustment model allows drivers 
to switch their routes during their trips in response to having more update traffic information. 
For example, a driver will switch to another route if he/she realizes that there is a heavy traffic 
jam in front of his/her originally planned route. This adjustment model contrasts with the no 
en route adjustment model, which assumes that choices do not change during trips and that 
travelers select routes based on pre-trip information and predicted travel times. The en route 
adjustment model has not been combined with a departure time choice model to capture both 
departure time and en route choices. 
 
3.1.2   Demand elasticity 
 
DTA models can be roughly classified into the DTA model with fixed (or inelastic) demand 
[e.g., 76] and the DTA model with elastic demand [e.g., 70]. For the elastic demand case, 
travelers can decide to give up their trips or decide to use public transport. This consideration 
extends DTA models to capture mode choice and the choice of not making a trip. For the 
fixed demand case, travelers have to make a trip by private cars. 
 
3.2  Time dimension modeling 
 
3.2.1  Duration of the study horizon 
 
DTA models can be roughly divided into the day-to-day adjustment model [e.g., 73,77,78] 
and the within-day DTA model [e.g., 60,79,80]. The day-to-day adjustment model is 
concerned with how the travel decisions of travelers change over the day and how their route 
or departure time choices on a particular day depend on their experience obtained in previous 
days. The within-day model includes the pure departure time choice model, the pure route 
choice model, and the simultaneous route and departure time choice model, in the sense that 
the travel decision is considered in a typical day and there is no day-to-day adjustment. The 
solution of the within-day model can also be considered as the final state solution of the day-
to-day adjustment model, where no traveler can make a better decision than their current one.  
 
3.2.2  Study horizon modeling 
 
In DTA models, the study horizon can be modeled in continuous time settings [e.g., 55,80] 
and discrete time settings [e.g., 65,68]. Hence, DTA models can be divided into the 
continuous-time DTA model and the discrete-time DTA model. However, to solve the 
continuous-time DTA model, it is normal to first discretize the modeling horizon. Therefore, 
formulating DTA in a continuous time setting is only conducted for the purpose of accurately 
modeling the problem. 
 
3.3  Overall formulation approaches 
 
3.3.1  Decision variables 
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Analytical DTA models are link-based [e.g., 80-83] or route-based [e.g., 63,75,84], if the 
decision variables are link flow or route flow, respectively. The advantage of using link flow 
variables is that path enumeration and a complete route set are not needed during the solution 
process. However, queue spillback (i.e., queues spilling backwards to upstream links) cannot 
be captured by the link-based models because there is no information to direct queues spilling 
backwards to specified upstream links. If queue spillback is the key concern of DTA 
modeling, a route-based model should be used, as the route information can direct queues 
spilling backward to specified upstream links.  
 
3.3.2  Queue modeling 
 
DTA models can broadly be classified as the physical-queue (or spatial-queue) DTA model 
[e.g., 63,75,76,84] or the non-physical queue DTA model [e.g., 60, 80-83], depending on the 
traffic flow model adopted. The physical-queue traffic flow model [e.g., 85] considers the 
length of vehicles, and emphasizes the effects of queue spillback and junction blockage. To 
model how a queue spills backwards, the physical-queue DTA model is always formulated as 
a route-based model. On the other hand, the non-physical queue DTA model ignores the 
vehicle length and hence queue spillback cannot be modeled properly. The non-physical 
queue DTA model can be formulated as either a link-based or a route-based model depending 
on the solution method used for solving for solutions. More model examples and detailed 
discussions of these two queuing approaches can be found in [16,17].  
 
3.3.3  Number of classes of travelers 
 
DTA models can be divided into the single-class DTA model [e.g., 68,75] and the multi-class 
DTA model [e.g., 63,86]. The introduction of multiple classes allows the behavior of travelers 
with different values of travel time and the different unit costs of early and late arrivals to be 
captured. The extension of travel choice principles to multiple classes is straightforward. For 
example, the DUE route choice principle can be revised as follows:  For each class of traveler 
and for each origin-destination pair, any routes used by travelers departing at the same time 
must have equal and minimal travel time. The introduction of multiple classes also allows 
each class of driver to have their own travel choice principle. This feature has been used in 
route planning and guidance services [86], where both the DUE and SDUE route choice 
conditions have been used. 
 
