
Electronic copy available at: http://ssrn.com/abstract=971211

Technological Innovations and Aggregate Risk Premiums†

Po-Hsuan Hsu∗

Forthcoming at Journal of Financial Economics

This version: January 24, 2009

† This paper is based on chapter one of my doctoral dissertation at the Graduate School of Business of Columbia

University, and I am deeply indebted to my advisors Charles M. Jones, Andrew Ang, and John B. Donaldson for

their guidance. I also thank Ronald Balvers, Michael Barclay, Alexander Barinov, Geert Bekaert, Frederico Belo,

Jonathan Berk, John Campbell, Long Chen, Jin-Chuan Duan, Jack Favilukis, Carmelo Giaccotto, Lawrence Glosten,

Joe Golec, Hui Guo, Robert Hodrick, Xuenan Li, Xiaoji Lin, John Long, Dimitris Papanikolaou, Ľuboš Pástor,
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Technological Innovations and Aggregate Risk Premiums

Abstract

In this paper, I propose that technological innovations increase expected stock returns and

premiums at the aggregate level. I use aggregate patent data and research and development

(R&D) data to measure technological innovations in the U.S., and find that patent shocks and

R&D shocks have positive and distinct predictive power for U.S. market returns and premiums.

Similar patterns are also found in international data including other G7 countries, China, and

India. These findings are consistent with previous empirical studies based on firm-level data, and

call for further theoretical explanations.

JEL classification: E44; G12; O30
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1 Introduction

This paper examines the effect of aggregate technological innovations on expected market returns

and premiums. In the finance literature, most attempts to explain the time series of market returns

are based on macroeconomic and financial variables.1 Since technological innovations are the main

driving force for economic growth and fluctuations, they may provide valuable information about

the dynamics of aggregate wealth from a distinct perspective.2 The empirical analysis suggests

that, indeed, technological innovations are able to predict market returns and premiums in recent

decades.

I propose that technological innovations drive up expected market returns and premiums for

several reasons: First, technological innovations raise the expected productivity and profitability

of the representative firm. Second, technological innovations improve overall efficiency and reduce

investment costs. Lastly, technological innovations work as options with returns more volatile

than physical investments. Since the representative firm’s expected stock returns equal expected

investment returns,3 they rise with more technological innovations. All these arguments imply

a positive relation between technological innovations and expected market returns as well as

premiums.

The hypothesis is empirically testable using patent data and research and development (R&D)
1An incomplete list includes the lagged returns (Fama and French, 1988a), the dividend-price ratio (Shiller, 1984;

Campbell and Shiller, 1988; Fama and French, 1988b), the term spread and default premium (Fama and French,

1989), the relative bill rate (Campbell, 1990, 1991), the book-to-market ratio (Kothari and Shanken, 1997), the

dividend-earnings ratio (Lamont, 1998), the aggregate consumption to wealth ratio (Lettau and Ludvigson, 2001),

the share prices to GDP ratio (Rangvid, 2006), and the labor income to consumption ratio (Santos and Veronesi,

2006).
2Since Solow (1957), the economics literature has long recognized technology development as an important

component of economic dynamics. Technological progress comes from endogenous efforts (e.g., R&D expenses that

generate inventions) and exogenous incidents (e.g., new discoveries due to accidents), and both types of advances

are found to explain economic growth and fluctuations (e.g., Romer, 1986, 1990; Greenwood, Hercowitz, and

Krusell, 1997, 2000). Moreover, Greenwood and Jovanovic (1999) and Hobijn and Jovanovic (2001) argue that the

information-technology (IT) revolution caused global stock markets to drop in the 1970s and then rebound in the

1980s. Pástor and Veronesi (2008) propose that the adoption of uncertain technological revolutions drives stock

price bubbles.
3The equivalence between investment returns and stock returns has been proved in Cochrane (1991) and Restoy

and Rockinger (1994). Lately, Liu, Whited, and Zhang (2008) and Chen and Zhang (2009) show that such a relation

provides a good description of the cross-section of expected stock returns.
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data as proxies of technological innovations.4 I note that patent data are more informative than

R&D data in many aspects, but have rarely been considered in the finance literature.5 First,

patents are realized innovations ready to be utilized for business interests. Second, the territo-

rial principle in patent laws makes patent data a more precise proxy of a nation’s technological

progress. Third, patents are the intangible assets most actively traded in intellectual property

markets (Lev, 2001). As a matter of fact, the first exchange traded fund (ETF) based on patents,

the Claymore/Ocean Tomo Patent ETF, was just launched on December 15, 2006.

I use total patents and accumulated industry R&D expenses in the U.S. to measure aggregate

technology level, and use their growth rates to measure technological growth. Then, I detrend

these two growth rates to estimate patent shocks and R&D shocks, as two proxies of technological

innovations. Predictive regressions indicate that both patent shocks and R&D shocks have signif-

icant predictive power for the real and excess returns on the Standard and Poor’s 500 (S&P500)

index and the Center for Research in Security Prices (CRSP) value-weighted index, in both short

and long horizons. The slope coefficients for lagged patent shocks and R&D shocks are positive

with economic and statistic significance, and the associated t-statistics are not affected by the

existence of other predictors. The adjusted R-squares of one-quarter ahead predictive regressions

are well above five percent. These empirical findings survive several robustness checks, and suggest

that technological innovations are able to explain a specific, substantial part of expected market

returns and premiums. Moreover, consistent with my earlier argument, patent shocks are found

to outperform R&D shocks in predictive ability.

I then extend the empirical analysis to available international data. Using China’s patent data,

I find that China’s patent shocks significantly predict the real and excess returns on China’s stock

index. On the other hand, I examine the effect of R&D shocks on stock returns in Canada, France,
4Griliches (1984, 1988) and many other studies find that these two data sets are able to explain economic growth.

Moreover, there exist other technology statistics including the number of scientific journal articles (Price, 1963), the

number of scientists and engineers (Gort, 1969), and the number of books published (Alexopoulos, 2006).
5Pakes (1985), Rossi (2005), Seru (2007), and Acharya and Subramanian (2007) are the only four to my knowl-

edge, and the latter three focus on corporate finance issues.
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Germany, India, Italy, Japan, and U.K. (“G6 plus India,” henceforth). I find that country-specific

R&D shocks are positively correlated with future market returns and premiums in all countries

except France. The results from pooled regressions indicate that country-specific R&D shocks

significantly predict market returns and premiums in G6 plus India. All these findings support

the technology-driven predictability from an international perspective.

