<table>
<thead>
<tr>
<th>Title</th>
<th>A systematic review on the anxiolytic effects of aromatherapy in people with anxiety symptoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Lee, YL; Wu, Y; Tsang, HWH; Leung, AY; Cheung, WM</td>
</tr>
<tr>
<td>Citation</td>
<td>Journal Of Alternative And Complementary Medicine, 2011, v. 17 n. 2, p. 101-108</td>
</tr>
<tr>
<td>Issued Date</td>
<td>2011</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10722/139791</td>
</tr>
<tr>
<td>Rights</td>
<td>This is a copy of an article published in the Journal of Alternative & Complementary Medicine © 2011 copyright Mary Ann Liebert, Inc.; Journal of Alternative & Complementary Medicine is available online at: http://www.liebertonline.com.; This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.</td>
</tr>
</tbody>
</table>
A Systematic Review on the Anxiolytic Effects of Aromatherapy in People with Anxiety Symptoms

Yuk-Lan Lee, BSc,1 Ying Wu, BSc,1 Hector W.H. Tsang, PhD,1 Ada Y. Leung, MA,1 and W.M. Cheung, PhD2

Abstract

Purpose: We reviewed studies from 1990 to 2010 on using aromatherapy for people with anxiety or anxiety symptoms and examined their clinical effects.

Methods: The review was conducted on available electronic databases to extract journal articles that evaluated the anxiolytic effects of aromatherapy for people with anxiety symptoms.

Results: The results were based on 16 randomized controlled trials examining the anxiolytic effects of aromatherapy among people with anxiety symptoms. Most of the studies indicated positive effects to quell anxiety. No adverse events were reported.

Conclusions: It is recommended that aromatherapy could be applied as a complementary therapy for people with anxiety symptoms. Further studies with better quality on methodology should be conducted to identify its clinical effects and the underlying biologic mechanisms.

Introduction

Anxiety is a psychologic and physiologic state characterized by cognitive, somatic, emotional, and behavioral components.1 About 4%-6% of the global population suffer from various forms of anxiety disorders with such symptoms as high blood pressure, elevated heart rate, sweating, fatigue, unpleasant feeling, tension, irritability, and restlessness.2 If untreated, 40%-50% of the patients would progress to depression and have suicidal thoughts.3 The symptoms bring huge negative impact to their families, social, and occupational roles. National statistics show that in the United States, anxiety disorders incurred $46.6 billion direct and indirect costs each year, which constituted nearly one third of the nation’s total mental health expenses.4

Pharmacologic and psychologic treatments have remained the conventional interventions to treat anxiety disorders for the past 30 years.5 However, pharmacologic treatment causes many side-effects. For example, benzodiazepine, a popular medication with powerful anxiolytic effects, has been well known for its side-effects including sedation, muscle relaxation, headache, and ataxia.6 These side-effects significantly reduce adherence of the patients. Another problem is that some anti-anxiety drugs are potentially addictive. Recurrence of anxiety symptoms will result from removal of the drugs.7 Psychologic treatment, especially cognitive behavior therapy, is the main alternative to drug therapy.5

Unfortunately, the effect is not at all conclusive based on available information.8 Recently, a remarkable increase in the use of complementary and alternative medicine (CAM) around the globe is evidenced. Aromatherapy is a commonly used CAM that has long been regarded as a popular means of treatment for anxiety. It involves the therapeutic use of essential, aromatic oils, commonly combined with therapeutic massage and excitation of the olfactory system, to induce relaxation and thus quell certain anxiety symptoms.9 Aromatherapy is claimed to be beneficial to the mental, psychologic, spiritual, and social aspects, although they are less quantitatively measurable. With respect to safety, it is reported that that aromatherapy is relatively free of adverse effects compared with conventional drugs.10

Unlike conventional medicine, the effectiveness of aromatherapy remains unclear and is still under intensive research. To date, there is only one relevant review on aromatherapy for depression.11 Although depression and anxiety are usually co-occurring, a separate systematic review on the anxiolytic effects of aromatherapy is still needed. To date, there has not been a systematic review on the anxiolytic effects of aromatherapy. The purpose of the current review is to fill the gap by unraveling the effectiveness of aromatherapy on relieving anxiety symptoms. Based on extant literature, the evidence was integrated so as to aid in gaining a better understanding on the clinical use of...
aromatherapy as a CAM to treat people suffering from anxiety symptoms.

