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which is always negative for values of A > 27.02. Since the reset
control system produces crossings with the reset surface with intervals
that are lesser than 27.02, then it is not guaranteed that the reset control
system be stable in this case. Fig. 5 shows a simulation for this system,
comparing closed loop outputs both for the base and the reset control
system, for A,, = 0.1. Using again Proposition 4.1, it can be con-
cluded that the closed-loop reset system is asymptotically stable if reset
intervals Ay, k = 0,1, ..., are always greater than A,,, = 27.1.Fig. 6
shows a simulation for A,,, = 30, showing that the system is stable in
spite that the base system is oscillating. For values of A,,, closer to the
stability limit the response become increasingly oscillating.

V. CONCLUSION

Stability conditions dependent on the reset times have been devel-
oped for reset control systems. As a result, reset control systems sta-
bility is determined by using a time-varying discrete time system de-
scribing the evolution of the system after the reset instants. In com-
parison with previous work, the main contribution has been to include
restrictions only at the reset instants, and thus results are less conserva-
tive and can be applied to reset systems with both stable and unstable
base systems. In addition, the time regularization constant has been
used to developed a stabilization result for the case in which the base
system is stable. As a result, a lower bound of the reset intervals always
exists that guarantee stability of the reset system, if no reset action is
performed for reset intervals lower than this bound. Several examples
have been analyzed in detail, showing in particular how reset times
dependent conditions are less conservative that previous reset systems
stability results such as the Hg condition.
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Further Results on Exponential Estimates of Markovian
Jump Systems With Mode-Dependent
Time-Varying Delays

Huijun Gao, Zhongyang Fei, James Lam, and Baozhu Du

Abstract—This technical note studies the problem of exponential
estimates for Markovian jump systems with mode-dependent interval
time-varying delays. A novel Lyapunov-Krasovskii functional (LKF) is
constructed with the idea of delay partitioning, and a less conservative ex-
ponential estimate criterion is obtained based on the new LKF. Illustrative
examples are provided to show the effectiveness of the proposed results.

Index Terms—Delay partitioning, exponential estimates, Markovian
jump systems, mode-dependent time delays.

I. INTRODUCTION

Markovian jump systems have been widely used to model abrupt
changes in structures, such as random failures of the components,
sudden disturbances, variations of the environment, and changes of
the subsystem interconnections. Many researchers have been attracted
to this field and a lot of problems have been investigated, including
H ., control, H filtering, output control, etc [2], [4], [6], [12], [13],
[17]-[19].

On the other hand, the existence of time delays is very common in
practical systems, such as network based control systems, chemical
processes and communication systems. It is also well known that time
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delays may lead to oscillation, divergence and even instability [9], and
a lot of work has been conducted to the systems with time delays [8],
[10]. Meanwhile, considerable amount of efforts have been paid to the
analysis and synthesis problems for Markovian jump systems with time
delays [1], [3], [11], [15].

As one of the most important and fundamental issues to be ad-
dressed, the stability characteristics of Markovian jump systems with
time delays has been studied by many researchers. A delay-indepen-
dent exponential stability criterion was proposed in [16]. Since the
criterion allows the time delay to be arbitrarily large, it tends to be
conservative in general. Special interests have been given to obtain
delay-dependent criteria for Markovian systems with time delays.
In [20], a simple exponential stability criterion was obtained for
Markovian jump system with mode-dependent delays, however, it will
turn to be inapplicable when the delays change rapidly. Furthermore,
though the decay rate can be computed, it is a fixed value that one
cannot adjust to deduce if a larger decay rate is possible. In [14], the
authors proposed a new exponential stability criterion by choosing
a new Lyapunov-Krasovskii functional and introducing some slack
variables to reduce the conservatism caused by bounding techniques.
However, these delay-dependent results assume the time delay is con-
stant or varying between zero and an upper bound, while in practice,
the lower bound may not be restricted to be zero.

In this technical note, we focus on the exponential stability con-
ditions for Markovian jump systems with mode-dependent interval
time-varying delays. To this end, an appropriate Lyapunov—Krasovskii
functional (LKF) is established with the idea of partitioning the lower
bound, which is inspired by the ideas presented in [5], [7]. Then a less
conservative delay-range-dependent exponential stability criterion is
derived based on the new LKF, which is efficient in treating both fast
and slow time-varying delays. Finally, numerical examples are given
to demonstrate the advantages of our method.