Note that technological innovations used in this study differ from the Solow (1957) residual in

many aspects: First, the Solow residual contains all unexplained disturbances, and some of them

(e.g., wars, oil crises, fiscal shocks, and natural disasters) are conceivably irrelevant to technological

progress.6 Second, the Solow residual includes both temporary and permanent shocks, while

technological innovations mainly have permanent effects on the real economy. Third, the literature

suggests a negative effect of the Solow residual on future market returns,7 while technological

innovations are found to positively correlate with future market returns in this study.

This study adds to the literature from three perspectives. First, previous studies focus on the

relation between technological innovations and stock returns at the firm level (e.g., Pakes, 1985;

Austin, 1993; Lev and Sougiannis, 1996; Deng, Lev, and Narin, 1999; Chan, Lakonishok, and

Sougiannis, 2001), while I document the time series predictability of stock returns at the aggregate

level. Second, I propose to use total patents and R&D expenses to measure aggregate technological

innovations, which appear to be very effective predictors for market returns and premiums. Finally,

I provide international evidence for the technology-driven predictability, and show that the positive

connection between technological development and financial markets extends beyond the U.S.

data.

The rest of this paper is organized as follows. I first detail how I construct two proxies
6While Solow names all of the unexplained part of total production as “technical change,” Denison (1967) points

out the necessity of distinguishing technology shocks from non-technology shocks. Basu and Fernald (2002) also

argue that productivity shocks and technology shocks are distinct concepts.
7For example, Balvers, Cosimano, and McDonald (1990) show that current output level correlates negatively

with future market returns in a general equilibrium model. Kothari, Lewellen, and Warner (2006) find a negative

relation between aggregate earnings surprises and subsequent market returns.
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for technological innovations—patent shocks and R&D shocks—in Section 2. Then, I employ

predictive regressions to empirically test if these two shocks explain future market returns and

premiums in Section 3. I implement the same analysis for international data in Section 4. Section

5 summarizes my findings and connects them to related models in the existing literature.

2 Aggregate technological innovations

2.1 Aggregate patents and R&D expenses

Total patent numbers and accumulated aggregate R&D expenses are used as two proxies for the

aggregate technology level as they are well-defined and specific to sciences and technologies. As do

previous studies considering macroeconomic factors, I use quarterly patents and R&D expenses in

empirical analysis. This choice of data frequency not only accommodates the lead time between

technological inventions and productivity changes, but also delivers a bigger sample.8

For patent data, I compute each quarter’s “patent flow” as the number of all types of patents

filed in each quarter (successful patent applications), which are available since 1976Q1, from the

U.S. Patent Full-Text and Image Database (PatFT) of the U.S. Patent and Trademark Office

(USPTO). Following the literature (e.g., Pakes and Griliches, 1984; Pakes, 1985; Shea, 1998; Hall,

Jaffe, and Trajtenberg, 2001), I use the application dates of patents as effective dates, and count

the number of patents filed in each quarter as the technology progress in that period. I recognize

Abel’s (1984) comment that using application dates for effective timing is a strong assumption.

Nevertheless, as argued in many aforementioned papers, new technologies should start to affect

real production once they appear. For example, consumers often find new products labeled “patent

pending,” as the intellectual properties of inventors are protected since the filing dates.

In collected patent flows, I find four inappropriate outliers (1982Q2-Q3 and 1995Q1-Q2) that

appear to be unreasonable jumps, and substitute interpolated values for them. Also, since there
8Due to limited government statistics, most technology statistics are reported annually and can be traced back

only to the 1950s and 1960s, delivering only about forty to fifty sample points.
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exists an examination period (about two to three years on average) between the application date

and issue date of each patent, I estimate patent numbers in the period 2005-2007 based on the

application data available from the Published Applications Database of the USPTO. Such an

estimation of recent patent numbers, however, does not affect my conclusion as almost identical

results based on older samples have been reported in the earlier versions of this paper. Because

patent data before 1976 are unavailable from USPTO databases, I refer to Hall, Jaffe, and Tra-

jtenberg’s (2001) data set for an estimate of 4,065,811 as the base number of total patents filed

by the end of 1975. Finally, I add quarterly patent flows to this base number and obtain a time

series of “patent stock” as a proxy for technology level in 1976Q1–2007Q4, which is illustrated in

the upper panel of Fig. 1.

As for the R&D-based proxy, I compute quarterly “industry R&D flows” as quarterly industry

R&D expenses by (1) summing up all firms’ R&D expenses reported in the Compustat database

in each quarter and (2) transforming each quarter’s expenses into 1996 dollars. Quarterly R&D

expenses in the Compustat database are available only since 1989Q1, so I resort to National Pat-

terns of Research and Development Resources: 2003 published by the National Science Foundation

(2005) for an estimate of 2, 799 billion 1996 dollars as a base for all industry R&D expenses prior

to 1989. By adding quarterly industry R&D flows to this base, I obtain a time series of “industry

R&D stock” for the period 1989Q1–2006Q4 as shown in the upper panel of Fig. 1.

Then, I compute logarithmic patent growth and R&D growth (i.e., the logarithmic growth

rates of patent stock and industry R&D stock) as rpat and rrd, respectively.9 In the lower panel

of Fig. 1, I plot rpat and rrd and observe the following: First, similar to most macroeconomic

variables, both time series are fairly persistent; second, they demonstrate significant co-movement

prior to 1999. Declining R&D growth since 1999 could be attributed to the R&D out-sourcing

wave since the 1990s and the dropping-off of internet companies after the burst of the internet
9In the calculation of patent growth and R&D growth, I adjust potential seasonality in patent numbers and

R&D expenses using the one-sided moving average method, which is free from the forward-looking bias. The X-11

adjustment method is also considered and delivers similar results in unreported tables.
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bubble.10

Some issues about using patent growth and R&D growth to measure aggregate technological

growth are worth mentioning. First, I assume that the reported R&D expenses result from

firm managers’ rational decisions following Pakes (1985) and others. In other words, there is no

irrational R&D bubble. Second, I recognize that not every dollar in R&D expenses leads to new

inventions, and different patents have different impacts. Nevertheless, I refer to the “law of large

numbers” argument proposed in Scherer (1965, 1984) and Griliches (1990, 2000), and treat all

patent numbers or R&D dollars as random variables from one identical distribution. By summing

up all patents and R&D expenses, I expect to average out idiosyncratic noises and obtain good

measures of aggregate technological growth.