3.3.4  Methodological approaches 

 
One way to classify DTA models is according to whether the model development approaches 
are (1) simulation-based [e.g., 87,88] or (2) analytical-based.  
 
(1) Simulation-based 
The simulation-based approaches emphasize microscopic traffic flow characteristics, such as 
lane changing. Strict adherence to travel choice principles, such as Wardrop’s principle, is 
secondary. Earlier generations of this approach used intersection-turning ratios to split traffic 
without route specification. Some models specify route choices based on the k-shortest routes 
criteria, which is then extended to the concept of “bounded rationality” for dynamic route 
switching [67]. This approach shares the following properties. First, the models are essentially 
descriptive, not prescriptive tools. They simulate the probable results of certain traffic 
management strategies, but do not prescribe what a strategy ought to be. Second, they lack 
well-defined solution properties. One cannot prove whether a solution has achieved the 
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required optimality. In each computer simulation, the model produces a realization out of a 
large range of possible realizations. Therefore, one must be careful in generalizing or 
transferring the results. 
 
(2) Analytical-based 
The analytical-based approaches normally consider macroscopic traffic behavior and have 
well-defined properties, in terms of optimality conditions and adherence to dynamic versions 
of Wardrop’s principle [21]. Depending on how the model is developed, these models may be 
used for prescriptive or descriptive purposes. The main difficulty with the analytical 
approaches is adding realistic traffic dynamics, such as queue spillback, to already 
complicated formulations. Therefore, some studies ignore the effects of queue spillback when 
developing analytical DTA models. 
 
The analytical approaches often express DTA as one of the following problems: 

 the Nonlinear Complementarity Problem (NCP) [e.g.,70],  
 the Variational Inequality Problem (VIP) [e.g., 84],  
 the Mathematical Programming Problem (MPP) [e.g., 75], 
 the Fixed-Point Problem (FPP) [e.g., 63],  
 the Optimal Control Problem (OCP) [e.g., 55] and, 
 the Continuum Modeling Problem (CMP) [e.g., 89-99]. 

 

The NCP is to find  ** rs
pf t   f  such that: 

    T* * * *0;  ;  and    f H f H f 0 f 0 ,      (4) 

where f  and  rs
pf t  are, respectively, the vector of route flows and the flow departing at 

origin r at time t and the travel on route p between OD pair rs. The superscript “*” refers to a 
solution of f  that fulfills the traffic equilibrium conditions.  H f  represents a general vector 

function of f . For the case of user equilibrium DTA where the demand is a decreasing 

function of minimum travel time,      rs rs
pn t t   H f , in which  rs

pn t  is the route travel 

time for travelers departing at origin r at time t and going to destination s via route p. This 
NCP formulation allows us to easily observe how the travel choice principle and the traffic 
flow component are integrated. In fact, by comparing (1)-(3) with (4), we can conclude that 
the travel choice principle is expressed as a NCP. Meanwhile, the route travel time 

 rs
pn t   n  in  H f  represents the traffic flow component and can be written as  n = Φ f  

where f  is the vector of route flows, and  Φ f  is a unique travel time mapping of route 

flows via a dynamic traffic flow model.  
 
