<table>
<thead>
<tr>
<th>Title</th>
<th>Compact dual-mode triple-band bandpass filters using three pairs of degenerate modes in a ring resonator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Luo, S; Zhu, L; Sun, S</td>
</tr>
<tr>
<td>Citation</td>
<td>IEEE Transactions on Microwave Theory And Techniques, 2011, v. 59 n. 5, p. 1222-1229</td>
</tr>
<tr>
<td>Issued Date</td>
<td>2011</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10722/139261</td>
</tr>
<tr>
<td>Rights</td>
<td>IEEE Transactions on Microwave Theory and Techniques. Copyright © IEEE; ©2011 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.; This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.</td>
</tr>
</tbody>
</table>
Compact Dual-Mode Triple-Band Bandpass Filters Using Three Pairs of Degenerate Modes in a Ring Resonator

Sha Luo, Student Member, IEEE, Lei Zhu, Senior Member, IEEE, and Sheng Sun, Member, IEEE

Abstract—In this paper, a class of triple-band bandpass filters with two transmission poles in each passband is proposed using three pairs of degenerate modes in a ring resonator. In order to provide a physical insight into the resonance movements, the equivalent lumped circuits are firstly developed, where two transmission poles in the first and third passbands can be distinctly tracked as a function of port separation angle. Under the choice of 135° and 45° port separations along a ring, four open-circuited stubs are attached symmetrically along the ring and they are treated as perturbation elements to split the two second-order degenerate modes, resulting in a two-pole second passband. To verify the proposed design concept, two filter prototypes on a single microstrip ring resonator are finally designed, fabricated, and measured. The three pairs of transmission poles are achieved in all three passbands, as demonstrated and verified in simulated and measured results.

Index Terms—Bandpass filter, dual mode, open-circuited stubs, ring resonator, triple band.

I. INTRODUCTION

Trible-Band transceivers have shown their potential in modern multiband wireless communication systems [1], [2]. As an important circuit block, the triple-band bandpass filters have garnered a lot of attention over the past few years. In a typical design, two different resonators are used to realize the desired three passbands [3]–[6]. The first and third passbands are realized by the first and second resonant modes of either stepped-impedance resonator (SIR) [3], [4] or stub-loaded resonators [5], [6]. The second passband is created by the first resonant mode of an additional resonator. In all these studies, four resonators were employed to complete their final designs. The works in [7]–[10] tried to demonstrate that a triple-band bandpass filter can be designed using a tri-section SIR or stub-loaded resonator. However, at least two identical resonators need to be used together in order to create two transmission poles in each passband. There are some other methods that are also developed for the design of triple passband filters with the three passband in close proximity, such as the dual behavior resonator (DBR) [11], parallel coupling topology [12], coupling-matrix method [13], inverter-coupled resonator [14], frequency transformation [15], and band-splitting technique [16]. However, to the best of our knowledge, all the triple-band bandpass filters developed thus far require at least two resonators, regardless of varied frequency spacing between the triple passbands.

Very recently, a single ring resonator was applied to develop compact dual-mode dual-band bandpass filters [17]–[19]. In [17], the two ports were positioned at 135° separation. The two pairs of the first- and third-order degenerate modes of a ring were excited under strong capacitive coupling between a ring resonator and two ports, thus making up the two operating passbands. An alternative dual-mode dual-band bandpass filter was later designed by using the first- and second-order degenerate modes of a ring resonator where the two ports are separated by 135° [18] and 45° [19], respectively.

The main objective of this work is to extend our design concept in [17]–[19] toward the theoretical design and practical exploration of a class of compact triple-band bandpass filters using three pairs of degenerate modes in a single ring resonator. First, an equivalent lumped circuit is developed under even- and odd-mode excitations to provide physical insight into the movements of two pairs of first- and third-order resonant modes as a function of port separation angle. In our design, the two-port excitation angle is set to be 135° or 45° such that the second passband is fully suppressed for a uniform ring at the beginning. As the four open-circuited stubs are introduced as perturbation elements, the second passband is created with two transmission poles. Fig. 1(a) and (b) shows the schematics of the two proposed ring resonators with an excitation angle (θ) of 135°. (b) 45°.
II. DUAL-MODES IN FIRST AND THIRD RESONANCES

Fig. 2(a) depicts the schematic of a uniform ring resonator that is excited by two identical capacitors \(C_f\) at a separation angle \(2\theta\) between two ports. Under odd- or even-mode excitation at the two ports, the symmetrical plane in Fig. 2(a) becomes a perfect electric wall (E.W.) or magnetic wall (M.W.). Fig. 2(b) and (c) show the transmission-line models of the two one-port bisection networks, where the short- and open-circuited ends represent the E.W. and M.W., respectively. \(Y_r\) is the characteristic admittance of the ring, \(l\) is equal to half of the length of the ring, and \(\Delta l\) represents the length from the feeding point to the symmetric plane of the ring.