2.2 Patent shocks and R&D shocks

I propose the following two measures for technological innovations by detrending patent growth

and R&D growth:

Tech1
t = ln(rpat

t−1)−
1
4

4∑
h=1

ln(rpat
t−h−1) (1)

Tech2
t = ln(rrd

t−1)−
1
4

4∑
h=1

ln(rrd
t−h−1), (2)

where Tech1 denotes patent shocks and Tech2 denotes R&D shocks. My approach is motivated

by Griliches (1984) and Campbell (1990, 1991) and aims to stochastically detrend patent growth

and R&D growth to capture the fluctuations in technological progress.11 The length of the moving
10Brown, Fazzari, and Petersen (2008) report that the dramatic R&D boom in the 1990s is driven by young,

hi-tech firms that can easily access external financing in those years.
11Griliches uses the annual data of 157 firms and constructs patent surprise and R&D surprise based on first-order

difference. Campbell uses the moving average method to construct relative bill rate because the bill rate is a smooth

time series with stochastic trends. The moving average method is simple and free from subjective model selection

and forward-looking bias. Moreover, I adopt a univariate approach, as advocated by Chen, Roll, and Ross (1986),

in constructing technology shocks because I do not find any economic variable forecasting patent growth and R&D

growth. Nevertheless, I recognize the existence of more complicated measures of technology shocks proposed in

the macroeconomics literature (e.g., Gali, 1999; Basu, Fernald, and Kimball, 2006), which heavily rely on model

specifications and estimations.
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window is set to be four due to quarterly frequency. Nevertheless, I also consider other detrending

methods including eight-quarter moving averages and rolling AR(1) and obtain similar results

as reported in Section 3.3. In addition, I impose one quarter lag in constructing the above

shocks to accommodate the lead time between inventions and their impacts on real economy, if

any. As shown in Fig. 2, Tech1 and Tech2 are autocorrelated as many economic shocks in the

macroeconomics literature (e.g., King, Plosser, and Rebelo, 1988).12 Moreover, the time series

of patent shocks presents stationarity in mean without a significant trend, so it is free from the

“patent application fad” suggested by Jaffe and Lerner (2004).

3 Empirical tests

3.1 Testing strategy

My testing strategy is to regress the real and excess returns of the market portfolio on lagged vari-

ables including patent shocks, R&D shocks, and other predictors. Since I employ unconditional

regressions, the coefficients associated with lagged patent shocks and R&D shocks can be inter-

preted as the “average response” of market returns to technological innovations. If the proposed

relation is true, these coefficients should be significantly positive.

I use the logarithmic returns on the S&P500 index minus inflation rates to measure real market

returns and use the logarithmic returns on the S&P500 index minus one-month T-bill returns to

measure market premiums.13 In addition to patent shocks and R&D shocks, I include the following

predictive variables in tests: Lagged market returns and premiums (Fama and French, 1988a),

the dividend-price ratio “d − p” (Shiller, 1984; Campbell and Shiller, 1988; Fama and French,

1988b), the term spread “Term” and the default premium “Default” (Fama and French, 1989),
12A potential argument arises if investors perceive the autocorrelation ex ante. From a statistical perspective,

Shephard and Harvey (1990) have shown that, in finite samples, it is difficult to differentiate a process including an

autocorrelated component from an i.i.d. process. This point is taken by Bansal and Lundblad (2002) and Bansal

and Yaron (2004).
13In unreported tables, I use the CRSP value-weighted index as the market portfolio and obtain almost identical

testing results.
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the relative bill rate “RRel” (Campbell, 1990, 1991), the dividend-earnings ratio “d−e” (Lamont,

1998), the aggregate consumption to wealth ratio “cay” (Lettau and Ludvigson, 2001), and the

labor income to consumption ratio “SW” (Santos and Veronesi, 2006). The sources of all data

considered are detailed in Appendix A.

In Table 1, I report the summary statistics of all variables and the correlation among patent

shocks, R&D shocks, and other predictive variables. All descriptive statistics in Panel A are

consistent with the literature. Moreover, I note that most predictive variables are highly auto-

correlated. In fact, the first-order autocorrelations of patent shocks and R&D shocks (0.622 and

0.808, respectively) are lower than most other predictors in the literature. Panel B of Table 1 sug-

gests the following: (1) the correlation between patent shocks and R&D shocks is 0.111; (2) both

patent shocks and R&D shocks are positively correlated with contemporaneous S&P500 returns;

and (3) neither shock is highly correlated with other predictors. The only exception is that R&D

shocks are negatively correlated with Default (−0.657).

3.2 Testing results

I first examine the predictability hypothesis by regressing one-quarter ahead S&P500 real returns

or excess returns on patent shocks or R&D shocks. According to the adjusted R-squares reported

in Regressions 1 and 2 of Table 2, lagged patent shocks and R&D shocks are able to explain

8.5 and 7.6% of market returns, respectively. I also find that the coefficients of lagged patent

shocks and R&D shocks are significantly positive at five percent level based on the t-statistics of

Newey and West (1987) and Hodrick (1992), which confirm the market return predictability. In

Regressions 3 and 4, I find that lagged patent shocks and R&D shocks explain 8.1 and 5.9% of

market premiums, respectively. Moreover, the t-statistics of lagged technology shocks support the

market premium predictability, despite the marginal Hodrick t-statistic in Regression 4.

I then standardize patent shocks and R&D shocks in regressions to inspect the economic

significance of the predictability. In Regression 5, the estimated coefficient of standardized patent
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shocks is 2.3%, which implies the following: When this quarter’s patent shock happens to be

one standard deviation higher, the expected S&P500 return for the next quarter will increase by

2.3%.14 On the other hand, Regression 6 indicates that one standard deviation rise in current

R&D shock implies 2.2% increase in the expected S&P500 return for the next quarter. The

coefficients of technology shocks in Regressions 7 and 8 are found to be of similar magnitude. As

a result, the predictability of market returns and premiums based on technological innovations

is of both statistic and economic significance. Note that, for interpretational purpose, I use only

standardized technology shocks in the following text.

I then conduct pairwise horseraces in a multiple regression framework to compare patent

shocks to other explanatory variables in predictive power. In Panel A of Table 3, I include

each explanatory variable into the predictive regressions with technology shocks for S&P500 real

returns. The upper part of Panel A reports that the coefficients of patent shocks remain significant

and the corresponding Newey-West t-statistics are all above 3.0, much higher than those of other

predictors.15 In the lower part of Panel B, I find that the predictive ability of R&D shocks also

remains significant with the existence of other predictors. Overall, Table 3 shows that technological

innovations play a distinct role in explaining expected market returns.