Methods

Literature search

Studies used in this review were extracted from MEDLINE®, Social Sciences Citation Index, Science Citation Index, PsycINFO, PsyARTICLES, Journals@Ovid, MD Consult, ScienceDirect, EBSCOHOST, and Handbook of Psychiatry, from 1990 to 2008, using keywords “anxiety disorder,” “anxiety,” “anxious symptom” and “anxiolytic effects” and “aromatherapy”, “aroma,” or “essence oil.” Only English publications were included. Potential titles were retrieved for the second stage of review. The titles and the available abstracts were then independently reviewed. Neither of the reviewers was blind to the author name, institution, and/or the journal.

The target was to extract randomized controlled trials (RCT) that used aromatherapy as the intervention to relieve anxiety symptoms that were measured by validated inventories. A study was operationally defined as a RCT in this review if the allocation of participants to treatment and comparison groups was reported to be randomized, the sample size was not less than 10 in each arm, the participants were aged 18 or older, and anxiety was included as the outcome measure. Studies that did not use any type of comparison group, were qualitative in nature, and were systematic review or meta-analysis were excluded.

Quality assessment

Studies selected based on the above criteria, and methods were evaluated for methodological vigor. Guidelines set out by Glasziou et al. were followed, and the quality of the studies was assessed by reviewing whether they fulfilled the criteria of control randomization, allocation concealment, intention to treat, and blindedness. Adequately concealed RCT means that the trial had a clear description of its allocation procedure, central randomization, and allocation from site apart from the study area and/or blinding allocation procedure. An RCT is considered to have used intention-to-treat analysis if all the randomized participants were analyzed with no differences between the treatment allocation before and after application of treatment procedure. A study was classified as “single blind” if the outcome measure was conducted by an assessor who was blind to the treatment allocation while the participants were not blind to the treatment. A study was classified as “double blind” if both the assessor of outcome measure and the participants were blind to the treatment allocation. A study was considered not blind if neither the assessor nor the participants were blind to the outcome measure and treatment allocation, respectively.

Data synthesis

Due to heterogeneity of the study populations, psychometric instruments, and intervention trials, quantitative analysis on the effect size was not performed. However, qualitative analysis using the Sjösten method was employed to classify interventions as having positive, negative, or no effect as determined by whether significant differences in anxiety symptoms were observed in at least one of the outcome measures between the study groups.

Results

Study description

The numbers of citations returned from the database search were 70, 73, and 42 for MEDLINE, SCSC, SCI, and others (PsycINFO, PsyARTICLES, Journals@Ovid, MD Consult, ScienceDirect, EBSCOHOST, and Handbook of Psychiatry), respectively, in March 2010. Fifty-two (52) relevant publications were extracted for further evaluation. After abstract screening at the first stage and full-text screening at the second stage, 16 studies met the inclusion criteria. Figure 1 summarizes the selection process of the eligible RCTs.

Table 1 summarizes the methods and results of the 16 qualified RCTs. The total number of subjects involved was 25,377, in which the female-to-male ratio was 24,887:490. The age of the participants ranged from 18 to 90 years ($M = 47.77$). All subjects suffered from obvious anxiety symptoms. Patients receiving palliative care were reported in three studies. Healthy volunteers with experimentally induced stress were the second most popular client types that were reported in two studies. Other studies recruited different types of clients, including mothers in labor, postpartum mothers, women prepared for surgical abortion, patients prepared for endoscopy procedure, patients prepared for dental procedures, patients with cancer during radiotherapy, nursing students attended for stressful surgical disease examination, patients with cancer with clinically diagnosed with anxiety/depression, patients with moderate and severe dementia, patients in hematology transplant unit, and patients primarily diagnosed with generalized anxiety disorder. The types of aromatherapy administration in the RCTs included aromatherapy massage, inhalation, tablet intake, and footbath. The intervention duration of aromatherapy massage ranged from 20 minutes to 1 hour, and the duration of inhalation ranged from 5 minutes to 1 hour. The most commonly used essential oil used in these studies was lavender.

