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Abstract

In this paper, we consider an extension of the two-dimensional risk model introduced by Avram et

al. (2008a). To this end, we assume two insurers in which the first is subject to claims arising from

two independent compound Poisson processes. The second insurer, that can be viewed as a different

line of business of the same insurer or as a reinsurer, covers a proportion of the claims caused by

one of these two compound Poisson processes. The Laplace transform of the time until at least one

insurer is ruined is derived when the claim sizes follow a general distribution. The surplus level of the

first insurer when the second one is ruined first is discussed in the end in connection with a few open

questions.
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1 Introduction

Multi-dimensional risk theory represents a very attractive topic that has gained a lot of popularity in

recent few years. The problems that arise when studying the class of multivariate risk models involve

an increased level of complexity when compared to the class of univariate risk models, mainly due to

the dependence of claim severities and/or their inter-arrival times among the several lines of business

under consideration. Historically, a quantity that has been mostly treated in the univariate literature is

the time to ruin, or the time of default, where ruin is defined as the first passage time below a certain

threshold, with level zero being the usual critical level. However, when one works with multi-dimensional

collective risk theory, ruin can be defined in several ways. The first time when at least one of the risk

processes falls below level zero, as well as the first time when all the risk processes are below level zero

simultaneously represent some particular examples for which bounds, asymptotic results and extremely

rare explicit solutions have been obtained for the ruin probabilities. Recent results pertaining to multi-

dimensional risk models can be found among others in Chan et al. (2003), Cai and Li (2005, 2007), Yuen

et al. (2006), Li et al. (2007), Avram et al. (2008a, b), Dang et al. (2009), Rabehasaina (2009) and

Gong et al. (2010). Among these, the one that motivates the present work is Avram et al. (2008a).

The authors considered the joint ruin problem for two insurance companies that divide between them

in different proportions both the premium income and the aggregate claims process which is modeled

through a compound Poisson process. In practice, such a problem can be interpreted as an insurer-

reinsurer scenario, where the reinsurer takes over a proportion of the insurer’s losses. Restricting the

claims to be exponentially distributed, Avram et al. (2008a) obtained an explicit analytic expression

for the Laplace transform of the time to ruin, where ruin is defined as the first time when at least one

of the risk processes drops below zero. Using a geometric argument, the authors reduce the bivariate

ruin problem to two distinct univariate problems, whose solutions are more easily obtainable. More

specifically, Avram et al. (2008a) are able to find a (deterministic) critical time such that if ruin occurs

after the critical time then it is caused by the first risk process, while if ruin occurs prior to the critical

time then it is caused by the second risk process.

In this paper, we generalize the work of Avram et al. (2008a) by considering a two-dimensional insurance

risk model where one of the risk processes faces claims arising from two independent compound Poisson
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processes, out of which only one is shared proportionally with the second risk process. As discussed in

Section 2, such risk model can be viewed in real life as a model for the surplus processes of two lines of

business of the same company, or as an insurer-reinsurer application. Mathematically the evolution of

our two-dimensional risk process denoted by {(Y 1
t , Y 2

t )}t≥0 is described as





dY 1
t = p1 dt− a dLt − dSt,

dY 2
t = p2 dt− (1− a) dLt,

(Y 1
0 , Y 2

0 ) = (y1, y2),

(1.1)

with (y1, y2) the initial surpluses at time zero and (p1, p2) the premium rates, where yi ≥ 0 and pi > 0,

i = 1, 2. In addition, the aggregate claims processes {Lt}t≥0 and {St}t≥0 are represented as Lt =
∑NL

t
i=1 ZL

i

and St =
∑NS

t
i=1 ZS

i . Here, {NL
t }t≥0 and {NS

t }t≥0 are Poisson processes with intensities λL and λS

respectively, whereas {ZL
i }∞i=1 and {ZS

i }∞i=1 are the sequences of positive claims. It is assumed that

{NL
t }t≥0, {NS

t }t≥0, {ZL
i }∞i=1 and {ZS

i }∞i=1 are all mutually independent, and {ZL
i }∞i=1 and {ZS

i }∞i=1 are

independent and identically distributed sequences distributed as the generic random variables ZL and ZS

with probability density functions (pdf) fL(·) and fS(·) respectively. Note that we have relaxed Avram et

al. (2008a)’s exponential claim size assumption to allow for arbitrary claim size distributions for both ZL

and ZS . From the dynamics of (1.1), it is clear that the first and the second insurer share the compound

Poisson process {Lt}t≥0 at a constant ratio of a and 1− a respectively, where a ∈ (0, 1), whereas {St}t≥0

is covered entirely by the first insurer. The positive security loading conditions for each of the processes

{Y 1
t }t≥0 and {Y 2

t }t≥0 are given by

p1 > aE[L1] + E[S1], (1.2)

p2 > (1− a)E[L1], (1.3)

where E[L1] and E[S1] respectively represents the average aggregate claims per unit time arising from

the processes {Lt}t≥0 and {St}t≥0. By defining the time of ruin for the i-th risk process τi = inf{t ≥
0|Y i

t < 0}, i = 1, 2, the key quantity of interest in this paper is the time at which at least one of the
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surplus processes {Y 1
t }t≥0 and {Y 2

t }t≥0 becomes negative, namely

τ = inf{t ≥ 0|min(Y 1
t , Y 2

t ) < 0} = min(τ1, τ2). (1.4)

The paper is structured as follows. Using geometric arguments, in Section 2 we derive a sufficient set of

constraints that will enable us to obtain an analytic solution for the Laplace transform of the time to ruin

defined in (1.4). Section 3 gives two preliminary results required for the evaluation of the afore-mentioned

Laplace transform whose derivation is presented in Section 4. Section 5 briefly discusses the case where

ruin of {Y 2
t }t≥0 occurs before {Y 1

t }t≥0 and suggests a few potential open problems.