Panel B of Table 3 reports the explanatory power of technology shocks and other predictors

for market premiums. It shows that all t-statistics associated with patent shocks are above 3.0

and all t-statistics associated with R&D shocks (except one) are over 2.0. Since the statistical

significance of both shocks is unaffected by the existence of other predictive variables, technological

innovations therefore have unique explanatory power for expected market premiums as well. So

far, all results provided in Tables 2 and 3 confirm that both market returns and premiums are

predictable by technological innovations in a short horizon.
14I use cay as a benchmark and find that one standard deviation rise in cay implies 1.2% increase in the expected

S&P500 return for the next quarter in the examined sample period.
15The Newey-West standard errors are adopted so that my testing results are comparable with recent papers

in market return predictability (e.g., Lettau and Ludvigson, 2001; Rangvid, 2006; Liu and Zhang, 2008). Similar

results are obtained in the addition of Term and Default and thus unreported.
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Another noteworthy finding in Table 3 is that not all other predictors reveal predictive power

in recent decades. In fact, only cay and RRel deliver reasonably significant coefficients in the

examined sample period. This observation is not uncommon in the literature (e.g., Goyal and

Welch, 2008) and may be attributed to the following factors: (1) U.S. economy has experienced

some technology revolution waves since the 1970s, such as personal computers in the 1980s and the

internet in the 1990s, which may cause mean shifts in states (e.g., Lettau and Van Nieuwerburgh,

2008); (2) the extreme market volatility in the 1990s may weaken most macroeconomic variables’

explanatory abilities; or (3) the quarterly frequency setting in this study may be too short for

some macroeconomic predictors to perform.

I further examine the predictability of market returns and premiums from a long-term forecast-

ing perspective. Specifically, I regress cumulative market returns and premiums over the future k

quarters on patent shocks and R&D shocks and make statistical inferences based on the Hodrick

(1992) standard errors to account for overlapping errors.16 Panel A of Table 4 demonstrates that

patent shocks and R&D shocks are able to explain future 4-, 8-, and 12-quarter S&P500 real

returns with reasonably high t-statistics and adjusted R-squares. For example, patent shocks that

are one standard deviation higher raise quarterly expected market returns by 1.3% in subsequent

four quarters (Regression 1). Panel B of the same table shows that patent shocks, but not R&D

shocks, have significant explanatory power for long-term S&P500 excess returns. Nevertheless,

all coefficients of R&D shocks remain positive. I also note that the t-statistics for R&D shocks

decrease in horizon length k, which could be attributed to the relatively small sample size of R&D

shocks. Overall, Table 4 points to a long lasting effect of technological innovations on expected

market returns and premiums, and reaffirms earlier short-term forecasting results.

16Ang and Bekaert (2007) find that, in terms of size control, the Hodrick standard errors are much preferable

than the Newey-West (1987) standard errors or the robust GMM generalization of Hansen and Hodrick (1980)

in studying long-term return predictability. Moreover, I recognize Boudoukh, Richardson, and Whitelaw’s (2008)

concern about multi-horizon predictive regressions based on autocorrelated predictors.
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3.3 Robustness checks

To check if the predictive power of technological innovations only exists in the internet era, I

implement predictive regressions with patent shocks in the pre-internet period 1977Q1-1995Q4.

In an unreported table, I find that patent shocks still significantly predict the real and excess

returns on the S&P500 index with adjusted R-squares over five percent before the internet bubble.

An important econometric issue in predictive regressions is that the coefficients affiliated

with persistent predictors are upward-biased, especially in small samples (e.g., Stambaugh, 1986,

1999).17 In untabulated experiments, I consider the adjustments proposed by Stambaugh (1999)

and Lewellen (2004) and obtain similar predictability findings, as the residuals of AR(1) models

of patent shocks and R&D shocks do not explain the residuals of predictive regressions.

To examine if the predictability is driven by the small sample bias, I implement the test of

Nelson and Kim (1993). I find that the bootstrap p-values of patent shocks in predicting market

returns and premiums are 0.001 and 0.000, respectively. On the other hand, the bootstrap p-values

of R&D shocks in forecasting market returns and premiums are 0.084 and 0.097, respectively.

Another considerable issue with predictive regressions is the influence of outliers in explanatory

variables, which may create pseudo significant coefficients. I winsorize patent shocks and R&D

shocks at five and ten percent (two-sided) and re-run predictive regressions. In untabulated results,

I find that the statistical significance of winsorized technology shocks remains in the same level,

and all adjusted R-squares are above five percent.

Lastly, I consider different specifications of technological innovations based on rolling AR(1)

and eight-quarter moving averages. For the former, I run AR(1) for patent growth and R&D

growth of four sequential quarters (t− 3 to t) and make a prediction for the next quarter (t + 1).

After doing this for each four-quarter window, I obtain the time series of forecasting errors as

proxies of patent shocks and R&D shocks. For the latter, I simply impose eight-quarter instead of
17On the other hand, Lewellen (2004) and Cochrane (2008) both comment that Stambaugh’s estimation could

substantially underestimate the predictability in short-term forecasting.
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four-quarter in the procedure of Section 2.2. In the upper panel of Table 5, I find neither significant

mean nor significant autocorrelation in the patent shocks and R&D shocks based on rolling AR(1).

On the other hand, the patent shocks and R&D shocks based on eight-quarter moving averages

are strongly autocorrelated with significantly positive and negative means, respectively.

Taking these two specifications into empirical testing, I still find empirical evidence for the

predictability. In B.1 of Table 5, the coefficients associated with rolling AR(1) patent shocks are

of statistical significance at five percent level, while the coefficients associated with rolling AR(1)

R&D shocks are of statistical significance at ten percent level. The adjusted R-squares range

from one to two percent. On the other hand, as reported in B.2, all coefficients associated with

eight-quarter moving averages shocks are of statistical significance at five percent level and all

adjusted R-squares are over four percent. These results suggest that the proposed predictability

is fairly robust to the specification of technological innovations.

4 International evidence

In addition to the analysis of U.S. data, I investigate if the positive relation between technological

innovations and market returns also exists internationally. Since patent data and R&D data are

not always available in major countries, I have to conduct two separate experiments. In the

first experiment, I inspect if China’s patent shocks explain China’s market returns. The patent

data of European countries and Japan are not considered for two reasons: First, the prevailing

coexistence of two patent systems in European countries (i.e., the European Patent Office and

individual national patent offices) makes it extremely difficult to precisely measure one nation’s

total patent numbers. Second, the searchable patent databases of European countries and Japan

are so different from USPTO databases that I have difficulty in obtaining comparable statistics.