Outcomes

Only 14 studies adopted a control group with a compatible “conventional therapy” or a “placebo,” and the remaining two studies used a control group with “no active treatment.” Fourteen (14) studies reported positive findings as to the anxiolytic effects of aromatherapy, while the remaining two studies reported no effect of the aromatherapy toward anxiety symptoms. In comparing changes and improvement between the aromatherapy and control groups providing no active interventions, the subjects who received aromatherapy usually showed better outcomes than those in the control groups. However, when comparing the effect of aromatherapy to a conventional treatment or a placebo (e.g., massage with carrier oil, inactive coated tablets, benzodiazepine, sniff a hair conditioner, music therapy, etc.), the results were inconsistent. Seven (7) studies indicated that aromatherapy had benefits that were superior to conventional therapy or placebo. In contrast, five studies reported that the therapeutic effects between massage group and aromatherapy group were similar. One
(1) study16 reported that the anxiolytic effect of massage with carrier oil only was significantly better than those receiving massage with essential oil. One study reported that an oral lavender oil capsule is as effective as lorazepam, a benzodiazepine, in adults with generalized anxiety disorder.31 Two (2) studies26,28 had follow-up data after the treatment. Both of them suggested that no long-term effect was evidenced, and aromatherapy did not appear to confer benefit on anxiety.

Study quality

All studies applied random allocation. Seven of the 16 studies nevertheless had no clear description on the randomization procedures.16,17,19,22,23,25,29 Only one study21 described the concealment of allocation procedure, but the description was inadequate. Double-blindedness during outcome assessment was described in three studies20,30,31 and single-blindedness in six studies.21,22,26,28 The massage therapists in the studies did not belong to the research team and did not need to conduct assessments of the subjects in order to ensure the double-blindedness. Seven (7) of the 16 studies did not mention whether blinding techniques were applied.16–19,23,27,29 Intention-to-treat analysis was employed in 11 studies.19–24,26–30 One (1) study16 mentioned the high dropout rate due to the long research period. In addition, the number of subjects recruited for individual studies varied greatly, from 24 to 23,857.