2 Model constraints via geometric interpretation

In this section we employ a similar methodology to the one in Avram et al. (2008a) to reduce the

proposed two-dimensional risk model to more tractable univariate problems, for which various results in

the literature can be exploited. To this end, in Figure 1 we present a sample path of the evolution of the

∆ : Y 2
t = 1−a

a
Y 1

t
Y 2

t

Y 1
t

A−

A+

Lt claims

St claims

Xt

(0, 0)

(y1, y2)

drift

Figure 1: A sample path of {(Y 1
t , Y 2

t )}t≥0.

two-dimensional risk model defined in (1.1). The vertical y-axis represents the surplus process {Y 2
t }t≥0,
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whereas the horizontal x-axis represents {Y 1
t }t≥0. We denote by ∆ ⊂ R2 the line whose equation is

given by y =
1− a

a
x, and we let {Xt}t≥0 be the process defined by Xt =< ~v, (Y 1

t , Y 2
t ) > (with < ., . >

denoting the usual scalar product) where ~v = (1− a,−a). Geometrically Xt can be seen as the algebraic

distance (which is proportional to Euclidean distance) between (Y 1
t , Y 2

t ) ∈ R2 and ∆ , as illustrated on

Figure 1. It satisfies 



dXt = [(1− a)p1 − ap2] dt− (1− a) dSt,

X0 =< ~v, (y1, y2) >= (1− a)y1 − ay2.

(2.1)

Line ∆ splits R2 in two disjoint sets A+ and A− defined by

A+ := {~x ∈ R2| < ~x,~v > > 0}, and A− := {~x ∈ R2| < ~x,~v > < 0}.

The sets are such that Xt > 0 is equivalent to (Y 1
t , Y 2

t ) ∈ A+, and Xt < 0 is equivalent to (Y 1
t , Y 2

t ) ∈ A−.

We further introduce the time of ruin of the newly defined univariate risk process {Xt}t≥0 and denote

it by τX = inf{t ≥ 0|Xt < 0}. Without loss of generality and in order to avoid trivialities (as we will

see later in the section), we let the two-dimensional risk process {(Y 1
t , Y 2

t )}t≥0 start in the set A+, or

equivalently we let X0 = (1− a)y1 − ay2 > 0. The process {(Y 1
t , Y 2

t )}t≥0 will then drift upwards as long

as no claim occurs in any of the two individual risk processes {Y 1
t }t≥0 and {Y 2

t }t≥0. The occurrence

of a claim in {Lt}t≥0 will make {(Y 1
t , Y 2

t )}t≥0 move downwards towards the origin (0, 0), parallel to the

line ∆; whereas the occurrence of a claim in {St}t≥0 will make the process move to the left towards the

vertical axis in parallel to the horizontal one. The time of ruin defined in equation (1.4) can then be

interpreted as the first time the two-dimensional risk process {(Y 1
t , Y 2

t )}t≥0 exits the positive quadrant.

Assuming that we start in A+, a closer look at Figure 1 reveals a competition between the first passage

times τX and τ2 such that, if the process {(Y 1
t , Y 2

t )}t≥0 downcrosses the horizontal axis before time τX

(i.e. τ2 < τX) then ruin in the two-dimensional process will be caused purely by ruin in {Y 2
t }t≥0 (i.e.

τ = τ2). A more challenging question arises in the opposite case when τX ≤ τ2. Under this scenario, in

order to be able to analyze the time to ruin τ pertaining to the bivariate risk process defined in (1.1), we

need to add an extra constraint that makes the set A− an absorbing set, namely

p2

p1
>

1− a

a
, (2.2)
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which will be assumed throughout the entire paper. Geometrically, the condition (2.2) assumes that

the slope of increase of the process {(Y 1
t , Y 2

t )}t≥0 (during the collection of premium income) exceeds

the slope of the line ∆, ensuring that once {(Y 1
t , Y 2

t )}t≥0 enters the set A−, it will never come back

to A+. Equivalently, condition (2.2) guarantees that {Xt}t≥0 is a strictly decreasing process which is

evident from the dynamics (2.1). With (2.2) satisfied, the original two-dimensional ruin problem can be

divided in two distinct univariate ruin problems as follows: τ2 < τX implies τ = τ2, and τ2 ≥ τX implies

τ = τ1. The present model generalizes the one studied in Avram et al. (2008a), but the difficulty here

arises from the fact that the deterministic critical time therein is now replaced by the stochastic one

τX . An important property that makes this approach a tractable one is due to the fact that under our

construction the processes {Xt}t≥0 and {Y 2
t }t≥0 are independent.

As previously mentioned in the introduction, we conclude this section with two practical insurance

interpretations of the model defined in (1.1), together with further simplifications of the constraints

introduced in (1.2), (1.3) and (2.2).

I. {Y 1
t }t≥0 and {Y 2

t }t≥0 are regarded as two lines of business of the same insurance company, i.e. the

two lines split {Lt}t≥0 proportionally, while {St}t≥0 is taken by line 1 only. The first line possibly has

different loadings θ1 > 0 and θ2 > 0 on two different types of claims, so that

p1 = (1 + θ1)aE[L1] + (1 + θ2)E[S1], (2.3)

while for the second line it is assumed a different security loading θ3 > 0, such that

p2 = (1 + θ3)(1− a)E[L1]. (2.4)

Because the second line only shares a proportion of the {Lt}t≥0 compound Poisson process, we assume

it has a larger loading θ3 > θ1. The total premium rate paid by policyholders for the aggregate claim

process {Lt}t≥0 is [(1+θ1)a+(1+θ3)(1−a)]E[L1]. It is clear that under assumptions (2.3) and (2.4) the

loading conditions (1.2) and (1.3) hold. Simple manipulations of (2.3) and (2.4) transform the constraint

(2.2) into the condition
E[L1]
E[S1]

>
1 + θ2

a(θ3 − θ1)
(2.5)
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that enables us to find the Laplace transform of the time to ruin τ (see Section 4). Note that under

condition (2.5), the process {Lt}t≥0 may be generically interpreted as a riskier process than {St}t≥0 in

terms of the mean. Observe that in a practical situation the right hand side of (2.5) will be larger than

1.