Notation: The notation used in this technical note is standard. R"
represents the n-dimensional Euclidean space. For real symmetric ma-
trices X and Y, the notation X > Y means that the matrix X — Y
is positive definite. The superscripts “7T” and “—1” represent matrix
transposition and matrix inverse respectively; 0, denotes zero matrix
with m X n dimensions; an asterisk * represents a term that is induced
by symmetry. || - || stands for the Euclidean norm for matrices and | - |
denotes the spectral norm for vectors. |1, = sup_,_ <,<q |¢(s)] for
the family of any possible continuous ¢. E{-} stands for the expecta-
tion operator with respect to some probability measure. Matrices are
assumed to be compatible for algebraic operations if their dimensions
are not explicitly stated.

II. PROBLEM FORMULATION

Consider the following linear state-delay systems with Markovian
jumping parameters:

#(t) = A(r(t))

w(t) =9(t), te

z(t)+ Ag(r(®)z (t — 7 (r(¥),t))
[—]‘1,2./ 0]. 7(0) =To

(€]
(@)

where () € R” is the system state, A(r(¢)) and A4(7(#)) are matrix
functions of the random jumping process {r(¢)}, r(¢) is a finite state
Markov jump process representing the system mode, and takes discrete
values in a given finite set S = {1,2,..., N}. The transition proba-
bility matrix I = [x,;] is denoted as follows:

mijA +o(A) i#]

1—|—7TZ‘Z‘A—|—O(A) i &)

Pr{r(t+A)=j|r(t) =i} = {
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where A > 0, and 7;; > 0O, for ¢ # j, is the transition rate from mode
7 at time # to mode j at time ¢t + A and

s
E Ti; = —T45

J=1,5#

“

for each mode i € S, 0(A)/A — 0. 7;(¢) denotes the mode depen-
dent time-varying state delay in the system, and satisfies the following
condition:

0 <hii <7i(t) < hgi <0
7i(t) < i

(&)
(6)

where h1;, ho; and p; are constant foré € S.v¢(t) € [~hz,0]andro €
S are initial conditions of continuous state and the mode, respectively,
with Ay = min{hi;,i € S} and he = max{hsi,i € S}. A(re),
Aq(re) are matrix functions of the random jumping process {7} and
represent the nominal systems for each r; € S. For notation simplicity,
when the system operates in the i-th mode (r(¢) = ¢), A(r(¢)) and
Aq(r(t)) are denoted as A; and Ag;, respectively.
Definition 1: [14] The Markovian jump system in (1) is said to be
mean square exponentially stable if, for any finite ¢/(¢) € R™ defined
n [—h2,0] and initial mode 7o € S, there exist positive constants o
and A, such that the following condition is satisfied:
Ele(t)]* < ae™™[ul7, @)
where ¢ and X are called the decay coefficient and decay rate, respec-
tively.

III. MAIN RESULTS

In this section, we present our new exponential stability criterion for
Markovian jump system with mode-dependent time-varying delays.

Theorem 1: Given a decay rate A and an integer m > 1, for time-
varying delay 7;(t), the Markovian jump system in (1) is mean square
exponentially stable, if there exist matrices P; > 0,Q1; > 0,Q2; > 0,
Qs > 0,01 >0,Q2 >0, R >0, Ry > 0, such that the following
LMIs hold:

O, =5 - W§2 (RoWg, , <0 ®)
O =EZ; — —wﬂ_) ,R2Wr, , <0 ©)
hi2 o -
Ah
e Zm ,<Q (10)
N
C,\hm ( Z Tri].QZJ._i_ZTrZ‘]‘Q;;]’) SQZ (1)
J=1,3#1 Jj=1

fore =1,2,..., N, where

eMha _ A
Ei=Wh | AP +2 i P+ fQQ We,
J
T , Ay T ;
+ sym (WL PWr,, ) +e = Wa, ,QuilWa,

Ahy
e m

+ TS0 Wa, L~ Qi
+ e/\hmw/bz 1(Q27‘+Q3‘i).[/1/'(22_1
Q) 2(Q27 Hi€ /\thZi)I{ZQQ—Q
e}\h,g