In the second experiment, I examine if an individual country’s R&D shocks explain domestic

market returns using the data of Canada, France, Germany, India, Italy, Japan, and U.K. (G6 plus
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India). As a result, my analysis covers many important countries. Among G7 and BRIC4 (Brazil,

Russia, India, and China), only Brazil and Russia are not included because reliable statistics for

Brazil’s R&D expenses and Russia’s GDP are not available.

4.1 The evidence from China

I use the returns on the MSCI China index (in local currency) as the proxy of market returns.

The sample period starts from 1993Q1 due to data availability and the relatively short history of

China’s stock market.18 The deposit rate and consumer price index are used to measure risk-free

rate and inflation, respectively. The details of data sources are provided in Appendix B. For

patent data, I collect the quarterly numbers of successful patent applications from the searchable

patent database of the State Intellectual Property Office of China (SIPO), available since 1985Q1,

as quarterly patent flows in China.19 I accumulate quarterly patent flows to compute the patent

growth and patent shocks in China using exactly the same procedure described in Section 2.

The top right panel of Fig. 3 illustrates both China’s patent growth and patent shocks in

1993Q1–2007Q4. China’s patent growth descends in the first half and then rises in the second

half. On the other hand, the patent shocks represent a fairly stationary time series in both mean

and volatility since 1994. The summary statistics of all variables are reported in Table 6. In Panel

A of Table 7, I examine if patent shocks are able to explain expected market returns and premiums

in China by regressing the real returns and excess returns of the MSCI China index on lagged

patent shocks. The testing results are very significant. I find that patent shocks alone explain over

14% of the realized variation of market returns in terms of adjusted R-squares. In addition, the

estimated coefficient 9.2% with t-statistic 3.08 suggests that one standard deviation rise in patent

shocks increases expected market returns by over nine percent. Weaker but still significant results
18The modern China stock market started in 1992 as the Shanghai Stock Exchange was (re-)established in 1990

and the China Securities Regulatory Commission was established in 1992.
19http://www.sipo.gov.cn/sipo2008/zljs/. The searchable patent database of China is almost identical to USPTO

databases, which makes it possible for me to obtain comparable statistics. Moreover, thanks to the relative inde-

pendence of her patent system, China’s patent statistics are more representative of country-specific, aggregate

technology development.
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are found in market premiums, in which patent shocks explain 3.1% of the realized variation of

market premiums with an estimated coefficient 4.3% of t-statistic 2.06. The analysis of China’s

data not only confirms the technology-driven predictability of market returns and premiums but

also corroborates the advantage of using patent data in empirical analysis.

4.2 The evidence from G6 plus India

Although international quarterly R&D expenditures are very difficult to collect, they can be

estimated by quarterly GDP multiplied by the annual R&D to GDP ratios regularly reported

by the Organisation for Economic Co-operation and Development (OECD) since 1981.20 For

each country, the base of cumulative R&D expenditures is calculated as accumulated historical

GDP prior to 1981 multiplied by the R&D to GDP ratio in 1981. The only exception is India,

which reports the R&D to GDP ratio and applicable GDP statistics only since 1990 and 1999,

respectively. Following the procedure of Section 2, I accumulate each country’s quarterly R&D

flows to the corresponding base and obtain country-specific R&D growth and shocks. Note that

these GDP-based R&D shocks are different from industry R&D shocks that I use in U.S. data.

International stock market returns are collected from Datastream/Worldscope and the data of

GDP, inflation, and risk-free rates are collected from the International Financial Statistics (IFS)

of the International Monetary Fund (IMF). All data details are provided in Appendix B.

The summary statistics of market returns, inflation, risk-free rates, and R&D shocks of all

seven countries are reported in Table 6. Note that not all countries’ sample periods start in

1981 because their samples are restricted to the availability of market indexes. For example, the

FTSE100 index began on 3 January, 1984. The time series of R&D growth and shocks of examined

countries are plotted in Fig. 3. I note that all G6 countries’ R&D shocks appear to be negative

on average, while India’s R&D shocks are positive in mean.
20OECD Factbook 2008: http://www.sourceoecd.org/rpsv/factbook/. Note that interpolation and extrapolation

are used in the replacement of missing values in that data set.
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I first run pooled predictive regressions by jointly regressing all countries’ market returns or

premiums on lagged, standardized R&D shocks with fixed effects. As reported in Panel B of Table

7, R&D shocks have significant predictive power for market returns and premiums as the associated

t-statistics are 1.76 and 2.17, respectively, based on White’s (1980) heteroskedasticity-consistent

standard errors. According to the estimated coefficients, one standard deviation rise in country-

specific R&D shocks increases expected market returns and premiums by 0.37% and 0.45% per

quarter, respectively. I then run country-specific predictive regressions and find consistent results.

The coefficients of R&D shocks are positive for all countries except France. Japan appears to be the

country in which market returns and premiums are most positively correlated with R&D shocks

as both t-statistics are over 2.5. Moreover, the stock markets of Germany and U.K. also react

positively to R&D shocks with t-statistics around 1.0. The weakened predictability in country-

specific regressions may be attributed to the relatively small sample size or idiosyncratic noises.

Another reason could be that GDP-based R&D shocks include fundamental research expenses,

so they are not as powerful as industry R&D shocks in explaining market returns. Overall, the

empirical analysis of G6 plus India data reaffirms the technology-driven predictability.

5 Summary and interpretation

This paper documents the positive effect of aggregate technological innovations on expected market

returns and premiums. Using patent data and R&D data, I first find that patent shocks and R&D

shocks—that is, detrended patent growth and R&D growth—significantly predict the returns

and premiums on the S&P500 index. More importantly, these two indicators present superior

explanatory power against other macroeconomic and financial variables since the mid 1970s. From

an international perspective, I find that country-specific patent shocks or R&D shocks significantly

forecast the returns and premiums on stock indexes in several major countries. My empirical

analysis therefore sheds light on the potentially important role of technological innovations in

asset pricing.
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The market return predictability presented in this study is consistent with the neoclassical

q-theory literature. The most relevant research could be Lin (2007), which proposes a dynamic

equilibrium model connecting endogenous technological progress to stock returns. He shows that

firm-wise innovations increase expected stock returns by raising marginal product of capital and

reducing the marginal cost of investment. So, when firms raise R&D input, their expected stock

returns rise as well. In a broader scope, Chen and Zhang (2009) propose a model in which firms

with higher expected profitability and lower investment cost provide higher expected stock returns.