II. {Y 1
t }t≥0 and {Y 2

t }t≥0 represent the surplus processes of an insurer and a reinsurer respectively. It is

then assumed that the insurer receives premiums at loadings θ1 and θ2 for the aggregate claim processes

{Lt}t≥0 and {St}t≥0 respectively. The insurer reinsures a proportion 1 − a of the claims arising from

{Lt}t≥0, paying the reinsurer premiums at loading θ3. Then

p1 = (1 + θ1)E[L1] + (1 + θ2)E[S1]− (1 + θ3)(1− a)E[L1], (2.6)

whereas p2 is the same as in (2.4). It is again assumed that θ3 > θ1, otherwise the insurer may be tempted

to reinsure the entire {Lt}t≥0 while receiving arbitrage premium income. The premium rate paid by

policyholders for {Lt}t≥0 is just (1 + θ1)E[L1]. Note that under this possible practical interpretation,

the positive security loading condition (1.2) does not necessarily hold, while (1.3) still holds. Further

manipulations of (1.2) using (2.6) gives an equivalent condition

E[L1]
E[S1]

[θ1 − θ3(1− a)] + θ2 > 0. (2.7)

Using (2.4) and (2.6), the constraint condition (2.2) is transformed to

E[L1]
E[S1]

>
1 + θ2

θ3 − θ1
. (2.8)

As in the first practical interpretation, in practice 1+θ2
θ3−θ1

> 1 in most of the cases, which means that the

condition (2.8) requires that the process {Lt}t≥0 represents a larger risk, in terms of average, than the

{St}t≥0 process. Hence it makes sense for the insurer to transfer part of the risk {Lt}t≥0 to a reinsurer

through reinsurance. Under the current insurer-reinsurer interpretation, the condition (2.8) is compulsory

to determine the Laplace transform of the time to ruin τ using geometric arguments, whereas relation

(2.7) simply ensures that insurer will not be ruined a.s. and that the problem does make sense from a

practical point of view. Suppose (2.7) is assumed. We need to distinguish between two cases as follows.
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1. If 1 < θ3
θ1
≤ 1

1−a , then the condition (2.7) is automatically satisfied and hence only condition (2.8)

is required.

2. If θ3
θ1

> 1
1−a , then in order for both (2.7) and (2.8) to be satisfied we require

1 + θ2

θ3 − θ1
<

E[L1]
E[S1]

<
θ2

θ3(1− a)− θ1
.

If one intends to relax the positive loading condition (2.7) (which is theoretically possible as all results

obtained in the present paper apply even if (2.7) does not hold), the weaker condition p1 > 0 will be

required instead. Because of (2.6), such a weaker condition is translated to

E[L1]
E[S1]

[θ3 − θ1 − (1 + θ3)a] < 1 + θ2. (2.9)

Again two cases need to be distinguished.

1. If 0 < θ3 − θ1 ≤ (1 + θ3)a, then (2.9) is satisfied automatically and therefore one only needs (2.8).

2. If θ3 − θ1 > (1 + θ3)a, then (2.8) together with (2.9) yields the condition

1 + θ2

θ3 − θ1
<

E[L1]
E[S1]

<
1 + θ2

θ3 − θ1 − (1 + θ3)a
.

In the next section, we analyze two important quantities for the independent processes {Xt}t≥0 and

{Y 2
t }t≥0 that will help us to obtain the desired Laplace transform of the time to ruin τ .

3 Preliminary results

As discussed in the previous section, the time to ruin τX in the process {Xt}t≥0 plays a key role in the

analysis. If ruin in the {Xt}t≥0 process occurs prior to ruin in the {Y 2
t }t≥0 process (i.e. τX ≤ τ2), then

the knowledge of the surplus level Y 1
τX

is of crucial importance because ruin of the bivariate process

{(Y 1
t , Y 2

t )}t≥0 will be due to ruin of {Y 1
t }t≥0 (i.e. τ = τ1). It is easy to see that under such scenario one

has the relationship

Y 1
τX

=
a

1− a
Y 2

τX
− 1

1− a
|XτX |, (3.1)
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which expresses the surplus levels of the process {Y 1
t }t≥0 in terms of those of {Y 2

t }t≥0 and {Xt}t≥0, all

evaluated at time τX . Driven by equation (3.1), in this section we derive two preliminary results as

follows.

On one hand we are interested in the analysis of the time of ruin and the deficit at ruin in the {Xt}t≥0

process. Under the current assumptions, {Xt}t≥0 can be viewed as a risk process with positive initial

surplus, negative drift (see the sufficient condition (2.2)) and downward jumps. Thus, ruin in the {Xt}t≥0

process will occur almost surely, in two possible ways: due to jumps (i.e. XτX < 0) or due to continuity

(i.e. XτX = 0). As a consequence, an important quantity that will be analyzed in the following subsection

is the joint distribution of the time to ruin τX and the level of the deficit at ruin |XτX |.

On the other hand, if τX ≤ τ2, the level of the process {Y 2
t }t≥0 at ruin time τX is mandatory in the

evaluation of (3.1). Thus, in Section 3.2, we present the distribution of the surplus process {Y 2
t }t≥0 at a

given time t avoiding ruin enroute, namely Py2

(
infs≤t Y 2

s > 0, Y 2
t ∈ du

)
. The notation Py(·), represents

the conditional probability given the initial surplus level y at time zero.

3.1 The joint density of the time and deficit at ruin in {Xt}t≥0

Starting with (2.1), we rewrite its first equation as

dXt = −c dt− dSa
t , (3.2)

where c = ap2 − (1 − a)p1 > 0 and Sa
t = (1 − a)St. Note that {Sa

t }t≥0 is still a compound Poisson

process with the same arrival rate λS as {St}t≥0, but with scaled secondary generic random variable

Za,S = (1− a)ZS having associated pdf fa,S(·). Furthermore, we denote by hC(t|x) the density of τX at

t (0 < t < x
c ) for ruin by continuity given that X0 = x, and by hJ(z, t|x) the joint density of (|XτX |, τX)

at (z, t) (0 < t < x
c , z > 0) for ruin by jumps given X0 = x. The following proposition gives the above

densities in explicit form, for generally distributed claim sizes.

