<table>
<thead>
<tr>
<th>Title</th>
<th>Association of a genetic variant in adrenomedullin gene with its plasma level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Cheung, BMY; Ong, KL; Tso, AWK; Leung, RYH; Cherny, SS; Sham, PC; Lam, TH; Lam, KSL</td>
</tr>
<tr>
<td>Citation</td>
<td>The 16th Annual Research Conference (MRC 2011), Department of Medicine, The University of Hong Kong, Hong Kong, 22 January 2011. In Hong Kong Medical Journal, 2011, v. 17, suppl. 1, p. 19, abstract no. 19</td>
</tr>
<tr>
<td>Issued Date</td>
<td>2011</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10722/140173</td>
</tr>
<tr>
<td>Rights</td>
<td>Hong Kong Medical Journal. Copyright © Hong Kong Academy of Medicine Press.; This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.</td>
</tr>
</tbody>
</table>
Gamma-glutamyl transferase level predicts the development of hypertension in Hong Kong Chinese

BMY Cheung, KL Ong, AWK Tso, SS Cherny, PC Sham, TH Lam, KSL Lam

Department of Medicine, The University of Hong Kong, Hong Kong

Introduction: Liver enzymes are elevated in cardiometabolic diseases, particularly when there is non-alcoholic fatty liver disease. We therefore investigated if hypertension is associated with elevated levels of alkaline phosphatase (ALP), alanine aminotransferase (ALT), aspartate aminotransferase and \(\gamma\)-glutamyl transferase (GGT).

Methods: We included 235 hypertensive and 708 normotensive subjects from the Hong Kong Cardiovascular Risk Factor Prevalence Study-2 (CRISPS-2). Four SNPs (rs3814700, rs11042725, rs34354539 and rs4910118) in ADM were genotyped. Plasma C-reactive protein (CRP), fibrinogen, interleukin-6 (IL-6) and adiponectin were also measured.

Results: There was a marginally significant trend of decreasing age with increasing tertiles of plasma adrenomedullin (beta=-0.089, P=0.049). Each tertile of plasma adrenomedullin was associated with a plasma IL-6 level 11.9% (95% CI, 2.6-20.3%) lower (beta=-0.116, P=0.014). Plasma adrenomedullin level was not related to other clinical characteristics, including plasma CRP, fibrinogen and adiponectin levels. The four SNPs—rs3814700, rs11042725, rs34354539 and rs4910118—had minor allele frequencies of 31.1%, 28.7%, 33.8% and 23.4%, respectively. Carriers of the minor allele of rs4910118 had plasma adrenomedullin level 10.5% (95% CI, 2.5-17.8%) lower than the non-carriers (beta=-0.115, P=0.011). Haplotype analysis revealed a similar significant association with plasma adrenomedullin (overall P=0.040).

Conclusions: Plasma adrenomedullin is influenced by its genetic variants and is associated with plasma IL-6, but not other plasma biomarkers related to inflammation and obesity in Hong Kong Chinese.

Acknowledgement: This study was funded by Hong Kong Research Grant Council grants (HKU7229/01M and HKU7626/07M) and the Sun Chieh Yeh Heart Foundation.

Association of a genetic variant in adrenomedullin gene with its plasma level

BMY Cheung, KL Ong, AWK Tso, RYH Leung, SS Cherny, PC Sham, TH Lam, KSL Lam

Department of Medicine, The University of Hong Kong, Hong Kong

Introduction: Adrenomedullin is an adipokine with vasodilatory property. It plays a role in both acute and chronic inflammatory responses. However, there are no studies on the relationship of common single nucleotide polymorphisms (SNPs) in the gene encoding adrenomedullin (ADM) with plasma adrenomedullin. We, therefore, investigated the relationship of plasma adrenomedullin with other biomarkers related to inflammation and obesity, and SNPs in ADM.

Methods: Plasma adrenomedullin was measured by radioimmunoassay in 476 unrelated Hong Kong Chinese subjects, randomly selected from the population-based Hong Kong Cardiovascular Risk Factor Prevalence Study-2. Four SNPs (rs3814700, rs11042725, rs34354539 and rs4910118) in ADM were genotyped. Plasma C-reactive protein (CRP), fibrinogen, interleukin-6 (IL-6) and adiponectin were also measured.

Results: There was a marginally significant trend of decreasing age with increasing tertiles of plasma adrenomedullin (beta=-0.089, P=0.049). Each tertile of plasma adrenomedullin was associated with a plasma IL-6 level 11.9% (95% CI, 2.6-20.3%) lower (beta=-0.116, P=0.014). Plasma adrenomedullin level was not related to other clinical characteristics, including plasma CRP, fibrinogen and adiponectin levels. The four SNPs—rs3814700, rs11042725, rs34354539 and rs4910118—had minor allele frequencies of 31.1%, 28.7%, 33.8% and 23.4%, respectively. Carriers of the minor allele of rs4910118 had plasma adrenomedullin level 10.5% (95% CI, 2.5-17.8%) lower than the non-carriers (beta=-0.115, P=0.011). Haplotype analysis revealed a similar significant association with plasma adrenomedullin (overall P=0.040).

Conclusions: Plasma adrenomedullin is influenced by its genetic variants and is associated with plasma IL-6, but not other plasma biomarkers related to inflammation and obesity in Hong Kong Chinese.

Acknowledgement: This study was funded by Hong Kong Research Grant Council grants (HKU7229/01M and HKU7626/07M) and the Sun Chieh Yeh Heart Foundation.