Ahy R
1 P
+ W <e Ri+ < Rg) W,

A A
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= W I - (1= )t (- )

m m
hl ‘1}1{2 le.[‘ R2 r 12 ll/rg2_2 R'ZI'{/YRQ_Q t
Wey = [In, 0p (ma2yn] » Wey_, =[Ais On s Adi, On]
Wo,  =mns Omn.3nls Wo, o =[0mn s Imn, Omn 2n]
Waa s =[0n,mnsIn, 0n20], Wes s

W= [0n s Tl s Wiy =40, O A, 0]
VVRI [ ns Inaon,(m+1) ] ]1’12:]1’9 - hl

+ e/\(tJrhz hy) ,1'(t — hl)inw t— ]ll)
)\t T
-z’ (t—
1% Ra_1 _[Onnnnalﬂra_["’o ] ‘IR) -2

7i(t) Qi (t — 7i(t))
+ pu; e tth12) ) T (t — (1)) Quix (t — 7(t))
[0 I I ] t—hy
n,(m+1)nsdn, —In|. N " stho
+ Zm]' A Fh2) 0T (6)Qaj(s)
Proof: First in order to cast our model into the framework of the = b (1)
Markov processes, we define a new process {(x¢,7¢),t > 0} by ’
ze(s) =ax(t+s), t—hy<s<t.

+ M2 T h)Quia(t — hy)

Mal (t = ha)Qsiz(t — Do)
Now, take the stochastic Lyapunov—Krasovskii functional candidate as

J\T
. + / e’\(s+h2);L’T(s) <Z /TiJ'Q;;J-) x(s)ds
Vi it) = eMVie, i t) + Y Vi(an,ist) (12) t—ho
=2
where

t—hy

J=1
M
FVs = eAf;i,»”'(t)Rl;b(t)%
¢
Vi(ze,it) =’ () Pix(t) — e / ' (s)Ryi(s)ds
¢
Va(we. i t) = / Al m)TT(s)QMT(S)dS - N N
_ + A () Ryi(1)
mt—h,l t—hy
+ AT T () Qain(s)ds — M &7 (s)Roi(s)ds
t—7;(t) t—h2
t—hy Ay
+ / AT T () Qi (s)ds
t=hs
0o ¢

FVi =M ()1 Y (1) S
"{S(T’t-, I,f) =

t

(s 9),,T(5)R1:b(s)(lsd(-1

— M / TT(S)Q1T(s)d5
hy t+80 .
Ti: ¢ +e“w%)@w(t)ﬂ
+ / /e“f’*%T(s)m(s)dsde N =t )
hotie —e 2" (5)Q2x(s)ds.
0 t t—ho
Vi(ae,i,t) = AE=DYT($)Q1 Y (5)dsdf i
7'1;_1 o

(13)

Noticing m;; > 0 for j # ¢ and m;; < 0, then we have
N -
—hy

t—hq
Yo [
i / / A(s—0) T(b)QQ;[(s)dbde

/)\(b+h2)ﬁl‘rT(S)Q2j’ (
Iod J=t t—r; (1)
t—hy N
Tha e A(s+h2) T o
) < e 2 (s) Z mi;Q2; | #(s)ds. (14)
with A=
. . " t—hy J=1a 7
T(s)= |:;I?T(.S‘),:171 <5 — Ehl) gt <5 - mm hlﬂ . Suppose 3; = (7i(t) — h1)/(hz — h1), we have the following equa-
' ' tions:
The weak infinitesimal operator F is defined as [19] t—hy
T .
FV(ewret)= lim — [E{V (x(t+A),r(t+A),t + A)} - )" (s)Rai(s)ds
t—7;(t)
—V-(;L’[, 7'[,t)] . t—hy
1-—0; " .
Then we have <- ' / (ri(t) = ha) @' (s)Ri(s)ds
. s " t—7;(t)
FVi=a' ()Y mijPia(t) + 22" (t) Pii(t) t—ha
J=1 _ 1 .
h
FVo <e (3 T () Qu Y (t)

hio

(1i(t) = h1) & (s)Roid(s)ds
t—r;(t)

N
m Tl(s) (Z Wilej) T(&)ds
I J=1
1
= I:On,(m,+l)nvIn; On}
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t—7;(t)
- / i (5)Roi(s)ds
t—ho
t=7i(t)

L (ha — 7;(t)) " (8)Roi:(s)ds

}L12
t—ho

t—7;(t)

/ (ha — 7i(t)) i (5) Ryi(s)ds.