Proposition 1 In the risk process {Xt}t≥0 defined by (3.2) with X0 = x > 0, the joint distribution at

the time of ruin τX and the deficit at ruin |XτX | consists of the following contributions.
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1. Due to continuity (i.e. |XτX | = 0)

(a) A point mass at τX = x
c with probability Px

(
τX = x

c , |XτX | = 0
)

= e−
λS
c

x.

(b) The density part of τX given by

hC(t|x) = c
∞∑

n=1

e−λSt (λSt)n

n!
f∗na,S(x− ct), (3.3)

for 0 < t < x
c , where f∗na,S(·) is the n-fold convolution of fa,S(·) with itself.

2. Due to jumps (i.e. |XτX | > 0)

hJ(z, t|x) = λSe−λStfa,S(z+x−ct)+λS

∞∑

n=1

e−λSt (λSt)n

n!

∫ x−ct

0
fa,S(z+y)f∗na,S(x−ct−y) dy, (3.4)

for 0 < t < x
c and z > 0.

Proof.

1. In order to derive the joint distribution of the time to ruin and the deficit at ruin for {Xt}t≥0, we first

consider the Laplace transform of τX due to continuity, namely

φβ,C(x) = Ex

[
e−βτX1{XτX

=0}
]
,

where β ≥ 0 is the Laplace transform argument and Ex represents the conditional expectation given the

initial surplus level x at time zero. By conditioning on the time and the size of the first claim, and using

the Markov property of {Xt}t≥0 followed by a change of variable, we obtain

φβ,C(x) =
∫ ∞

x
c

e−β(x
c )λSe−λSt dt +

∫ x
c

0
e−βtλSe−λSt

∫ x−ct

0
φβ,C(x− ct− y)fa,S(y) dy dt

= e−
λS+β

c
x +

λS

c

∫ x

0
e−

λS+β

c
v

∫ x−v

0
φβ,C(x− v − y)fa,S(y) dy dv

= e−
λS+β

c
x +

λS

c

(
e−

λS+β

c
· ∗ φβ,C ∗ fa,S

)
(x),

where ∗ is the convolution operator such that (a1 ∗ a2)(y) =
∫ x
0 a1(x − y)a2(y) dy (x ≥ 0) for any

functions a1(·) and a2(·) on (0,∞). If we define the Laplace transforms φ̃β,C(s) =
∫∞
0 e−sxφβ,C(x) dx and
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f̃a,S(s) =
∫∞
0 e−sxfa,S(x) dx, further taking an extra Laplace transform with respect to x in the above

equation and then solving for φ̃β,C(s) leads to

φ̃β,C(s) =

1
λS+β

c
+s

1− λS
c

1
λS+β

c
+s

f̃a,S(s)
=

1
λS+β

c + s
+

∞∑

n=1

(
λS

c

)n 1(
λS+β

c + s
)n+1 [f̃a,S(s)]n.

Therefore, via Laplace transform inversion with respect to s we arrive at

φβ,C(x) = e−
λS+β

c
x +

∞∑

n=1

(
λS

c

)n ∫ x

0

yne−
λS+β

c
y

n!
f∗na,S(x− y) dy

= e−
λS+β

c
x + c

∞∑

n=1

λn
S

n!

∫ x
c

0
e−(λS+β)ttnf∗na,S(x− ct) dt. (3.5)

An extra Laplace transform inversion with respect to β yields the desired result in 1. Probabilistically

the parts (a) and (b) can be interpreted as follows.

(a) The process {Xt}t≥0 decreases continuously for a length of time x
c without any claim in the interim.

(b) The density part (3.3) arises when there is at least one jump (i.e. n ≥ 1) before ruin by continuity.

The term e−λSt (λSt)n

n! is the probability that there are n jumps until time t, and the sum of the n jumps

should be exactly x− ct so that ruin occurs by continuity at time t, giving rise to the term f∗na,S(x− ct).

The factor c reflects a change in unit.

2. Similarly, we consider the quantity for ruin of {Xt}t≥0 due to jumps defined by

φβ,J(x) = Ex

[
e−βτX w(|XτX |)1{XτX

<0}
]
,

where w(·) is a penalty function that depends only on the deficit at ruin |XτX |. Conditioning again on

the time and the size of the first claim, we obtain

φβ,J(x) =
∫ x

c

0
e−βtλSe−λSt

∫ x−ct

0
φβ,J(x− ct− y)fa,S(y) dy dt

+
∫ x

c

0
e−βtλSe−λSt

∫ ∞

x−ct
w(y − (x− ct))fa,S(y) dy dt

=
λS

c

(
e−

λS+β

c
· ∗ φβ,J ∗ fa,S

)
(x) +

λS

c

(
e−

λS+β

c
· ∗ ωa

)
(x),
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where

ωa(x) =
∫ ∞

x
w(y − x)fa,S(y) dy. (3.6)

Taking further Laplace transforms yields

φ̃β,J(s) =

λS
c

1
λS+β

c
+s

ω̃a(s)

1− λS
c

1
λS+β

c
+s

f̃a,S(s)
=

λS

c
ω̃a(s)φ̃β,C(s),

where φ̃β,J(s) =
∫∞
0 e−sxφβ,J(x) dx and ω̃a(s) =

∫∞
0 e−sxωa(x) dx. Hence, inversion with respect to β

leads to

φβ,J(x) =
λS

c

∫ x

0
ωa(y)φβ,C(x− y) dy =

∫ ∞

0
w(z)

(
λS

c

∫ x

0
fa,S(z + y)φβ,C(x− y) dy

)
dz,

where the second equality follows from substitution of (3.6). Using (3.5) followed by some manipulations,

one finds

λS

c

∫ x

0
fa,S(z + y)φβ,C(x− y) dy

= λS

∫ x
c

0
e−(λS+β)tfa,S(z + x− ct) dt + λS

∞∑

n=1

λn
S

n!

∫ x
c

0
e−(λS+β)ttn

∫ x−ct

0
fa,S(z + y)f∗na,S(x− ct− y) dy dt.