The DTA problem can also be formulated as a VIP, which includes the NCP as a special case 

(Proposition 1.4 in [100]). The VIP can be expressed as to find  ** rs
pf t   f  such that: 

    T* * 0,  f - f H f f ,        (5) 

where   is a closed convex set. For the case of user equilibrium DTA with fixed demand, 

     rs rs
pn t t   H f .   is the feasible solution set of the problem defined by 

   ( ) , , , ( ) 0, , ,rs rs rs rs
p p p

p

f t q t f t rs t f t p rs t
 

      
 

| where  rsq t  is the demand 
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between OD pair rs departing from the origin at time t.  This set is formed by the dynamic 
extension of the non-negativity condition (1) and the flow conservation condition to ensure 
that the total route flow departing at time t is equal to the corresponding demand. The 
existence of solutions to the VIP requires that (i)  H f  is a continuous function of f  and (ii) 

 is a nonempty compact convex set (Theorem 1.4 in [100]). The uniqueness of the solution 
further requires the mapping function to be strictly monotonic (Theorem 1.8 in [100]). Most 
of DTA papers formulate the problem as a VIP because the advantages of adopting the VIP 
approach for modeling and analyzing general DTA problems [14]. The equivalency 
conditions of the VIP (5) and the NCP (4) are also discussed in Proposition 1.4 of Nagurney 
[100], which states that the solutions to these problems are equivalent when the feasible 
solution region is the non-negative orthant. 
 
The MPP can be obtained from a NCP via a gap function for the NCP. The function 
G R Rn:   1  is a gap function for the NCP if the following three conditions are satisfied [75]: 

i.   0G f , 

ii.   0G   f f , 

iii.  min 0G



f

f  is a global minimum, 

where   be the set of solutions to the NCP, and   ,   H f 0 f 0 . One example of the 

gap function is          
2

2 2

, ,

1

2
rs rs rs rs
p p t p p t

t rs p

G f t H f t H      f f f , where 

   ,
rs
p tH   H f f .  This gap is used in Lo and Szeto [75] in formulating the DUE DTA 

problem. The MPP is then described as:  
 min G

f
f            (6) 

When the travel choice condition is satisfied, the objective value  G f  is equal to zero. 

Otherwise,  G f  is always greater than zero. 

 

The FPP is to find  ** rs
pf t   f  such that: 

  * *f Y f ,          (7) 

where  Y f  represents a general vector function of f . If     P  Y f f H f , where the 

projection operator   arg  minP 


z
y y - z , 0  ,   is closed and convex, then the FPP (7) 

and the VIP (5) have the same set of optimal solutions (Theorem 1.3 in [100]). 
 
DTA can be formulated as an OCP [e.g., 55], which can be viewed a special case of an 
optimization problem in which the objective function involves an integral of a function over 
time and the constraints involve partial differential equations. This approach does not receive 
much attention for modeling user equilibrium DTA nowadays because of the inherent 
limitation for modeling traffic propagation and cannot handle multiple OD pairs for some 
cases (See e.g. [15]). However, the OCP approach is still used for modeling and analyzing the 
DSO problem [101,102]. 
 
The continuum modeling approach has also been used to model DTA problems for pedestrian 
and urban traffic flows, in which the system is represented by a two-dimensional continuum 
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transportation system. The problems are formulated as a system of partial differential 
equations, and solved by finite element or finite difference numerical schemes [e.g., 89-99]. 
Currently, only pure route choice problem has been considered. 
 
3.4  Discussion 
 
From the above discussion, it is not difficult to see that all travel choice principles mentioned 
in Section 2  can be expressed in NCP format, which can be further expressed as VIP, MPP 
and FPP formats, because the equivalent conditions always hold. Moreover, the traffic flow 
component is expressed as a mapping of  H f  in these problem formulations.  

 
The solution existence and uniqueness depend on the properties of  H f  in NCP, VIP, MPP 

and FPP, which in turn depend on both the travel choice principle and the traffic flow model 
adopted. If a physical-queue traffic flow model or a discontinuous travel choice model (due to 
for example a stepwise penalty cost function) is chosen, solution existence may not be 
guaranteed [68]. If the travel choice principle and the traffic flow model selected cannot make 
 H f  strictly monotonic, there may be multiple solutions. For other solution properties, one 

can refer to [16,17,103]. 
 