When the aforementioned arguments are extended to the aggregate scale, they imply a positive

relation between technological innovations and expected market returns, as endogenous techno-

logical innovations are the main driving force for future productivity and efficiency. Nevertheless,

the market premium predictability presented in this paper can not be explained by current works

because they do not consider the risk free rate. Thus, further theoretical modeling for such an

interesting relation is needed.

My predictability findings can also be related to the real option literature. Berk, Green,

and Naik (2004) show that the required risk premiums for R&D ventures should be higher than

traditional investments as the implicit leverage of compound options generates higher systematic

risk. Li (2007) extends the above model and shows that, when financially constrained hi-tech

firms raise R&D input, they become more vulnerable to systematic risk and provide higher risk

premiums. I note that their arguments are based on systematic risk loadings. So, although these

studies hint at a positive effect of technological innovations on expected stock premiums, their

model implications may not directly apply to the aggregate relation.

Since my empirical investigation is motivated by the theoretical literature and empirical ev-

idence at the firm level, it should not be regarded as a data snooping exercise (e.g., Sullivan,

Timmermann, and White, 1999) or a set of spurious regressions (e.g., Ferson, Sarkissian, and

Simin, 2003, 2008). Lastly, all predictability findings simply reflect the variation of expected

market returns and premiums induced by time-varying technology shocks, so they do not conflict
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with the market efficiency hypothesis.
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Appendices

Appendix A. The U.S. data in details

1. Market returns are measured by the returns on the S&P500 index and the CRSP value-
weighted index; both are dividend-adjusted. The S&P500 index is from Yahoo Finance,
while the CRSP value-weighted index is from Kenneth French’s website.21

2. Inflation is based on the GDP implicit price deflator from Federal Reserve Economic Data
(FRED).22

3. One-month Treasury bill (T-bill) returns of the Ibbotson Associates are from Kenneth
French’s website.

4. cay is available from Martin Lettau’s website.23 Note that the updated cay ends in 2006.

5. Labor income to consumption ratio (SW) is constructed following the calculation described
in Santos and Veronesi (2006). The (aggregate) labor income is computed as: compensation
of employees, received (Line 2) ( = wage and salary disbursements + supplements to wages
and salaries) + personal current transfer receipts (Line 16) - contributions for government
social insurance (line 24) - personal current taxes (line 25).24 All items are in National
Income and Product Accounts (NIPA) Table 2.1: Personal Income and Its Disposition. All
data series are from FRED.

6. Relative bill rate (RRel) is current one-month T-bill return minus the previous 4-quarter
average.

7. Dividend-price ratio (d− p) is available from Robert Shiller’s website.25

8. Dividend-earnings ratio (d − e) is available from Robert Shiller’s website as well. Since
the earnings data are not available after September 2007, I assume that the earnings in
December 2007 remain on the same level as September 2007.

9. Term spread is 10-year government bond rate (constant maturity) minus 3-month T-bill rate
(secondary market), both from FRED.

10. Default premium is Moody’s BAA corporate bond rate minus AAA corporate bond rate,
both from FRED.

21I thank Ken French for sharing the data at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/index.html.
22http://research.stlouisfed.org/fred2/.
23I thank Martin Lettau for making cay data available at http://pages.stern.nyu.edu/ mlettau/.
24The consumption defined here is the personal consumption expenditures on nondurable goods and services (lines

6 and 13) in Table 2.3.5 of NIPA: Personal Consumption. Labor income to consumption ratio is the labor income

divided by consumption in each period. Accruals are neglected in this study.
25I acknowledge Robert Shiller for making the data available at http://www.econ.yale.edu/ shiller/data.htm.

18



Appendix B. The international data in details

1. Canada: Annual R&D to GDP ratios since 1981 are available from OECD Factbook 2008.
Quarterly GDP (ID: L99BVnR@C156), consumer price index (CPI) (ID: L64@C156), and
treasury bill rate (ID: L60C@C156) are from IFS. The market returns are computed based
on the S&P/TSX60 index (1982Q2-2000Q4) and then the S&P/TSX Comp index (2001Q1-
2007Q4), both from Datastream/Worldscope.

2. China: MSCI China index is obtained from Global Insight (ID: JL@CHIF). Note that these
data are in daily frequency, and I compute quarterly returns as the growth rates of the index
between the end dates of two quarters. Both quarterly deposit rate and CPI are from IFS
(ID: L60L@C924 and L64nX@C924).

3. France: Annual R&D to GDP ratios since 1981 are available from OECD Factbook 2008.
Quarterly GDP (ID: L99BnRnX@C132), CPI (ID: L64@C132), and three month treasury
bill rate (ID: L60C@C132) are from IFS. The market returns are computed based on the
CAC40 index (1989Q1-1990Q4) and then the SBF250 index (1991Q1-2007Q4), both from
Datastream/Worldscope.

4. Germany: Annual R&D to GDP ratios since 1981 are available from OECD Factbook 2008.
Quarterly GDP (ID: L99BVnR@C134), deflator index (ID: L99BInR@C134), and treasury
bill rate (ID: L60C@C134) are from IFS. Note that I use GDP deflator because all available
CPI data are discontinuous due to the reunion in 1990. The market returns are computed
based on the DAX30 index from Datastream/Worldscope.

5. India: Annual R&D to GDP ratios since 1990 are available from OECD Factbook 2008.
Quarterly GDP in factor costs (ID: GDPFCRNS@IN), CPI (ID: L64@C534), and commercial
lending rate (ID: L60P@C534) are from IFS. Note that the quarterly GDP (measured by
factor costs) is available only since 1999Q2. The market returns are computed based on the
India BSE (SENSEX) 30 index from Datastream/Worldscope.

6. Italy: Annual R&D to GDP ratios since 1981 are available from OECD Factbook 2008.
Quarterly GDP (ID: L99BnR@C136), CPI (ID: L64@C136), and treasury bill rate (ID:
L60C@C136) are from IFS. The market returns are computed based on the Milan Mibtel
index available since 1994Q2 from Datastream/Worldscope.

7. Japan: Annual R&D to GDP ratios since 1981 are available from OECD Factbook 2008.
Quarterly GDP (ID: L99BnR@C158), CPI (ID: L64@C158), and discount rate (ID: L60@C158)
are from IFS. The market returns are computed based on the Nikkei 225 (1985Q2-1990Q3)
and then the Nikkei 500 (1990Q4-2007Q4), both from Datastream/Worldscope.