Pooled effect size

State Anxiety Inventory (SAI) was commonly used in the 16 reviewed studies. Pooled effect size of the outcome measure of SAI is conducted from pre- and post- means and standard deviations of the control and treatment groups of three studies.18,26,27 Other studies are not included because corresponding authors could not be contacted for further information. Pooled effect size is shown in Table 2.
<table>
<thead>
<tr>
<th>Study</th>
<th>No. subjects</th>
<th>No. control</th>
<th>Mean age</th>
<th>% Women</th>
<th>Country</th>
<th>Type of intervention</th>
<th>Aromatherapy elements</th>
<th>Type of subjects</th>
<th>Instrument</th>
<th>Type of study</th>
<th>Individual/group</th>
<th>Follow-up after intervention</th>
<th>Duration</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burns et al.</td>
<td>8058</td>
<td>15799</td>
<td>Not mentioned</td>
<td>100</td>
<td>UK</td>
<td>Aroma inhalation/ massage/ foot-bath of essential oil</td>
<td>Rose, jasmine, chamomile, eucalyptus, lemon, mandarin, clary sage, frankincense, lavender, and peppermint</td>
<td>Mothers presented in labor</td>
<td>Mother's rating of effectiveness; outcome of labor</td>
<td>RCT</td>
<td>Individual</td>
<td>No</td>
<td>8 years</td>
<td>1</td>
</tr>
<tr>
<td>Burnett et al.</td>
<td>1. Rosemary group: 25</td>
<td>2. Lavender group: 23</td>
<td>Ranged from 18 to 31</td>
<td>57.53</td>
<td>United States</td>
<td>Aroma inhalation</td>
<td>Lavender and rosemary</td>
<td>Volunteers with laboratory-induced stress</td>
<td>Profile of Mood States & heart rate</td>
<td>RCT</td>
<td>Individual</td>
<td>No</td>
<td>10 minutes</td>
<td>Not mentioned</td>
</tr>
<tr>
<td>Fujii et al.</td>
<td>14</td>
<td>78</td>
<td>Japan</td>
<td>67.86</td>
<td>Japan</td>
<td>Aroma inhalation oil</td>
<td>Lavender</td>
<td>Patients with moderate and severe dementia</td>
<td>Neuropsychiatric Inventory—NPI (structured interview with caregiver)</td>
<td>RCT</td>
<td>Individual</td>
<td>No</td>
<td>1 hour</td>
<td>84 sessions</td>
</tr>
<tr>
<td>Graham et al.</td>
<td>1. Carrier oil with fractionated oils group: 11</td>
<td>2. Carrier oil group: 11</td>
<td>65</td>
<td>4792</td>
<td>Australia</td>
<td>Mildly to moderately anxious patients with cancer during radiotherapy</td>
<td>Lavender, bergamot, and cedar-wood</td>
<td>Essential oils of lavender, bergamot, and cedar-wood</td>
<td>Hospital Anxiety and Depression scale – HADS; Somatic and Psychological Health Report-SFHE</td>
<td>RCT</td>
<td>Group</td>
<td>No</td>
<td>Not mentioned</td>
<td>1</td>
</tr>
<tr>
<td>Imura et al.</td>
<td>20</td>
<td>31.9</td>
<td>100 Japan</td>
<td>Japan</td>
<td>Aromatherapy massage</td>
<td>Neroli and lavender</td>
<td>Postpartum mother</td>
<td>STAI-State Anxiety Inventory</td>
<td>Quasi-experimental study</td>
<td>RCT</td>
<td>Group</td>
<td>No</td>
<td>30 minutes</td>
<td>Not mentioned</td>
</tr>
<tr>
<td>Kennedy et al.</td>
<td>24 received 3 separate single doses separated by a 7-day washout period</td>
<td>20</td>
<td>50 UK</td>
<td>23.48</td>
<td>UK</td>
<td>Aroma tablet intake</td>
<td>M. officinalis and V. officinalis</td>
<td>Melissa officinalis and Valeriana officinalis</td>
<td>STAI-State Anxiety Inventory</td>
<td>RCT</td>
<td>Group</td>
<td>No</td>
<td>5 study days separated by 7 days washout period</td>
<td>5</td>
</tr>
<tr>
<td>Kutlu et al.</td>
<td>50</td>
<td>45</td>
<td>Turkey</td>
<td>20.51</td>
<td>Turkey</td>
<td>Aroma inhalation</td>
<td>Lavender fragrance</td>
<td>Nursing students who attended the stressful surgical disease examination</td>
<td>STAI-State Anxiety Inventory</td>
<td>RCT</td>
<td>Group</td>
<td>No</td>
<td>60 minutes</td>
<td>1</td>
</tr>
<tr>
<td>Kyle</td>
<td>12</td>
<td>Not mentioned</td>
<td>100 UK</td>
<td>40.5</td>
<td>Austria</td>
<td>Aromatherapy massage/ aromastone</td>
<td>Santalium album oil</td>
<td>Palliative care patients</td>
<td>STAI-State Anxiety Inventory</td>
<td>RCT</td>
<td>Individual</td>
<td>No</td>
<td>4 weeks</td>
<td>4</td>
</tr>
<tr>
<td>Lehner et al.</td>
<td>1. Lavender group: 48</td>
<td>2. Orange odor group: 50</td>
<td>51</td>
<td>40.5</td>
<td>Austria</td>
<td>Aroma inhalation/music therapy</td>
<td>Orange oil and lavender oil</td>
<td>Patients waiting for dental procedures</td>
<td>STAI-State Anxiety Inventory Mehrdimensionale Befindlichkeitsfragebogen-MDBF</td>
<td>RCT</td>
<td>Group</td>
<td>No</td>
<td>Not mentioned</td>
<td>Not mentioned</td>
</tr>
</tbody>
</table>

(continual)
Table 1. (Continued)