Under odd-mode excitation, the output admittance of the one-port network looking into the right side after \(C_f\) is

\[
y_{\text{out}}^{\alpha} = -jY_r \left[\frac{1}{\tan(\beta \Delta l)} + \frac{1}{\tan(\beta(l - \Delta l))} \right]
= jY_r \frac{2\sin(\beta l)}{\cos(\beta l) - \cos(\beta(l - 2\Delta l))}.
\]

(1)

Similarly, the output admittance under even-mode excitation can be obtained

\[
y_{\text{out}}^{\varepsilon} = jY_r \left[\tan(\beta \Delta l) + \frac{\tan(\beta(l - \Delta l))}{2\sin(\beta l)} \right]
= jY_r \frac{2\sin(\beta l)}{\cos(\beta l) + \cos(\beta(l - 2\Delta l))}.
\]

(2)

At the first resonance with an angular frequency \(\omega_1\), \(\beta l = \pi(180^\circ)\) and \(\beta \Delta l = \theta\). The angular frequency near \(\omega_0\) can be reasonably expressed as \(\omega = \omega_0 + \Delta \omega\), when \(\Delta \omega\) is very small. Thus, the admittances in (1) and (2) can be simplified as

\[
y_{\text{out}}^{\alpha} \approx jY_r \frac{-2\pi \Delta \omega / \omega_1}{1 - \cos(2\theta)} = jY_r \frac{\Delta \omega \pi}{\sin^2 \theta \omega_1} \quad (3)
\]

and

\[
y_{\text{out}}^{\varepsilon} \approx jY_r \frac{-2\pi \Delta \omega / \omega_1}{1 - \cos(2\theta)} = jY_r \frac{\Delta \omega \pi}{\cos^2 \theta \omega_1}. \quad (4)
\]

Similarly, at the third resonance \(\omega_3\), \(\beta l = 3\pi(180^\circ)\) and \(\beta \Delta l = 3\theta\). The angular frequency near \(\omega_3\) is \(\omega = \omega_0 + \Delta \omega\) when \(\Delta \omega\) is small, such that we have

\[
y_{\text{out}}^{\alpha} \approx jY_r \frac{-6\pi \Delta \omega / \omega_3}{1 + \cos(6\theta)} = jY_r \frac{3\Delta \omega \pi}{\sin^2 3\theta \omega_3} \quad (5)
\]

and

\[
y_{\text{out}}^{\varepsilon} \approx jY_r \frac{-6\pi \Delta \omega / \omega_3}{1 - \cos(6\theta)} = jY_r \frac{3\Delta \omega \pi}{\cos^2 3\theta \omega_3}. \quad (6)
\]

On the other hand, for the parallel LC resonator circuit in Fig. 3(a), its input admittance around resonance can be derived as

\[
y_{\text{in}} = 2j \Delta \omega C \quad (7)
\]

where \(L = 1/\omega_0^2 C\) and \(\omega_0\) is the angular resonant frequency. Comparing (3)–(6) with (7), we can find that the parallel LC circuits can be used to represent half of a symmetrical bisection of a ring resonator under odd- and even-mode excitations around its first and third resonances. Given the equivalence of Figs. 2(b) and 3(a), the odd-mode equivalent capacitance and inductance around the first resonance are derived as

\[
C_{1o} = \frac{Y_r \pi}{2 \sin^2 \theta \omega_1} \quad (8a)
L_{1o} = \frac{2 \sin^2 \theta \omega_1}{Y_r \pi}. \quad (8b)
\]