Therefore one finally observes that φβ,J(x) admits the representation

φβ,J(x) =
∫ ∞

0

∫ x
c

0
e−βtw(z)hJ(z, t|x) dt dz,

where hJ(z, t|x) is the joint density of (|XτX |, τX) at (z, t) given in part 2. Probabilistically, the density

(3.4) can be interpreted as follows. The first term λSe−λStfa,S(z + x − ct) is the case where only one

jump causes ruin. Such a jump occurs at time t, and the size of the jump should be z + x− ct in order

to result in a deficit of z. The second term reflects the cases where n + 1 jumps cause ruin (n ≥ 1). In

this case, there are n jumps by time t with probability e−λSt (λSt)n

n! , and the sum of these n jumps should

be x − ct − y for some 0 < y < x − ct, contributing to the term f∗na,S(x − ct − y). At this moment the

process is at level y, then the (n + 1)-th jump occurs at rate λS and it should be of size z + y to cause a

deficit of z. ¤
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Remark 1 The convolution terms and hence the integrals in (3.3) and (3.4) can be explicitly evaluated

when the density fa,S(·) belongs to, for example, the class of mixed Erlang distributions (see Dickson and

Willmot (2005)). Such a class is not only dense in the set of positive continuous distributions (Tijms

(1995, pp.163–164)) but also contains many other distributions, some of which are non-trivial, as special

cases (Willmot and Woo (2007)).

3.2 The density of {Y 2
t }t≥0 avoiding ruin enroute

In a similar way in which we rewrite the process {Xt}t≥0 in (3.2), we write

dY 2
t = p2 dt− dLa

t , (3.7)

where La
t = (1 − a)Lt. {La

t }t≥0 is a compound Poisson process with the same arrival rate λL as in the

original {Lt}t≥0 process but with scaled secondary generic random variable Za,L = (1 − a)ZL having

associated pdf fa,L(·). The following proposition recovers the density of the process {Y 2
t }t≥0 avoiding

ruin enroute.

Proposition 2 In the risk process {Y 2
t }t≥0 defined by (3.7), the distribution of the surplus process

{Y 2
t }t≥0 at level u, at a given time t, avoiding ruin enroute consists of the following contributions.

1. A point mass given by

Py2

(
inf
s≤t

Y 2
s > 0, Y 2

t = u

)
= e−λLt, (3.8)

for u = y2 + p2t.

2. The density part given by

Py2

(
inf
s≤t

Y 2
s > 0, Y 2

t ∈ du

)
= ζ(y2, t, u) du, (3.9)
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for u < y2 + p2t, where

ζ(y2, t, u)

=





e−λLt
(
b(y2, p2t, u) +

∑∞
n=1

(λLt)n

n!

∫ p2t
0

z
p2tf

∗n
a,L(p2t− z)b(y2, z, u) dz

)
, u ≤ y2; t > 0,

e−λLt
[
b(y2, p2t, u) +

∑∞
n=1

(λLt)n

n!

(
u−y2

p2t f∗na,L(p2t− (u− y2)) +
∫ p2t
u−y2

z
p2tf

∗n
a,L(p2t− z)b(y2, z, u) dz

)]
,

u > y2; t > u−y2

p2
,

(3.10)

b(y2, z, u) =





∑∞
n=1

(
λL
p2

)n ∫ z∧u
0 ξn(y2 − u + v, z − v) dv, u ≤ y2; z > 0,

∑∞
n=1

(
λL
p2

)n ∫ y2+((z−u)∧0)
0 ξn(v, y2 + z − u− v) dv, u > y2; z > u− y2,

(3.11)

and

ξn(y2, z) =
yn−1
2

(n− 1)!
f∗na,L(z + y2) +

n−1∑

j=1

(
n

j

)
(−1)j

(n− 1)!

∫ y2

0
vn−1f∗ja,L(y2 − v)f∗(n−j)

a,L (z + v) dv. (3.12)

Proof. Our goal here to perform Laplace transform inversion to the expression

∫ ∞

t=0
e−βtPy2

(
inf
s≤t

Y 2
s > 0, Y 2

t ∈ du

)
dt =

[
e−ρuW (β)(y2)− 1{y2≥u}W (β)(y2 − u)

]
du. (3.13)

See Suprun (1976) and Bertoin (1997, Lemma 1). Here W (β)(·) is the β-scale function of {Y 2
t }t≥0 with

Laplace transform

∫ ∞

0
e−sxW (β)(x) dx =

1

p2s− (λL + β) + λLf̃a,L(s)
, s > ρ, (3.14)

where f̃a,L(s) =
∫∞
0 e−sxfa,L(x) dx, and the quantity ρ appearing in (3.13) is the unique non-negative

root to the equation (in ξ)

p2ξ − (λL + β) + λLf̃a,L(ξ) = 0.
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Next, we denote by gβ(u|y2) the so-called discounted density of the surplus prior to ruin Y 2
τ2− at u for

the process {Y 2
t }t≥0, given initial capital of Y 2

0 = y2, which is such that

gβ(u|y2) du =
∫ ∞

t=0
e−βtPy2(Y

2
τ2− ∈ du, τ2 ∈ dt).

By integrating out the second argument of equation (41) of Cheung and Landriault (2010), we have that

gβ(u|y2) =
λL

p2

[
e−ρuvβ(y2)− 1{y2≥u}vβ(y2 − u)

]
F a,L(u), (3.15)

where the function vβ(·) is related to W (β)(·) via vβ(·) = p2W
(β)(·) (which is evident by comparing

equation (11) of Cheung and Landriault (2010) with (3.14)), and F a,L(·) is the survival function of the

generic random variable Za,L. Thus, using (3.13), one can express the above equation as

gβ(u|y2) du = λL

[∫ ∞

t=0
e−βtPy2

(
inf
s≤t

Y 2
s > 0, Y 2

t ∈ du

)
dt

]
F a,L(u). (3.16)

On the other hand, Corollary 1 of Landriault and Willmot (2009) implies

gβ(u|y2) = λL

[
e
−β

(
u−y2

p2

) (
1
p2

e
−λL

(
u−y2

p2

)
1{u>y2}

)
+

∫ ∞

0
e−βtζ(y2, t, u) dt

]
F a,L(u), (3.17)

where ζ(y2, t, u) is defined through (3.10), (3.11) and (3.12). Hence, by the uniqueness of Laplace trans-

forms, a comparison between (3.16) and (3.17) yields the desired result in (3.8) and (3.9). ¤

Remark 2 Instead of drawing connections between the existing results (3.13) and (3.15) to prove (3.16),

we also provide a probabilistic proof as follows. In order to ensure a surplus prior to ruin Y 2
τ2− to be u,

the process {Y 2
t }t≥0 has to first reach level u from level y2 at some time t without ruin occurring in the

interim, which is explained by the term Py2

(
infs≤t Y 2

s > 0, Y 2
t ∈ du

)
. Being at level u, if a claim occurs

at the next instant (with probability λL dt) and such a claim is larger then u (with probability F a,L(u)),

then the time of ruin of {Y 2
t }t≥0 is t. Since discounted density is concerned here, we need to multiply by

e−βt and integrate with respect to t, resulting in the expression (3.16).