t—hg

35
hiz

By using Jensen’s inequality, we have
t

- / @' (s)Rii(s)ds

f,_h'il

™m

s o)

o (12 .
t—{l]
_ / (ri(t) = ) &7 (5) Roii(5)ds
t—r;(t)
— [t — hy) —a (t = 7()]"
X Ro[x(t — h1) —a (t — 73 (t))] (16)
t—7;(t)
- / (hy — 7:(t)) &7 () Ryib(s)ds
t—ho
— et —7i(t) — 2(t — ko))"
X Ry [w (t — 1i(t)) — x(t — ha)]. (17)

Based on (13)—(17), we obtain
FV <M (1) [(1 = )01 + 8:02:] C(1)

t N

+ / eA(S+%)TT(.S) <ZT‘”QU> Y(s)ds

i j=1

™m

t

)\t/
—c

hy
m

t—hq

Y (5)Q1 T (s)ds

+ / 6)\(5+}L2)$T(S)
t—hy
N N
X < > Tfr:.inj-i-Z/Tsz,j) x(s)ds
i=La#i =
t—hy
—eM / :cT(s)sz(s)ds (18)
t—ho

where
C(t) = [TT(t),.rT(t — ), at (b= () 2t (t— hz)]T

If Zyzl mi;Q1; > 0 and Z;'\Y:Lj# Ti; Q25 + Z;;l mi; Q35 > 0,
then we have

. N
A8y (z @> (o)

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 56, NO. 1, JANUARY 2011

t

ha o N
< / 6’\(f’+7)Tl (s) <]; Tfilej> Y(s)ds

hy
m

N N
e eth2) Ly < Z Q25 + Zmﬂ)y) x(s)ds
j=1

t—hy

tho J=L
t—hy
A(t4h T
< / e Mith2) (s)
t—'hz

N N
X < Z mi; Q25 + Zﬁiﬂ»(").‘;]’) :L'(s)ds.
J=1,7#1 J=1
As 0 < 3; < 1,itis obvious that FV < 0 if (8), (9), (10) and (11)
hold.
If 200 Q1 < 0 and ZQ\H i T Qo+ Y0, T Qs <0,
then the following inequality is easy to get from (18):

FV < et T(t) [(1 — B )(_)1, ,3,;(“)2:‘,] (,(t)

For0 < 3; < 1, FV < 0if (8), (9) hold. Meanwhile, (10) and (11)
also hold in this case, since

ARy
e m

N
Zﬂ"ijQW <0< @y

j=1

N N
etz < Z mi; Qa5 + ZTF”Q3J> <0< Q.
J=1j

7=1

With the same method, we can also deal w1th the other two cases
Z ~, mi; Q1 < 0 with Z 1 mi; Q25 + Z _, mi; Q35 > 0, and
Z ~ ;@1 > 0 with Z 1 i Tis Q2+ Z, L mij@35 < 0, and
ﬁnd that if (8), (9), (10) and (11) are satisfied, 7V < 0 can be guaran-
teed.

For any t > 0, we have

t

|z(t)] = |=(0) + / [A;2(s) + Agix (s —

< |z(0)| + /dl |x(s)| ds + /(12 |2 (s — 7i(t))| ds
0 0

7i(t))] ds

where di =
ho, we have

= max‘,;es{HAdiH}. ‘When 0 S t §

t

(0] < [daha + 1y + [ drlao)] s

0

19)

By the Gronwall-Bellman Lemma, we have the following inequality:
[(#)] < [daha + e ], = dJié]n,

where d = (dahs 4 1)e172,
For any —he < t — 74(t) < ha, the following inequality is true:

|z (t — 7:(1))| < max{l,d}|Y|r, = d|¥|n,-

When ¢t > h2, by Dynkin’s formula [20], we have
t—ho
/ FV(vs,i,s)ds

EV(21.i,t) = EV (24,4, hs) + E

5
< D aelvli,
o=1
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where

2 Aho y
ar =d e max {[| P}

Ahy

a2 = max {Quill} e > =1
s = (o (0 )+ mas 1y ) > =
o0 = (drd + dod) e {||R1|| <e A 1)
HIRa (2 = M = Ao |
ar =S il (5 - 2 1)
HQell(eX2 = X = Ahao)|

—1
g = IIlZiX{”Pi H}
ies

On the other hand

. , 1 Ry
EV (w4, i,t) > —————————¢" ' E|x(t)| (20)
v ([l
So, when t > ho
5
ELF <as Y age Mo,
o=1
Ea(hl,hg)ef’\qwﬁz. 21)

For the case h1 < t < he,0 < t < hy, with the same method, it is
easy to find that
Elz(t)] < (}z(h/1,l1,2)(3_’\t|1,b|z2.