Meanwhile, the even-mode equivalent capacitance and inductance near the first resonance are

\[
C_{1e} = \frac{Y_r \pi}{2 \cos^2 \theta \omega_1} \quad (9a)
L_{1e} = \frac{2 \cos^2 \theta \omega_1}{Y_r \pi \omega_1}. \quad (9b)
\]
Similarly, around the third resonance, these equivalent capacitances and inductances under odd- and even-mode excitations are

\[C_{3\theta} = \frac{-3Y_f \pi}{2 \sin^2 3\theta \omega_0} \]
\[L_{3\theta} = \frac{2Y_f \pi}{3Y_f \pi \omega_0} \]
\[C_{3e} = \frac{2 \cos^2 3\theta \omega_0}{3Y_f \pi \omega_0} \]
\[L_{3e} = \frac{2 \cos^2 3\theta}{3Y_f \pi \omega_0}. \]

Notice that the capacitors and inductors in (8a)–(11b) are all dependent on the separation angle \(\theta \). Thus, a simple, but general, \(LC \) resonator in Fig. 3(a) is modified to an alternative circuit shown in Fig. 3(b), where a transformer with the turns ratio of \(n : 1 \) is placed before the \(LC \) resonator with \(L' \) and \(C' \).

Around the first resonance, \(n \) is equal to \(\sin \theta \) and \(\cos \theta \) for the odd- and even-mode excitations. Thus, the transmission-line models in Fig. 2(b) and (c) can be simplified as those lumped-circuit models shown in Fig. 4(a) and (b), respectively, with the capacitance and inductance given by

\[C_{1r} = \frac{Y_f \pi}{2 \omega_0} \]
\[L_{1r} = \frac{2Y_f \pi \omega_0}{Y_f \pi \omega_0}. \]

Furthermore, the odd- and even-mode resonant angular frequencies around the first resonance are calculated as

\[\omega_{3\theta} = \frac{1}{\sqrt{L_{3\theta}(C_{3\theta} - \sin^2 3\theta C_f)}} \]
\[\omega_{3e} = \frac{1}{\sqrt{L_{3e}(C_{3e} - \cos^2 3\theta C_f)}} \]

where \(\cos \theta \neq 0 \) or \(\sin \theta \neq 0 \). From the transmission-line models in Fig. 2(b) and (c), it is easy to understand that, if \(\sin \theta = 0 \), only odd-mode resonance is excited; if \(\cos \theta = 0 \), only even-mode resonance is excited. When \(\theta = 90^\circ \), the odd- and even-mode circuits resonate at the same frequency. It confirms that only one pole appears at the first resonance of a uniform ring resonator with a port-separation angle \((2\theta) \) of 180° or 90°, as discussed in [20]. Fig. 4(c) demonstrates how the odd- and even-mode resonant frequencies \(f_{1\theta} \) and \(f_{1e} \) merge together as \(2\theta \) moves from 0° to 90° and how they split again as \(2\theta \) changes from 90° to 180°. Of course, these two resonant frequencies also depend on the capacitance \(C_f \). With the same port separation angle \((2\theta) \), the bigger \(C_f \) is, the further apart the two frequencies are. Using the same method, the equivalent circuit for the third resonance can be derived as shown in Fig. 5(a) and (b), respectively, where

\[C_{3r} = \frac{3Y_f \pi}{2 \omega_0} \]
\[L_{3r} = \frac{2}{3Y_f \pi \omega_0}. \]

The third-order odd- and even-mode resonances occur at

\[\omega_{3\theta} = \frac{1}{\sqrt{L_{3\theta}(C_{3\theta} - \sin^2 3\theta C_f)}} \]
\[\omega_{3e} = \frac{1}{\sqrt{L_{3e}(C_{3e} - \cos^2 3\theta C_f)}} \]

where \(\cos 3\theta \neq 0 \) or \(\sin 3\theta \neq 0 \). Looking at Figs. 4(c) and 5(c), we can figure out that the spacing between the two resonant frequencies, \(|f_{3\theta} - f_{3e}| \), around the third resonance varies much more significantly than that around the first resonance. In particular, we find that the odd- and even-mode circuits resonate at the same frequency if \(2\theta = 30^\circ \), 90°, and 150° are selected. Moreover, the spacing between these odd- and even-mode resonant frequencies can be enlarged by increasing the value of \(C_f \).