<table>
<thead>
<tr>
<th>Study</th>
<th>No. subjects</th>
<th>No. control</th>
<th>Mean age</th>
<th>% Women</th>
<th>Country</th>
<th>Type of intervention</th>
<th>Aromatherapy elements</th>
<th>Type of subjects</th>
<th>Instrument</th>
<th>Type of study</th>
<th>Individual/group</th>
<th>Follow-up after intervention</th>
<th>Duration</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muzzarelli et al.23</td>
<td>61</td>
<td>57</td>
<td>52</td>
<td>50</td>
<td>United States</td>
<td>Aroma inhalation</td>
<td>Lavender oil</td>
<td>5 minutes</td>
<td>STAI–State Anxiety Inventory</td>
<td>RCT</td>
<td>Individual</td>
<td>No</td>
<td>5 minutes</td>
<td>Not mentioned 4</td>
</tr>
<tr>
<td>Soden et al.17</td>
<td></td>
<td>13</td>
<td>Ranged from 44 to 85</td>
<td>76.19</td>
<td>UK</td>
<td>Aromatherapy massage</td>
<td>Lavender essential oil</td>
<td>Patients with specialist palliative care unit</td>
<td>Hospital Anxiety and Depression–HAD</td>
<td>RCT</td>
<td>Individual</td>
<td>No</td>
<td>30 minutes</td>
<td>Not mentioned 4</td>
</tr>
</tbody>
</table>
| Stringer, et al.28 | 13 | Ranged from 19 to 70 | 58.97 | UK | Aromatherapy massage | Varied from 40 oil blends | Patients in the Hematology Transplant unit | 1. Serum cortisol and prolactin levels
2. Quality of Life (EORTC QLQ-C30)
3. Semistructured interview
4. Therapist’s sessional diary | Verbal Anxiety Scale | RCT | Individual | Yes (follow-up ½ hourly for 2 hours and at 24 hours) | 20 minutes, the whole experiment took 24 hours | 1 |
| Wiebe30 | 36 | 30 | 26.5 | 100 | Canada | Aroma inhalation | Vetivert, bergamot, and geranium oil | Women waiting for surgical abortions with preoperative anxiety Palliative care patients | 1. State–Trait Anxiety Inventory
2. Rotterdam Symptom Checklist
3. Semistructured questionnaire State anxiety inventory
4. Center for Epidemiological Studies–depression
5. Quality of life (EORTC)
6. Hamilton Anxiety Rating Scale
7. Self-rating Anxiety Scale
8. Peen Sate Worry Questionnaire
9. SF-36 Health Survey Questionnaire
10. Clinical Global Impressions of severity of disorder
11. Sleep diary | RCT | Individual | No | 10 minutes | Not mentioned 4 |
| Wilkinson et al.18 | 43 | 44 | 53.5 | 89.66 | UK | Aromatherapy massage | Roman chamomile essential oil (% was not mentioned) | Cancer patients | 1. State anxiety inventory
2. Rotterdam Symptom Checklist
3. Semistructured questionnaire State anxiety inventory
4. Center for Epidemiological Studies–depression
5. Quality of life (EORTC)
6. Hamilton Anxiety Rating Scale
7. Self-rating Anxiety Scale
8. Peen Sate Worry Questionnaire
9. SF-36 Health Survey Questionnaire
10. Clinical Global Impressions of severity of disorder
11. Sleep diary | RCT | Individual | No | 3 weeks | Not mentioned 4 |
| Wilkinson et al.26 | 144 | 144 | 52.1 | 86.81 | UK | Aromatherapy massage | Not specified (20 essential oil) | Cancer patients | 1. State anxiety inventory
2. Rotterdam Symptom Checklist
3. Semistructured questionnaire State anxiety inventory
4. Center for Epidemiological Studies–depression
5. Quality of life (EORTC)
6. Hamilton Anxiety Rating Scale
7. Self-rating Anxiety Scale
8. Peen Sate Worry Questionnaire
9. SF-36 Health Survey Questionnaire
10. Clinical Global Impressions of severity of disorder
11. Sleep diary | RCT | Individual | Yes | 4 weeks | 4 |
| Woelk et al.35 | 40 | 37 | Not mentioned | 76.6 | Germany | Aroma tablet intake | Lavender | Patients primarily diagnosis of generalized anxiety disorder | | RCT | Group | No | 6 weeks | Not mentioned 4 |

EORTC, European Organization for Research on the Treatment of Cancer; QLQ-C30, Quality of Life Questionnaire—C30.
in research and clinical practice. The meta-analysis of studies, was the most commonly used among the 16 studies. It is reported to be a reliable and valid self-rating assessment tool on evaluating anxiety levels in eight results.

The recruitment of participants to assure the validity of the study in our review in fact examined the effects of aromatherapy on secondary anxiety symptoms in various types of participants, including people with cancer, dementia, postpartum mothers, and healthy volunteers. In addition, the anxiety levels of the participants differed significantly from mild to moderate in the pretests. The effectiveness of aromatherapy could hardly be compared among participants with different levels of anxiety. Improvement in anxiety symptoms among participants with mild anxiety tended to be insignificant. In contrast, participants with high levels of psychologic distress responded better to aromatherapy interventions. To improve the quality of research efforts in the future, the level of severity of anxiety can be raised to moderate or greater in the recruitment of participants to assure the validity of the results.