(22)
According to (21) and (22), when ¢ > (), we have

Ela(t)] < a(hi,ha)e™ 07,

So from Definition 1, we know that the Markovian jump system in
(1) is exponentially stable with the decay rate A. Then the proof is com-
pleted. O

Remark 1: The new criterion is based on the idea of delay parti-
tioning. Here, we treat with the interval time-varying delay as two parts:
the constant delay part /1 and the time-varying part 2 — h1, then par-
tition the constant part. The proposed result is much less conservative,
and the conservatism will be reduced with the partitioning number m
increases, which will be well illustrated with some numerical exam-
ples.

From the proof of Theorem 1, we can easily have the following corol-
lary, which dedicates the way to calculate decay coefficient .

Corollary 1: For a given decay rate A and an integer m > 1, if there
exist P; > 0,01 > 0,Q2 >0,Q3, >0, >0,Q2 >0,R, >0,
Ry > 0, such that (8), (9), (10) and (11) hold for any ¢ € S, then
an estimate of the decay coefficient for Markovian jump system with
mode dependent time-varying delays is given by a(h1, h2), which is
already defined in (21).

With the case that hy = hy = 7 > 0, the mode-dependent time
delay 7;(t) becomes a constant one. Then we can have the following
proposition.

Proposition 1: Given a decay rate A and an integer m > 1, for
constant time delay 7, the Markovian jump system in (1) is mean square
exponentially stable, if there exist matrices P; > 0, @; > 0,Q > 0,
R > 0 such that the following LMIs hold:

0, =W/, </\P + ZT” ,) Wp,

227
+ sym (WPIPW Py ) = W, QiWa,
em —1
+ W5 <(’ Qi+ AQ) Wo,
AT
+ ”}7_1171/*;4’11.12&@’317 - ’Tin;é RWa,
<0 (23)
v
e Y Qs <Q 24)
J=1
fori = 1,2,..., N, where

W Py = [In,a On.mn]y I/T”rPQi = [44iw On,(mfl)nvAdi]
‘T//FQ1 = [Iwmg Omn.n]a Ii’/'Rh- = [Aiv On,(mfl)nﬁ flfli]
‘T/TQQ = [Ovnn,naIrn,n]-/ Ii/’ﬁ’,] = [117,7 _Ina On,(mfl)n] .
Proof: Choose a Lyapunov-Krasovskii functional candidate as
follows:

At

V(e int) = e Vi(we, i) + Valoe, i,1) + Vs (2,4, 1) (25)
where
Vi(ze,i) =2 (1) Pia(t)
t
Vo(wy,i,t) = /e’\('ﬂ'%)TT(s)Q,T(s)ds
=
0ot
Va(xe,1,t) = / /c’\('q_ﬂ):br(s)Rj?(s)(Isd(-)
—Z ke
0ot
+ / /cM-"—”TT(s)QT(s)dsde
—z it
with

m—1

T(s) = {IT(S) 2t (s— %) e T <s— TT):|T

Then with the same method presented in proving Theorem 1, we can
obtain the result in Proposition 1. O

Remark 2: Tt is worth mentioning that even with the case m = 1,
our method still outperforms that in [14]. The reduced conservatism of
Proposition 1 benefits from V, (i, ), which is selected to be mode
dependent in our technical note. Moreover, the proposed proposition
requires less computational complexity than the method in [14] in terms
of the number of variables. There are (2.5s + 1)n? + (0.55 + 1)n
variables needed to solve Theorem 1 in [14], compared with (s—l—l)n2 +
(s+ 1)n needed by Proposition 1. As s and n are all positive numbers,
the advantage of our criterion in computational complexity is obvious,
especially when s and n are large.