Tables I and II tabulate the two sets of transmission poles around the first and third resonances, which are calculated from (13a) and (13b) and (15a) and (15b) with respect to Fig. 2(a). Good agreement with each other is observed. In addition, when \(2\theta = 135^\circ \) and 45°, the two degenerate modes around both the
and in order to suppress the second resonance of a ring resonator, under varied external capacitance \(C_f \), as discussed above, the is the electrical length of the two vertical stubs, and the first and third resonances of a ring resonator are excited at the angular frequencies can be calculated as

\[
\omega_{2o} = \frac{1}{\sqrt{L_{2r}(C_{2r} + \sin^2 2\theta C_f)}} \tag{19a}
\]

\[
\omega_{2e} = \frac{1}{\sqrt{L_{2r}(C_{2r} + \cos^2 2\theta C_f)}} \tag{19b}
\]

where \(\cos 2\theta \neq 0 \) or \(\sin 2\theta \neq 0 \). Fig. 6(c) gives three sets of spacings between two resonant frequencies or transmission poles, i.e., \(|f_2 - f_{2r}| \), under varied external capacitance \(C_f \). The results in Fig. 6(c) illustrate that the spacing between two poles or resonant frequencies reaches its peak at \(2\theta = 90^\circ \) and becomes zero at \(2\theta = 135^\circ \) and \(45^\circ \). As discussed above, the port-to-port excitation angle \(2\theta \) needs to be selected as \(135^\circ \) or \(45^\circ \) in order to suppress the second resonance of a ring resonator, but, in this case, the odd- and even-mode resonant frequencies merge to the same frequency at \(2\theta = 135^\circ \) and \(45^\circ \), as shown in Fig. 6(c).

Using the perturbation methodology in the design of traditional dual-mode ring bandpass filters, e.g., [20], four open-circuited stubs are attached symmetrically with the ring resonator, as shown in Fig. 7(a). They are introduced herein as perturbation elements in order to split the two second-order degenerate modes while giving infinitesimal influence on the spacing between the two degenerate modes at the first and third resonances. In Fig. 7(a), \(Z_r \) is the characteristic impedance of the ring and open-circuited stubs, \(\theta_r \) is the electrical length of one quarter of the ring, \(\theta_p \) is the electrical length of the two vertical stubs, and \(\theta_s \) is the electrical length of the two horizontal stubs.

As shown in Fig. 7(b) and (c), at the second-order odd- and even-mode resonances, one quadrant of the whole ring resonator act as half-wavelength short and open resonator, respectively. With reference to Fig. 7(b) and (c), the odd- and even-mode resonant conditions can be derived based on the well-known transverse resonance method, where

\[
\tan \theta_r = 0 \tag{20a}
\]

\[
\tan \theta_r = \frac{2(\tan \theta_s + \tan \theta_p)}{\tan \theta_s \tan \theta_p - 4} \tag{20b}
\]
It can be immediately understood from (20a) and (20b) that the addition of four stubs only affects the even-mode resonant frequencies while having no influence on their odd-mode one. Fig. 8 illustrates the splitting of the two second-order resonant frequencies for a ring circuit in Fig. 7(a) with a separation angle of $2\theta = 135^\circ$. With no stubs installed in the ring, i.e., $\theta_s = \theta_p = 0$, the two resonant frequencies become the same as each other and they are both equal to 5.08 GHz. As the electrical length ($\theta_s = \theta_p$) of the four identical stubs increases to $0.1\theta_r$ and $0.2\theta_r$, the even-mode resonant frequency (f_e) decreases to 4.84 and 4.62 GHz, while its odd-mode resonant frequency (f_o) remains at 5.08 GHz. Thus far, we have demonstrated that the two second-order degenerate modes of a ring resonator with the 130° or 45° port-to-port separation angle can be also split by introducing these four stubs as perturbation structures.

IV. TWO TRIPLE-BAND FILTERS: DESIGN AND RESULTS

Based on the detailed discussion in Sections II and III, two triple-band microstrip-ring-resonator bandpass filters can be constructed using three pairs of degenerate modes occurring at ω_{10}, ω_{20}, and ω_{30}. In order to simplify the design, uniform ring resonators are used for filter design to prove our design principle. Fig. 1(a) and (b) displays the schematics of the two proposed ring-resonator filters with the port-to-port separation angle $2\theta = 135^\circ$ and 45°, respectively, where r_1 and r_2 stand for the inner and outer radii of the ring. The ring is capacitively coupled with the two feed lines via two identical parallel-coupled lines with the coupling angle of 2θ, coupling gap of s, and strip width of $w = r_2 - r_1$. The width of four stubs is set to w_p, whereas the lengths of the vertical and horizontal stubs are set as l_p and l_s, respectively. These two triple-band filters are realized based on the above-discussed principle that two pairs of the first- and third-order degenerate modes are split by the strong line-to-ring coupling under the $135^\circ/45^\circ$ port-to-port angle, while a pair of second-order degenerate modes are separated relying on proper perturbation of four open-circuited stubs.