8. U.K.: Annual R&D to GDP ratios since 1981 are from OECD Factbook 2008. Quarterly
GDP (ID: L99BnRnX@C112), CPI (ID: L64@C112), and treasury bill rate (ID: L60C@C112)
are from IFS. The market returns are computed based on the FTSE100 index (1984Q3-
1999Q4) and then the FTSE350 index (2000Q1-2007Q4), both from Datastream/Worldscope.
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Table 1: Summary statistics and correlations

Panel A reports the descriptive statistics of all variables, and Panel B reports selected contemporaneous

correlations among patent shocks, R&D shocks, stock returns, and other predictors based on available data.

The t-statistics reported are the results of t-tests for mean zero.

Panel A: Descriptive statistics

Mean Median Max. Min. Std. dev. t-stat. 1st order Sample
(%) (%) (%) (%) (%) (zero) autocor. period

Market return, risk-free rate, and inflation
S&P 500 2.414 2.467 20.867 -23.227 7.530 3.57 -0.007 1977Q1-2007Q4
1-M T-bill 1.475 1.332 3.453 0.222 0.740 22.20 0.944 1977Q1-2007Q4
Inflation 0.887 0.716 2.769 0.160 0.564 17.79 0.871 1976Q1-2007Q4

Technological growth and technology shocks
rpat 0.595 0.525 0.986 0.342 0.186 36.11 0.974 1976Q1-2007Q4
rrd 1.423 1.427 1.677 1.076 0.139 83.66 0.937 1990Q2-2006Q4
Tech1 0.009 0.007 0.085 -0.095 0.027 3.54 0.622 1977Q1-2007Q4
Tech2 -0.014 -0.009 0.090 -0.125 0.048 -2.24 0.808 1991Q2-2006Q4

Other predictors
cay 0.279 0.232 3.583 -3.622 1.427 2.18 0.880 1976Q1-2006Q4
SW 89.88 87.48 98.18 81.71 4.438 226.6 0.956 1976Q1-2007Q4
RRel -0.007 -0.005 0.811 -0.955 0.320 -0.23 0.681 1976Q1-2007Q4
d− p -359.9 -353.1 -277.9 -449.8 47.78 -85.05 0.986 1976Q1-2007Q4
d− e -81.05 -84.91 -26.93 -119.0 22.09 -41.51 0.957 1976Q1-2007Q4
Term 1.671 1.723 3.800 -1.430 1.277 14.81 0.868 1976Q1-2007Q4
Default 1.065 0.928 2.513 0.560 0.416 28.93 0.904 1976Q1-2007Q4

Panel B: Correlations between technology shocks and other variables

Tech1 S&P500 cay SW RRel d− p d− e Term Default
Tech1 1.000 0.251 0.143 -0.230 0.168 -0.119 -0.255 0.000 -0.213
Tech2 0.111 0.219 0.181 0.077 0.166 0.120 -0.112 -0.203 -0.657
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Table 2: Patent shocks, R&D shocks, and S&P500 returns

This table reports the coefficients, t-statistics, and adjusted R-squares of the following

predictive regressions: rs
t+1 = const. + b Techt + ut+1 and re

t+1 = const. + b Techt + ut+1,

where rs denotes S&P500 real returns, re denotes S&P500 excess returns, Techt denotes

patent shocks (Tech1) or R&D shocks (Tech2), and ut+1 denotes residuals. In the lower

panel, I standardize patent shocks and R&D shocks for interpretational purpose. The

numbers in parentheses denote the t-statistics based on the Newey-West (1987) standard

errors, and the numbers in brackets denote the t-statistics of Hodrick’s (1992) 1B standard

errors. Sample period: 1977Q1–2007Q4 for patent shocks and 1991Q2–2006Q4 for R&D

shocks.

Shocks in original scale
Real returns Excess returns
] const. Tech1 Tech2 adjR2 ] const. Tech1 Tech2 adjR2

1 0.006 84.90 0.085 3 0.000 83.06 0.081
(0.87) (3.31) (0.05) (3.31)
[0.75] [2.44] [0.04] [2.43]

2 0.022 45.94 0.076 4 0.018 41.25 0.059
(2.64) (2.46) (2.09) (2.24)
[2.39] [1.80] [1.91] [1.65]

Standardized shocks
Real returns Excess returns
] const. Tech1 Tech2 adjR2 ] const. Tech1 Tech2 adjR2

5 0.014 0.023 0.085 7 0.008 0.023 0.081
(2.26) (3.31) (1.28) (3.31)
[1.95] [2.44] [1.07] [2.43]

6 0.016 0.022 0.076 8 0.012 0.020 0.059
(1.83) (2.46) (1.37) (2.24)
[1.74] [1.80] [1.31] [1.65]
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Table 4: Patent shocks, R&D shocks, and S&P500 returns in the long run

I run the following multiple-horizon predictive regressions: rs
t+k + ...+rs

t+1 = const.+b Tech1
t (or Tech2

t )+ut+k,t

and re
t+k + ... + re

t+1 = const. + b Tech1
t (or Tech2

t ) + ut+k,t, where rs denotes S&P500 real returns, re denotes

S&P500 excess returns, k denotes the length of forecasting horizon, and ut+k,t denotes the overlapping residual.

The sample periods involving patent shocks (Tech1) and R&D shocks (Tech2) are 1977Q1–2007Q4 and 1991Q2–

2006Q4, respectively. Note that both patent shocks and R&D shocks have been standardized for interpretational

purpose. Numbers in brackets are t-statistics based on the Hodrick (1992) 1B standard errors. The reported

coefficients have been standardized by the number of quarters (k) to be comparable to one-quarter ahead

predictive regressions.

Panel A: Real Returns Panel B: Excess Returns

] const. b (Tech1)/k b (Tech2)/k adjR2 ] const. b (Tech1)/k b (Tech2)/k adjR2

4-Quarter 4-Quarter
1 0.015 0.013 0.102 7 0.009 0.012 0.096

[2.13] [2.23] [1.23] [2.15]
2 0.016 0.013 0.098 8 0.011 0.011 0.069

[1.85] [1.72] [1.38] [1.47]

8-Quarter 8-Quarter
3 0.015 0.008 0.082 9 0.009 0.008 0.077

[2.13] [1.96] [1.23] [1.85]
4 0.015 0.010 0.076 10 0.011 0.007 0.036

[1.65] [1.88] [1.23] [1.26]

12-Quarter 12-Quarter
5 0.024 0.010 0.084 11 0.009 0.006 0.079

[2.13] [2.16] [1.38] [2.21]
6 0.014 0.009 0.061 12 0.011 0.006 0.020

[1.97] [1.35] [1.50] [0.90]
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Table 5: The predictive abilities of other proxies of technological innovations

The upper panel reports the descriptive statistics of other technology shocks. The t-statistics reported

are the results of t-tests for mean zero. In the lower panel, I run the following regressions: rs
t+1 =

const. + b Techt + ut+1 and re
t+1 = const. + b Techt + ut+1, where rs denotes S&P500 real returns,

re denotes S&P500 excess returns, Techt denotes other technology shocks, and ut+1 denotes residuals.