Corollary 2: For a given decay rate A and an integer m > 1, if there
exist P, > 0,Q; > 0,Q > 0, R > 0 such that (23) and (24) hold for
any ¢ € .S, then the estimate of decay coefficient for Markovian jump
system with constant time delay is given by

a(r) =

as(an + ag + a3 + aa) (26)

where

2 A
d’e

o

T - A
max {[| Fi[|}

AT
— _ . 72 ATE’W -1
a2 = max {[|Qil[} md"e™" ——
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TABLE I
MAXIMUM DELAY BOUND 7 VIA DIFFERENT METHODS
11 —0.2 —0.5 —1
Shu et al. [14] 0.352 | 0.349 | 0.346
Proposition I, m =1 | 0.374 | 0.375 | 0.377
Proposition 1, m =2 | 0.413 | 0.414 | 0.417
Proposition 1, m =3 | 0.420 | 0.421 | 0.424
Proposition 1, m =5 | 0.423 | 0.425 | 0.428
TABLE II
MAXIMUM DECAY RATE A VIA DIFFERENT METHODS
T11 —0.2 —0.5 —1
Shu et al. [14] 0.760 | 0.703 | 0.656
Proposition 1, m =1 | 0.931 | 0.941 | 0.964
Proposition 1, m =2 | 1.342 | 1.351 | 1.388
Proposition 1, m =3 | 1.413 | 1.425 | 1.462
Proposition 1, m =5 | 1.451 | 1.464 | 1.501
TABLE III
MAXIMUM DELAY BOUND VIA DIFFERENT A
Theorem 1 | A=0.3 | A=06 | A=0.9
m=1 0.589 0.524 —
m =2 0.643 0.556 0.510
m=3 0.650 0.561 0.516
m=2>5 0.654 0.564 0.520

m
AT
. Az A
s =m|| QP (e =2 1
A2 m

a5 = max {[|P7 [}, d = (dor + 1)e™ 7

7 Y ST
G =R d + d2d)* S <6 = AT 1)

-

IV. NUMERICAL EXAMPLES

In this section, we will use two numerical examples to illustrate the
advantages of the proposed criteria in this technical note.

Example 1: Consider the following Markovian jump system with
constant time-delay:

A4, = |:—2.25 —1.44} A = |:—().71 1.19 }
—-1.59 -2.93]° 0.67 —-3.20

4 = |:—1.9() 0.82 } A= |:—1.-52 —1.6()} .
- 0.69 -0.79]" - -0.16 —-1.24

For a prescribed decay rate A = 1.2 and a given 71, we assume w2 =
—().3, the comparison results of time delay 7 via different methods are
given in Table I. Then fix time delay 7 = 0.4 to find the maximum
decay rate A between different methods, which is presented in Table II.

From Table I and Table II, we can see that even with the case m = 1,
our results still outperform those in [14].

Example 2: Consider a Markovian jump system in (1) and (2) with
two modes and the following parameters:

-2.3 08 0.8 1.2
44 = N 1—1 =
! { 1.0 —2.9} o {0.7 —3..5]
-1.9 0.2 1.3 -2.6
44 = N 1—1 5 = .
’ { 0.6 —0.8} o [0.5 —1.4]
The time delays satisfy the following conditions 7 (¢) < 0.2, 72(t) <
-0.1 0.1
0.15, and the transition probability matrix is II = 05 —05|

First, for given h; = (.5, we record the upper bounds % of the time
delays via different decay rate A in Table III, which satisfy (8), (9),
(10) and (11). Then, we record the maximum decay rate A via different
upper bounds % in Table IV.

It can be seen from Table III and Table IV that the conservatism will
be reduced with m increasing.
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TABLE IV
MAXIMUM DECAY RATE A VIA DIFFERENT UPPER DELAY BOUNDS /15
Theorem 1 ho =0.6 | hy =0.7
m=1 0.277 0.103
m=2 0.417 0.180
m =3 0.442 0.193
m=2>5 0.455 0.200

V. CONCLUSION

In this technical note, new criteria for exponential stability of Mar-
kovian jump system with mode-dependent time delays have been estab-
lished in terms of LMIs. With the idea of partitioning the lower bound
of the interval time delays, a new Lyapunov Krasovskii functional has
been constructed, and novel exponential stability criteria with guaran-
teed decay rate is obtained for the system. The method to estimate rel-
evant decay coefficient is also presented. Numerical examples have il-
lustrated the merits of the proposed criteria, which are less conservative
than existing result. The method presented in the technical note could
also be extended to treat with filter and controller design for Markovian
jump systems with mode-dependent time delays, and also could be used
to networked control systems with integrated communication delay and
multiple package dropouts.
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Reducing the Complexity of the Sum-of-Squares
Test for Stability of Delayed Linear Systems