Remark 3 The quantity ζ(y2, t, u) can be explicitly evaluated when fa,L(·) follows mixed Erlang distri-

bution using the results in Landriault and Willmot (2009, Section 4).
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4 The Laplace transform of the joint ruin time

In this section, we give the main result of the paper regarding the Laplace transform of the time to ruin

τ , namely E(y1,y2)

[
e−βτ1{τ<∞}

]
, where E(y1,y2) is the conditional expectation given the initial surplus

levels (Y 1
0 , Y 2

0 ) = (y1, y2).

Proposition 3 In the bivariate risk process {(Y 1
t , Y 2

t )}t≥0 defined by (1.1) with x = (1−a)y1−ay2 > 0,

the Laplace transform of the time to ruin is given by

E(y1,y2)

[
e−βτ1{τ<∞}

]
= E(y1,y2)

[
e−βτ21{τX>τ2}

]
+ E(y1,y2)

[
e−βτ11{τX≤τ2,τ1<∞}

]
. (4.1)

The first part in (4.1) can be evaluated as

E(y1,y2)

[
e−βτ21{τX>τ2}

]
=

∫ x
c

0
e−βtPx(τX > t)Py2(τ2 ∈ dt), (4.2)

where for 0 < t < x
c ,

Px(τX > t) =
∞∑

n=0

e−λSt (λSt)n

n!
F ∗n

a,S(x− ct), (4.3)

whereas Py2(τ2 ∈ dt) is simply the density of the time of ruin τ2 of {Y 2
t }t≥0 and is given by Dickson and

Willmot (2005). Here F ∗n
a,S(·) is the cumulative distribution function corresponding to the pdf f∗na,S(·) with

the usual convention that F ∗0
a,S(v) = 1{v≥0}.

Next, we denote by Ey1

[
e−βτ11{τ1<∞}

]
the Laplace transform of the time of ruin τ1 for {Y 1

t }t≥0, which

is known to be the tail of a compound geometric distribution under β > 0 or the positive loading

condition (1.2) holds (Lin and Willmot (1999, Section 2)). Then the second part of (4.1), namely

E(y1,y2)

[
e−βτ11{τX≤τ2,τ1<∞}

]
, is the sum of six contributions given below.

1. Ruin in {Xt}t≥0 by continuity

(a) No claims from {St}t≥0, no claims from {Lt}t≥0 in (0, τX ] :

e−(β+λS+λL)x
c E a

1−a(y2+p2
x
c )

[
e−βτ11{τ1<∞}

]
. (4.4)
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(b) No claims from {St}t≥0, at least one claim from {Lt}t≥0 in (0, τX ] :

∫ y2+p2
x
c

0
e−(β+λS)x

c E a
1−a

u

[
e−βτ11{τ1<∞}

]
ζ

(
y2,

x

c
, u

)
du. (4.5)

(c) At least one claim from {St}t≥0, no claims from {Lt}t≥0 in (0, τX ] :

∫ x
c

0
e−(β+λL)tE a

1−a
(y2+p2t)

[
e−βτ11{τ1<∞}

]
hC(t|x) dt. (4.6)

(d) At least one claim from {St}t≥0, at least one claim from {Lt}t≥0 in (0, τX ] :

∫ x
c

0
e−βt

(∫ y2+p2t

0
E a

1−a
u

[
e−βτ11{τ1<∞}

]
ζ(y2, t, u) du

)
hC(t|x) dt. (4.7)

2. Ruin in {Xt}t≥0 by jumps

(a) No claims from {Lt}t≥0 in (0, τX ] :

∫ x
c

0
e−(β+λL)t

(∫ a(y2+p2t)

0
E a

1−a
(y2+p2t)− 1

1−a
z

[
e−βτ11{τ1<∞}

]
hJ(z, t|x) dz +

∫ ∞

a(y2+p2t)
hJ(z, t|x) dz

)
dt.

(4.8)

(b) At least one claim from {Lt}t≥0 in (0, τX ] :

∫ x
c

0
e−βt

∫ y2+p2t

0

(∫ au

0
E a

1−a
u− 1

1−a
z

[
e−βτ11{τ1<∞}

]
hJ(z, t|x) dz +

∫ ∞

au
hJ(z, t|x) dz

)
ζ(y2, t, u) du dt.

(4.9)

Proof. The decomposition in (4.1) is a direct consequence of the fact that τX > τ2 implies τ = τ2

whereas τX ≤ τ2 implies τ = τ1. Equation (4.2) follows by conditioning on τ2 along with the independence

of the processes {Xt}t≥0 and {Y 2
t }t≥0. Equation (4.3) can be argued probabilistically as follows. The

term e−λSt (λSt)n

n! represents the probability that there are n jumps until time t. In order for {Y 2
t }t≥0 to

survive at time t (0 < t < x
c ), the sum of the n jumps should be no larger than x − ct, resulting in the

term F ∗n
a,S(x− ct). Summing over all possible n (i.e. n ≥ 0) yields the desired result.

For the second term E(y1,y2)

[
e−βτ11{τX≤τ2,τ1<∞}

]
in (4.1), we note that when τX ≤ τ2, at time τX

the process {Y 1
t }t≥0 is either on the borderline ∆ of the absorbing set A− (i.e. {Xt}t≥0 ruins due to
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continuity) or inside the set A− (i.e. {Xt}t≥0 ruins due to jumps). Moreover, to keep track of the the ruin

times τX and τ2 we also recall that {Xt}t≥0 is only subject to claims from {St}t≥0 whereas {Y 2
t }t≥0 is

only subject to claims from {Lt}t≥0. First, for ruin of {Xt}t≥0 due to continuity, one has Y 1
τX

= a
1−aY 2

τX
.