Figs. 9(a) and 10(a) show the two complete equivalent-circuit models for the two proposed ring-resonator triple-band filters shown in Fig. 1(a) and (b). In Figs. 9(a) and 10(a), θ_s stands for half the electrical length of the coupled lines, $Z_{cc} = -jZ_{0c}Z_{0o}/[(Z_{0c} + Z_{0o})\tan\theta_s]$, $N = (Z_{0c} + Z_{0o})/(Z_{0c} - Z_{0o})$, and $Z = (Z_{0c} + Z_{0o})/2$, respectively, as studied in [19]. As shown in Figs. 9(b) and 10(b), with no stubs installed, the first and third passbands with two poles in each band are produced, whereas the second passband is fully suppressed by signal cancellation between the upper and lower paths when $2\theta = 135^\circ$ or 45°, i.e., transmission zero. By adding four open-circuited stubs with proper lengths, the second passband is visibly produced with two transmission poles. In this aspect, the first and third passbands slightly drop off due to the slow-wave property of the stub-loaded ring.

In our design, the coupling length (2θ) and coupling gap (s) of the parallel-coupled lines in Fig. 1(a) and (b) are first determined to achieve the first- and third-order dual-mode passbands under the fixed $135^\circ/45^\circ$ port excitation angle. Next,
four open-circuited stubs are attached with the uniform ring at an equally spaced distance to split the second-order degenerate modes, thus making up the second passband with two poles. In order to increase the degree of freedom in controlling the poles in the first and third passbands, the lengths of the two vertical and two horizontal stubs are selected separately. The bandwidth of each passband can be separately adjusted by the odd- and even-mode resonant poles and the coupling strength of the parallel-coupled lines. Looking at Figs. 9(b) and 10(b) together, we can find that the filter in Fig. 10(a) with \(\theta = 45^\circ \) achieves higher filter selectivity out of the triple passbands due to the existence of more transmission zeros. Based on our study in [19], both the first zero at the lower stopband and the second zero at the upper stop are generated by the signal cancellation (out-of-phase principle) from the two paths of the ring resonator. Meanwhile, the two zeros at each side of the second passband are introduced and controlled by the capacitive coupling nature of perturbation.

In order to take into account all the unexpected effects such as frequency dispersion and discontinuities, the two compact dual-mode triple-band bandpass filters are optimally designed using a full-wave electromagnetic (EM) simulator [21]. These two filters are then fabricated on a dielectric substrate with a thickness of 1.27 mm and permittivity of 10.8. Two photographs of the fabricated filters with \(\theta = 45^\circ \) and \(\theta = 135^\circ \) are provided in Figs. 11(a) and 12(a), respectively. Figs. 11(b) and 12(b) indicate the simulated and measured results over a wide frequency range of 1.0–9.0 GHz.

For the first filter with \(\theta = 135^\circ \) in Fig. 11(a), the measured triple passbands are centered at 2.37, 4.83, and 7.31 GHz with the 3-dB fractional bandwidths of 7.1%, 7.1%, and 5.5%, respectively, as can be found from Fig. 11(b). The minimum insertion loss in measurement is equal to about 1.0 dB in the
first/second passbands and 0.6 dB in the third passband. Moreover, the three pairs of measured transmission poles appear at 2.37/2.44, 4.77/4.88, and 7.16/7.29 GHz, as predicted in analysis and simulation, whereas two transmission zeros are created at 2.48 and 7.37 GHz. The attenuation at the upper stopband is better than 10 dB from dc to 2.13 GHz and the attenuation at the upper stopband is better than 7.0 dB from 7.34 to 9.00 GHz. The isolation between the three passbands is better than 10 dB in a range from 2.47 to 4.53 GHz and from 5.13 to 6.63 GHz, respectively.