The Spielberger State–Trait Anxiety Inventory, adopted as the assessment tool on evaluating anxiety levels in eight studies, was the most commonly used among the 16 studies. It is reported to be a reliable and valid self-rating assessment in research and clinical practice. The meta-analysis of pooled effect size in the current study shows that aromatherapy massage has a median treatment effect for anxiety. However, it should be noted that the pool effect size is obtained from three studies with different essential oils and treatment duration.

As to the administration of aromatherapy, six studies employed aromatherapy massage and seven studies used the method of inhalation. Other modalities such as internal or oral application and footbath were mentioned in three studies. Yim et al. and Imura et al. raised the question of interaction effect with massage. In this review, different implementations of aromatherapy have made the effect non-comparable and undifferentiated. It is obvious that inhalation involved purely olfactory stimulation, internal intake involved both olfactory stimulation and body metabolism, and footbath and aromatherapy massage consisted of olfactory stimulation, somatosensory stimulation, and tactile stimulation. Four (4) studies made comparisons between massage and aromatherapy massage. Three (3) of them stated a tendency for aromatherapy massage to be slightly more effective than the "placebo." One (1) reported that massage alone had slightly better anxiolytic effect than aromatherapy massage. However, the differences were modest and could have been attributed to flaws in the study design. It is therefore important to determine the best modalities of aromatherapy in future studies. Comparison between inhalation, aromatherapy massage, oral intake, and a control group with a compatible "conventional treatment/placebo" in future studies will be necessary to rule out the effects of nonspecific factors and to unify the modalities of aromatherapy.

The quality of the studies’ design prevented drawing firm valid conclusions as to the clinical efficacy of aromatherapy. The size of samples varied largely in the present studies. Except for one study with a large number of participants ($n = 23,857$), five studies used only a small sample size ($n = 24$, $n = 28$, $n = 34$, $n = 36$, $n = 39$). Also, the gender distribution among the participants was uneven, with the female subjects outnumbering ($n = 24,887$) the male subjects ($n = 490$) on the whole ($n = 25,377$) among the five reviewed studies. The reason is that one of the reviewed studies with the largest sample size ($n = 23,857$) involved only female subjects who were in fact mothers in labor. Other than this study, the distribution of gender of other studies was even. Further research should employ comparable numbers of male and female participants. Studies also showed significant differences in the duration of treatment. One (1) study lasted only 5 minutes, while two studies lasted 60 minutes. It is uncertain whether the duration of aromatherapy treatment between studies would have affected the outcomes. Furthermore, the studies adopted different types of essential oil. It is unknown whether the effects were due to a specific essential oil (e.g., lavender, etc.) or the general properties of various essential oils. Although our studies were all RCTs in nature, there were obvious methodological limitations. To provide further evidence for advocating aromatherapy as an effective complementary or alternative treatment to reduce anxiety symptoms, studies with stricter and more vigorous procedures in allocation concealment and blinding should be implemented. Compliance to the therapy should be examined more thoroughly by intention-to-treat analysis.

Notwithstanding the promising therapeutic effects of aromatherapy, there has not been literature that could provide a sound biologic rationale for the use of aromatherapy as a complementary and alternative intervention. The psychobiologic mechanism underlying the anxiolytic effect remains unclear. According to previous research, γ-aminobutyric acid (GABA), one of the brain neurotransmitters, has an inhibitory effect upon the nervous system and hence may be used to calm the overstimulated nervous system under tension and stress. Previous research efforts have suggested that some essential oils (e.g., lavender, etc.) worked similarly to diazepam, which acts as the agonist of GABA. One of the current authors’ reviewed studies also stated that an oral lavender oil capsule, silexan, is as effective as lorazepam, which is a commonly used benzodiazepine. Some studies hypothesized that the anxiolytic effects may be due to the retrieval of pleasant

<table>
<thead>
<tr>
<th>Study</th>
<th>Effect size</th>
<th>Pooled effect size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imura et al.</td>
<td>−1.617</td>
<td>−0.5103</td>
</tr>
<tr>
<td>Wilkinson et al.</td>
<td>−0.0708</td>
<td></td>
</tr>
<tr>
<td>Wilkinson et al.</td>
<td>−0.5030</td>
<td></td>
</tr>
</tbody>
</table>

Discussion

Aromatherapy is the most commonly used CAM for treating anxiety symptoms around the world. Our review reveals that aromatherapy shows a positive anxiolytic effect for patients with anxiety symptoms and more importantly, it is a safe intervention, and no participants in the studies reported any adverse effects. However, drawing conclusions on the effectiveness of aromatherapy for relieving anxiety symptoms should be done with care and caution.