This case is analyzed based on the number of claims arising from {St}t≥0 and {Lt}t≥0 respectively in

the interval (0, τX ] and it further consists of four scenarios. In Scenario 1(a), there are no claims at all.

Therefore the process {Xt}t≥0 decreases linearly over a length of time x
c , and at time τX the process

{Y 1
t }t≥0 is at level a

1−a(y2 + p2
x
c ). This explains equation (4.4). Equation (4.5) in Scenario 1(b) arises

when within (0, τX ] there are no claims from {St}t≥0 (and hence we still have τX = x
c ) but there is at

least one claim from {Lt}t≥0. Therefore we should make use of the density of {Y 2
t }t≥0 at u avoiding ruin

given by Item 2 in Proposition 2 at t = x
c . For equation (4.6) in Scenario 1(c), there is at least one claim

from {St}t≥0 and hence we require the density in Item 1(b) in Proposition 1; and this has to be combined

with the point mass in Item 1 in Proposition 2 since there are no claims from {Lt}t≥0. Equation (4.7)

also follows from a similar arguments simply using the densities in Item 1(b) of Proposition 1 and Item

2 of Proposition 2.

Second, for ruin of {Xt}t≥0 due to jumps we have Y 1
τX

= a
1−aY 2

τX
− 1

1−a |XτX |. Note that this case involves

at least one claim from {St}t≥0, and therefore it is analyzed based on the number of claims arising from

{Lt}t≥0 only in the interval (0, τX ] and it further consists of two scenarios. The detailed explanations of

(4.8) and (4.9) are omitted here, but one just has to apply Item 2 instead of Item 1 of Proposition 1.¤

Remark 4 In principle E(y1,y2)

[
e−βτ1{τ<∞}

]
can be obtained explicitly via straightforward but tedious

integration for mixed Erlang claims.

Remark 5 An alternative expression for Px(τX > t) can also be obtained from a direct application of

Proposition 1, and is given as, for 0 < t < x
c ,

Px(τX > t) =
∫ x

c

t
hC(v|x) dv +

∫ x
c

t

∫ ∞

0
hJ(z, v|x) dz dv + Px

(
τX =

x

c
, |XτX | = 0

)
. (4.10)

Nonetheless, it is obvious that the representation (4.3) is simpler and more tractable than (4.10).
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5 The effect of potential ruin of the reinsurer over the cedent

In the previous section, the distribution of the first ruin time of the two insurers is obtained via its Laplace

transform. According to the decomposition in (4.1) of Proposition 3, we are able to keep track of which

insurer ruins first. However, in the case of ruin, one natural question would be the consequence of one’s

ruin on the other. Once the bivariate process {(Y 1
t , Y 2

t )}t≥0 enters A−, then ruin of the process {Y 1
t }t≥0

happens no later than the ruin event of the second insurer {Y 2
t }t≥0. It would be interesting to know with

what probability ruin of {Y 1
t }t≥0 would also lead to ruin of {Y 2

t }t≥0 (through claims process {Lt}t≥0) and

the amount of deficit in this case. Unfortunately this is still an open question for the moment that is hard

to be solved due to the dependence between {Y 1
t }t≥0 and {Y 2

t }t≥0 (see more comments at the end of the

section). On the other hand, it is possible to get information on whether {Y 2
t }t≥0 will get ruined before

{Y 1
t }t≥0 and the surplus level of {Y 1

t }t≥0 when such an event occurs. This is particular important when

{(Y 1
t , Y 2

t )}t≥0 is interpreted as an insurer-reinsurer application, because the reinsurance company needs

to be reliable visà vis its clients and needs to give some guarantee to its customers, whereas the insurer

or the cedent would like to know its actual surplus if the reinsurer is ruined first, so that appropriate

action can be taken.

Geometrically, it is easy to see that ruin of {Y 2
t }t≥0 before {Y 1

t }t≥0 is possible if and only if (y1, y2)

belongs to A+, and in this case {(Y 1
t , Y 2

t )}t≥0 remains in A+ when {Y 2
t }t≥0 drops below zero. Assuming

(y1, y2) ∈ A+, our goal here is to find the distribution of the surplus level of the insurer when the reinsurer

ruins, jointly to the event {τX > τ2} (because in this scenario τ = τ2). Mathematically, we are interested

in the quantity P(y1,y2)(Y 1
τ2 > u, τX > τ2), where P(y1,y2) is the conditional probability given the initial

surplus levels (Y 1
0 , Y 2

0 ) = (y1, y2). Note that it is possible for Y 1
τ2 to be negative because a large claim from

{Lt}t≥0 could possibly ruin both {Y 1
t }t≥0 and {Y 2

t }t≥0 at the same time. Therefore, we shall evaluate

P(y1,y2)(Y 1
τ2 > u, τX > τ2) for the domain −∞ < u < ∞. The result is summarized in the following

Proposition.

Proposition 4 For the bivariate risk process {(Y 1
t , Y 2

t )}t≥0, the survival function of the surplus level of
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{Y 1
t }t≥0 when {Y 2

t }t≥0 ruins jointly to the event {τX > τ2} is continuous in u and is given by

P(y1,y2)(Y
1
τ2 > u, τX > τ2)

=





∑∞
n=0

∫ x
c

0

∫ x−(1−a)u−ct
a

− (1−a)u
a

e−λSt (λSt)n

n! F ∗n
a,S(x− (1− a)u− ct− az)η(z, t|y2) dz dt

+
∑∞

n=0

∫ x
c

0

∫ − (1−a)u
a

0 e−λSt (λSt)n

n! F ∗n
a,S(x− ct)η(z, t|y2) dz dt, u < 0.