If the travel choice principle and the traffic flow model selected do not lead to a nice property 
of  H f  required by existing solution algorithms (e.g., monotonicity, pseudomonotonicity, 

co-coercivity and Lipschitz continuity), the error or gap measuring the distance between the 
optimal solution and the current solution will not decrease monotonicity and in some cases, 
convergence may not be achieved. This is often the case for complicated models developed to 
capture realistic traffic and travel behaviors. For the solution methods of each of the 
formulations, one can refer to [63,68,70,75,84] for further details. 
 
There are many classifications of DTA models, reflecting the multiple aspects of DTA 
modeling, including realistic representation, solution efficiency and ease of analyzing the 
problem. For example, in terms of queue representation, some publications focus on modeling 
realistic queue spillback. Hence, they simply classify DTA models into physical queue and 
non-physical queue models, in which only physical queue DTA models can capture queue 
spillback. However, physical queue DTA models are usually more complicated than point 
queue DTA models so as to capture queue spillback, and more difficult to solve efficiently 
because  H f  does not have nice properties, such as monotonicity, pseudomonotonicity, co-

coercivity, and Lipschitz continuity, required by existing algorithms. In terms of the choice 
consideration, pure departure time choice models are easier to analyze and obtain optimal 
solutions but are less realistic as compared with DTA models that consider both route and 
departure time choice. In terms of analytical approaches, the choice of formulations highly 
depends on the solution method adopted in addition to analyzing the condition of solution 
existence and uniqueness. For instance, a VIP formulation will be used when projection 
methods will be adopted for obtaining solutions and the mathematical properties of  H f  will 

be examined.  It is worth noting that the classification used in each DTA publication depends 
on the focus of the publication. Therefore, there are various model classifications.  
 
4  Concluding Remarks  
 
This paper serves as a supplementary publication to the existing reviews by reviewing the 
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current travel choice principles adopted in static traffic assignment and DTA as well as the 
classifications of DTA models. How the travel choice principle is combined with the traffic 
flow component is also discussed using the NCP, VI, MPP and FPP formulations. This paper 
also points out that there are many classifications of DTA models, reflecting the multiple 
aspects of DTA modeling, including realistic representation, solution efficiency and ease of 
analyzing the problem. Some observations and model limitations are then discussed. In 
particular, we also observe that the travel choice principles or the equilibrium concepts in 
DTA are extended from those in static traffic assignment. Moreover, the existing DTA models 
capture more and more realistic traffic or travel behavior, and hence become more and more 
complicated, and more and more difficult to solve. We also find that the OCP approach is 
currently used for modeling and analyzing the DSO problem only where as the VIP approach 
received most attention in the DTA literature. We expect that this trend will continue because 
the advantages of adopting the VIP approach for modeling and analyzing general DTA 
problems. 
 
From this review, we can identify three future research directions.  First, some existing travel 
choice principles such as reliability-based user equilibrium and SMETE have not been 
verified empirically. Therefore, one direction is to verify these principles before extending 
them to the dynamic case. Second, a number of travel choice equilibrium concepts, such as 
the risk system optimum, percentile equilibrium, robust user equilibrium, and risk-averse user 
equilibrium, have not been extended to DTA. For except risk-averse user equilibrium, the 
simplest dynamic extension of these equilibriums is to introduce those equilibrium conditions 
for each departure time choice. For risk-averse user equilibrium, one can consider demons to 
select links to damage throughout the modeling period. Third, there is a need to develop 
solution methods with a looser convergence condition of  H f  to solve complicated DTA 

models. Hence, developing convergent solution algorithms must be one future direction. 
Fourth, the CMP approach was only used for studying the pure route choice DTA problem. 
This approach is pity new and has not been mature yet. A lot of research can be done on this 
approach. One future direction for the CMP approach can be to extend the current work to 
model the simultaneous route and departure time problem and the multi-class DTA problem. 
Finally, the en route adjustment model has not been combined with a departure time choice 
model to capture both departure time and en route choices. Analyzing en route adjustment 
together with departure time consideration is one potential future research area. 
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