Table 2. Pooled Effect Size of Aromatherapy Massage Studies with State Anxiety Inventory Outcome Measure

<table>
<thead>
<tr>
<th>Study</th>
<th>Effect size</th>
<th>Pooled effect size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imura et al.</td>
<td>−1.617</td>
<td>−0.5103</td>
</tr>
<tr>
<td>Wilkinson et al.</td>
<td>−0.0708</td>
<td></td>
</tr>
<tr>
<td>Wilkinson et al.</td>
<td>−0.5030</td>
<td></td>
</tr>
</tbody>
</table>

The quality of the studies’ design prevented drawing firm valid conclusions as to the clinical efficacy of aromatherapy. The size of samples varied largely in the present studies. Except for one study with a large number of participants ($n = 23,857$), five studies used only a small sample size ($n = 24$, $n = 28$, $n = 34$, $n = 36$, $n = 39$). Also, the gender distribution among the participants was uneven, with the female subjects outnumbering ($n = 24,887$) the male subjects ($n = 490$) on the whole ($n = 25,377$) among the five reviewed studies. The reason is that one of the reviewed studies with the largest sample size ($n = 23,857$) involved only female subjects who were in fact mothers in labor. Other than this study, the distribution of gender of other studies was even. Further research should employ comparable numbers of male and female participants. Studies also showed significant differences in the duration of treatment. One (1) study lasted only 5 minutes, while two studies lasted 60 minutes. It is uncertain whether the duration of aromatherapy treatment between studies would have affected the outcomes. Furthermore, the studies adopted different types of essential oil. It is unknown whether the effects were due to a specific essential oil (e.g., lavender, etc.) or the general properties of various essential oils. Although our studies were all RCTs in nature, there were obvious methodological limitations. To provide further evidence for advocating aromatherapy as an effective complementary or alternative treatment to reduce anxiety symptoms, studies with stricter and more vigorous procedures in allocation concealment and blinding should be implemented. Compliance to the therapy should be examined more thoroughly by intention-to-treat analysis.

Notwithstanding the promising therapeutic effects of aromatherapy, there has not been literature that could provide a sound biologic rationale for the use of aromatherapy as a complementary and alternative intervention. The psychobiologic mechanism underlying the anxiolytic effect remains unclear. According to previous research, γ-aminobutyric acid (GABA), one of the brain neurotransmitters, has an inhibitory effect upon the nervous system and hence may be used to calm the overstimulated nervous system under tension and stress. Previous research efforts have suggested that some essential oils (e.g., lavender, etc.) worked similarly to diazepam, which acts as the agonist of GABA. One of the current authors’ reviewed studies also stated that an oral lavender oil capsule, silexan, is as effective as lorazepam, which is a commonly used benzodiazepine. Some studies hypothesized that the anxiolytic effects may be due to the retrieval of pleasant

table 2. pooled effect size of aromatherapy massage studies with state anxiety inventory outcome measure

<table>
<thead>
<tr>
<th>study</th>
<th>effect size</th>
<th>pooled effect size</th>
</tr>
</thead>
<tbody>
<tr>
<td>imura et al.</td>
<td>−1.617</td>
<td>−0.5103</td>
</tr>
<tr>
<td>wilkinson et al.</td>
<td>−0.0708</td>
<td></td>
</tr>
<tr>
<td>wilkinson et al.</td>
<td>−0.5030</td>
<td></td>
</tr>
</tbody>
</table>
memories by particular smells associated with some essential oils. The unclear biologic mechanisms explaining how aromatherapy reduces anxiety symptoms leave room for further research.

Conclusions
As generally all of the 16 reviewed studies showed a positive result of aromatherapy on anxiety, it is recommended that aromatherapy could be applied as a complementary therapy for people with anxiety symptoms. Although there is no conclusive evidence to show lasting effects of aromatherapy for treating anxiety, it may best be considered as a safe and pleasant intervention for those who can afford it and are prepared to pay for it.

Disclosure Statement
No competing financial interests exist.

References

Address correspondence to:
Hector W.H. Tsang, PhD
Neuropsychiatric Rehabilitation Laboratory
Department of Rehabilitation Sciences
The Hong Kong Polytechnic University
Hung Hom, Hong Kong

E-mail: rshtsang@inet.polyu.edu.hk