∑∞
n=0

∫ x−(1−a)u
c

0

∫ x−(1−a)u−ct
a

0 e−λSt (λSt)n

n! F ∗n
a,S(x− (1− a)u− ct− az)η(z, t|y2) dz dt, 0 ≤ u < x

1−a .

0, u ≥ x
1−a .

(5.1)

Here x = (1− a)y1 − ay2 > 0, and η(z, t|y2) is the density of (|Y 2
τ2 |, τ2) at (z, t) given Y 2

0 = y2, which is

available from Corollary 3 of Landriault and Willmot (2009) (see also Dickson (2008)).

Proof. Because Y 1
t = a

1−aY 2
t + 1

1−aXt and {τX > τ2} = {Xτ2 > 0} (recall that A− is absorbing), and

since {Xt}t≥0 is independent of {Y 2
t }t≥0 and hence (|Y 2

τ2 |, τ2), we get

P(y1,y2)(Y
1
τ2 > u, τX > τ2) = P(y1,y2)

(
a

1− a
Y 2

τ2 +
1

1− a
Xτ2 > u, Xτ2 > 0

)

=
∫ ∞

0

∫ ∞

0
Px

(
− a

1− a
z +

1
1− a

Xt > u, Xt > 0
)

η(z, t|y2) dz dt.

Using the representation Xt = x− ct− Sa
t , the above equation can be rewritten as

P(y1,y2)(Y
1
τ2 > u, τX > τ2) =

∫ ∞

0

∫ ∞

0
P (Sa

t < x− (1− a)u− ct− az, Sa
t < x− ct) η(z, t|y2) dz dt

=
∫ ∞

0

∫ ∞

0
P (Sa

t < min(x− (1− a)u− ct− az, x− ct)) η(z, t|y2) dz dt. (5.2)

Note that the probability term of the above integrand is zero for some combinations of values of z and t.

Moreover, we need to distinguish between the cases u ≥ 0 and u < 0 as follows.

1. First, for u ≥ 0, one has min(x− (1− a)u− ct− az, x− ct) = x− (1− a)u− ct− az since z positive,
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and therefore

P (Sa
t < min(x− (1− a)u− ct− az, x− ct)) = P (Sa

t < x− (1− a)u− ct− az)

=
∞∑

n=0

e−λSt (λSt)n

n!
F ∗n

a,S(x− (1− a)u− ct− az)

− e−λSt1{x−(1−a)u−ct−az=0}. (5.3)

We remark that the last correction term at the end is to adjust for the fact that P(Sa
t < v) = P(Sa

t ≤ v)

for all −∞ < v < ∞ except for v = 0 due to the point mass arising from Sa
t = 0. Clearly, the above

expression is zero if x− (1− a)u− ct− az ≤ 0. Since both z and t are positive, x− (1− a)u− ct− az is

less than zero if x− (1− a)u ≤ 0. This explains the final equation in (5.1) for u ≥ x
1−a . The integration

domain in (5.2) for which (5.3) is generally non-zero is given by {(z, t) : ct + az < x − (1 − a)u} when

x − (1 − a)u > 0. By noting that {(z, t) : ct + az = x − (1 − a)u} is a set of measure zero, one can

ignore the correction term in (5.3). Combining these observations leads to the second equation in (5.1)

for 0 ≤ u < x
1−a .

2. Next, for u < 0, note that x− (1− a)u is always positive. Moreover, one has

min(x− (1− a)u− ct− az, x− ct) =





x− (1− a)u− ct− az, z ≥ − (1−a)u
a .

x− ct, z < − (1−a)u
a .

Hence, for z ≥ − (1−a)u
a , the representation (5.3) still holds true and the relevant domain of integration

in (5.2) is {(z, t) : ct + az < x− (1− a)u, z ≥ − (1−a)u
a }. On the other hand, for z < − (1−a)u

a ,

P (Sa
t < min(x− (1− a)u− ct− az, x− ct)) = P (Sa

t < x− ct)

=
∞∑

n=0

e−λSt (λSt)n

n!
F ∗n

a,S(x− ct)− e−λSt1{x−ct=0},

which is generally non-zero for {(z, t) : x − ct > 0, z < − (1−a)u
a }. Taking into account the above two

contributions in the integrand of (5.2) (and again ignoring the terms on sets with measure zero), one

arrives at the first equation in (5.1) for u < 0. ¤

Note that Proposition 4 is concerned with the surplus level of {Y 1
t }t≥0 when {Y 2

t }t≥0 is ruined within
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the set A+ (i.e. τ = τ2). An open question would be to find the distribution of the surplus level of

{Y 2
t }t≥0 when {Y 1

t }t≥0 is ruined (for the first time) within the set A− (i.e. τ = τ1). We remark

that regardless of whether ruin of the bivariate process {(Y 1
t , Y 2

t )}t≥0 occurs from A+ or A−, it is possible

that τ = τ1 = τ2 due a large claim from {Lt}t≥0. If ruin of {Y 2
t }t≥0 occurs within A+, the probability of

the event {τ = τ1 = τ2} is given by P(y1,y2)(Y 1
τ2 < 0, τX > τ2) = P(y1,y2)(τX > τ2)−P(y1,y2)(Y 1

τ2 > 0, τX >

τ2), where P(y1,y2)(τX > τ2) can be retrieved from (4.2) at β = 0 and P(y1,y2)(Y 1
τ2 > 0, τX > τ2) from (5.1)

at u = 0. In a similar manner, if the afore-mentioned open question is solved, one could also obtain the

probability of the event {τ = τ1 = τ2} for ruin of {Y 1
t }t≥0 within the set A−.

Since the event {τ = τ1 = τ2} is caused by a large claim from {Lt}t≥0, a related problem would be to

determine the distribution of the claim causing ruin in such case. This is of particular importance

because such a claim has adverse effect on both insurers at the same time and the associated risk has

to be assessed properly. On the other hand, one might also be interested in finding joint distribution

of (Y 1
τ , Y 2

τ ), which represents the surplus levels of the two lines at the time of ruin τ . We

remark that a similar problem has been considered in the form of a Gerber-Shiu function (Gerber and

Shiu (1998)) by Gong et al. (2010) in a different two-dimensional risk model using recursive methods.

We leave these as open questions in the current model.
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