Yashun Zhang, Matthew Peet, and Keqin Gu

Abstract—This technical note considers the problem of reducing the com-
putational complexity associated with the Sum-of-Squares approach to sta-
bility analysis of time-delay systems. Specifically, this technical note con-
siders systems with a large state-space but where delays affect only certain
parts of the system. This yields a coefficient matrix of the delayed state with
low rank—a common scenario in practice. The technical note uses the gen-
eral framework of coupled differential-difference equations with delays in
feedback channels. This framework includes systems of both the neutral
and retarded-type. The approach is based on recent results which intro-
duced a new Lyapunov-Krasovskii structure which was shown to be neces-
sary and sufficient for stability of this class of systems. This technical note
shows how exploiting the structure of the new functional can yield dramatic
improvements in computational complexity. Numerical examples are given
to illustrate this improvement.

Index Terms—Complexity, Lyapunov-Krasovskii functional, semi-
definite programming, sum-of-squares, time delay.

1. INTRODUCTION

In this technical note, we consider stability of linear time-delay sys-
tems with fixed delays. The existence of a monotonically decreasing
quadratic Lyapunov function is necessary and sufficient for stability
of these systems [6], [9], [15]. As is customary, we refer to these Lya-
punov functions as Lyapunov-Krasovskii functionals as the state-space
is infinite dimensional. The problem of finding such a functional is
considered computationally intractable. An obvious solution is to use
simplified versions of the functional. Naturally, however, stability con-
ditions derived in such a manner will be conservative [6]. A solution
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Fig. 1. Log-log plot of accuracy versus computation time: From left, the
‘o’-points denote the cases of monomial degree d = 1, 2, 3; the “x’-points
denote the cases with gridding N = [1, 1], [1, 2], [2, 21, [2, 3], [3, 31, [4, 4], [5,
5]; the ‘¢’-points denote the cases with monomial degree d = 1, 2.

to this dilemma was proposed in [4] which used a “discretized” ver-
sion of the Lyapunov-Krasovskii functional. The product was a series
of sufficient conditions which appears to converge to necessity as the
level of discretization is increased. The significance of this work is that
it gives a quantifiable tradeoff between computational complexity and
accuracy of the stability test. See Fig. 1 in the numerical example. In
[20] and [21], the problem was approached using polynomials instead
of discretized functionals. We refer to this result as the Sum-of-Squares
(SOS) method. The advantage of the Sum-of-Squares approach is that it
is easily generalized to nonlinear and uncertain systems [17]. It should
be pointed out that it is possible to asymptotically approach the an-
alytical limit of stability without the complete quadratic Lyapunov-
Krasovskii functional. An interesting method that accomplishes this is
the delay partitioning method described in [3]. In all of the above cases,
the conditions are expressed using semidefinite programming (SDP)
[14], [18]. A problem with both the discretized functional method and
the Sum-of-Squares method is that the computational cost increases
quickly for large systems with multiple delays.

In most practical systems, although the number of state variables is
rather large, there are relatively few delayed elements and these de-
layed elements enter through low-rank coefficient matrices. Examples
include a nuclear reactor model described in [10, Eq. (3.1), Ch. 2];
chemostat models in microbiology described in [10, Eq. (5.4), Ch. 2];
or any controlled system with delayed feedback. However, this feature
is not typically leveraged when deriving stability conditions. In this
technical note, we reformulate the standard model of time-delayed
equations by using coupled differential-difference equations with a
single delay in each feedback channel. The idea is that if the dimension
of the feedback channel is substantially smaller than the number of
states, then this formulation allows us to exploit this low-dimensional
structure to potentially reduce the computational cost of stability anal-
ysis [7]. In addition, using coupled differential-difference equations
allows us to address a larger class of systems that includes time-delay
systems of both retarded and neutral type.

Coupled differential-difference equations have been studied for
some time. See [2], [22] and [25]. Asymptotic stability analysis based
on the input-to-state stability of the difference equations was given
in [23]. This result was strengthened to uniform asymptotic stability
and extended to the general coupled differential-functional equations
in [8], which also considered the possibility of reducing the com-
plexity of the discretized Lyapunov-Krasovskii functional method.
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