For the second filter with $\theta = 45^\circ$ in Fig. 12(a), the measured center frequencies are 2.35, 4.78, and 7.21 GHz with 3-dB fractional bandwidths of 5.31%, 6.27%, and 8.66%, respectively, as can be found from Fig. 12(b). The minimum insertion loss reaches to about 1.78 dB in the first passband, 0.9 dB in the second passband, and 0.7 dB in the third passband. The three pairs of measured poles occur at 2.40/2.36, 4.70/4.78, and 7.02/7.17 GHz. The six transmission zeros are created at 1.73, 2.45, 4.54, 5.35, 7.27, and 8.12 GHz, which have improved the better filter selectivity than that in Fig. 11. At the lower stopband, the attenuation is higher than 34 dB from dc to 1.88 GHz; at the upper stopband, the attenuation is higher than 8.5 dB from 7.2 to 9.0 GHz. The isolation is greater than 14 dB from 2.44 to 4.58 GHz and is greater than 10 dB from 5.07 to 6.10 GHz. In order to verify the sensitivity of the design, three sets of simulated S_{21} and S_{11} magnitudes with the desired values and the extreme values due to the fabrication tolerance (± 0.015 mm) related to the ring width and the coupling spacing were plotted together in Fig. 13. We can notice from Fig. 13 that positions of the expected transmission zeros and poles are almost unchanged and insertion loss and return loss do not receive any significant influence.

V. CONCLUSION

In this paper, a novel class of compact dual-mode triple-band bandpass filters based on a single microstrip ring resonator has been presented. In theory, a simple equivalent lumped circuit is presented to provide physical insight into the splitting and movement of the three pairs of odd- and even-mode resonant frequencies with respect to the port excitation angle and four open-circuited stubs. In our analysis and design, the port excitation angle is chosen as 135° and 45° so as to only excite the two pairs of first- and third-order degenerate modes. By properly attaching the four stubs with the ring, a pair of second-order degenerate modes is excited and split, as expected. Finally, two triple-band bandpass filters have been designed and fabricated. Predicted results are verified experimentally, showing the triple passbands with two poles in each passband.

ACKNOWLEDGMENT

The authors would like to thank Dr. A. Do, Nanyang Technological University, Singapore, for his valuable discussion and assistance.

REFERENCES

Sha Luo (S’08) was born in Hunan Province, China. She received the B. Eng. degree from Nanyang Technological University (NTU), Singapore, in 2006, and is currently working toward the Ph.D. degree in electrical and electronic engineering at NTU. From 2006 to 2007, she was a Research Engineer with the Satellite Engineering Communication Laboratory, Singapore. Her research interests include multilayer planar circuits, microwave filters and millimeter-wave passive components.

Lei Zhu (S’91–M’93–SM’00) received the B. Eng. and M. Eng. degrees in radio engineering from the Nanjing Institute of Technology (now Southeast University), Nanjing, China, in 1985 and 1988, respectively, and the Ph.D. Eng. degree in electronic engineering from the University of Electro-Communications, Tokyo, Japan, in 1993.

Sheng Sun (S’02–M’07) received the B.Eng. degree in information and communication engineering from Xi’an Jiaotong University, Xi’an, China, in 2001, and the Ph.D. degree in electrical and electronic engineering from the Nanyang Technological University (NTU), Singapore, in 2006.

Dr. Zhu has been an associate editor for the IEEE Microwave and Wireless Components Letters since 2006 and an associate editor for the IEEE Transactions on Microwave Theory and Techniques since 2010. He has been a member of the IEEE Microwave Theory and Techniques Society (IEEE MTT-S) Technical Committee 1 on Computer-Aided Design since June 2006. He was a general chair of the 2008 IEEE MTT-S International Microwave Workshop Series (IMWS’08) on Art of Miniaturizing RF and Microwave Passive Components, Chengdu, China, and a Technical Program Committee (TPC) chair of the 2009 Asia-Pacific Microwave Conference (APMC’09), Singapore. He was the recipient of the 1997 Asia-Pacific Microwave Prize Award, the 1996 Silver Award of Excellent Invention from Matsushita–Kotobuki Electronics Industries Ltd., and 1993 First-Order Achievement Award in Science and Technology from the National Education Committee, China.

Dr. Sun was the recipient of the Outstanding Reviewer Award of the IEEE Microwave and Wireless Components Letters in 2010, a 2008 Hildegard Maier Research Fellowship of the Alexander von Humboldt Foundation, the Young Scientist Travel Grant of the 2004 International Symposium on Antennas and Propagation, Sendai, Japan, and the 2002–2005 NTU Research Scholarship.