Note that all shocks used in regressions have been standardized for interpretational purpose. Numbers

in parentheses are the t-statistics of the Newey-West (1987) estimator, adjusted for serial correlation

and heteroskedasticity.

Mean Median Max. Min. Std. dev. t-stat. 1st order Sample
(%) (%) (%) (%) (%) (zero) autocor. period

A.1: Rolling AR(1)
Patent 0.004 0.004 0.210 -0.112 0.034 1.42 0.093 1977Q2-2007Q4
R&D -0.007 -0.006 0.091 -0.095 0.036 -1.43 0.030 1991Q3-2006Q4

A.2: Eight-quarter moving averages
Patent 0.020 0.017 0.118 -0.040 0.030 7.05 0.753 1978Q1-2007Q4
R&D -0.020 -0.018 0.117 -0.156 0.072 -2.14 0.901 1992Q2-2006Q4

B.1: Rolling AR(1) B.2: Eight-quarter moving averages
] const. b (Patent) b (R&D) adjR2 ] const. b (Patent) b (R&D) adjR2

Real returns Real returns
1 0.014 0.012 0.015 5 0.015 0.016 0.046

(2.02) (2.22) (2.23) (2.70)
2 0.015 0.014 0.018 6 0.016 0.020 0.070

(1.56) (1.47) (1.69) (2.14)

Excess returns Excess returns
3 0.008 0.012 0.016 7 0.009 0.016 0.045

(1.17) (2.37) (1.31) (2.63)
4 0.011 0.013 0.012 8 0.012 0.017 0.052

(1.17) (1.33) (1.27) (1.84)

28



Table 6: Summary statistics: International data

This table reports the summary statistics of all variables considered in the empirical analysis of international

data including Canada, China, France, Germany, India, Italy, Japan, and U.K. The t-statistics reported are

the results of t-tests for mean zero.

Mean Median Max. Min. Std. t-stat. 1st auto.
Variable (%) (%) (%) (%) (%) (zero) autocor.

Canada Market returns 2.66 2.49 23.53 -24.70 8.02 3.36 0.04
1982Q2-2007Q4 Inflation 0.73 0.70 3.06 -0.91 0.62 12.00 0.75

Risk-free rate 1.64 1.40 3.87 0.50 0.84 19.89 0.96
R&D shocks -0.02 -0.02 0.10 -0.17 0.05 -5.34 0.60

China Market returns 1.72 -0.40 80.87 -35.23 20.84 0.64 -0.13
1993Q1-2007Q4 Inflation 5.19 1.89 26.87 -2.05 7.59 5.29 0.97

Risk-free rate 1.22 0.63 2.75 0.50 0.88 10.79 0.98
Patent shocks -0.08 -0.07 0.85 -0.76 0.27 -2.38 0.68

France Market returns 2.83 3.39 29.85 -27.35 10.61 1.96 -0.04
1989Q1-2007Q4 Inflation 0.49 0.51 1.36 -0.23 0.35 13.35 0.87

Risk-free rate 1.34 0.99 2.91 0.50 0.74 15.34 0.98
R&D shocks -0.06 -0.06 0.01 -0.16 0.04 -12.35 0.98

Germany Market returns 3.35 4.80 35.11 -36.82 11.59 3.01 -0.04
1981Q3-2007Q4 Inflation 0.62 0.45 13.53 -0.43 1.36 4.70 0.20

Risk-free rate 1.20 0.99 2.94 0.45 0.56 22.03 0.97
R&D shocks -0.02 -0.01 0.08 -0.09 0.03 -7.24 0.68

India Market returns 4.61 6.35 31.12 -18.66 13.40 2.27 0.18
2000Q4-2007Q4 Inflation 1.12 0.98 2.80 -0.89 0.98 6.51 -0.02

Risk-free rate 2.89 2.88 3.31 2.69 0.16 85.75 0.92
R&D shocks 0.00 -0.02 0.13 -0.15 0.09 0.13 0.02

Italy Market returns 2.57 1.36 46.28 -21.12 11.27 1.72 -0.00
1994Q2-2007Q4 Inflation 0.66 0.63 1.86 0.00 0.33 15.20 0.86

Risk-free rate 1.23 1.00 2.78 0.50 0.70 13.34 0.97
R&D shocks -0.02 -0.02 0.03 -0.12 0.03 -4.94 0.71

Japan Market returns 1.14 2.19 23.16 -34.30 11.02 0.99 0.11
1985Q2-2007Q4 Inflation 0.16 0.06 0.93 -0.34 0.31 4.97 0.97

Risk-free rate 0.43 0.13 1.50 0.03 0.45 9.06 0.98
R&D shocks -0.04 -0.24 12.47 -17.89 4.22 -0.09 -0.29

U.K. Market returns 2.48 3.45 18.97 -27.61 8.07 2.98 -0.02
1984Q3-2007Q4 Inflation 0.92 0.77 4.68 -0.67 0.82 10.87 0.43

Risk-free rate 1.82 1.48 3.63 0.85 0.78 22.66 0.97
R&D shocks -0.01 -0.01 0.03 -0.07 0.02 -6.04 0.72
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Fig. 1. The level and growth of U.S. patents and R&D expenses. The upper panel: The solid line denotes patent stock (the number 
of total successful patent applications in thousands) and the dashed line denotes R&D stock (the accumulation of real industry 
R&D expenses in billions of USD in 1996). The lower panel: The solid line denotes patent growth and the dotted line denotes 
R&D growth. In both panels, the left vertical axis is for patent data, and the right vertical axis is for R&D data. All details are 
provided in Section 2.1. 
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Fig. 2. Patent-based and R&D-based technology shocks. I plot the patent shocks (Tech1) in the upper panel and the R&D shocks 
(Tech2) in the lower panel. Note that these shocks have been standardized for interpretational purpose. Details are provided in 
Section 2.2. 
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Fig. 3. International technological growth and shocks. This figure shows patent growth and patent shocks in China, and R&D 
growth and R&D shocks in G6 plus India. The solid line denotes the growth and the dashed line denotes the shocks. The left 
vertical axis is set for the growth, and the right vertical axis is set for the shocks. The horizontal axis is set for the year. Details are 
provided in Section 4. 
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