<table>
<thead>
<tr>
<th>Title</th>
<th>A new model for predicting relative nonwetting phase permeability from soil water retention curves</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Kuang, X; Jiao, JJ</td>
</tr>
<tr>
<td>Citation</td>
<td>Water Resources Research, 2011, v. 47 n. 8</td>
</tr>
<tr>
<td>Issued Date</td>
<td>2011</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10722/139157</td>
</tr>
<tr>
<td>Rights</td>
<td>Water resources research. Copyright © American Geophysical Union.; This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.</td>
</tr>
</tbody>
</table>
A new model for predicting relative nonwetting phase permeability from soil water retention curves

Xingxing Kuang¹ and Jiu Jimmy Jiao¹

Received 30 March 2011; revised 18 June 2011; accepted 29 June 2011; published 19 August 2011.

[1] Relative permeability of the nonwetting phase in a multiphase flow in porous media is a function of phase saturation. Specific expressions of this function are commonly determined by combining soil water retention curves with relative nonwetting phase permeability models. Experimental evidence suggests that the relative permeability of the nonwetting phase can be significantly overestimated by the existing relative permeability models. A new model for the prediction of relative nonwetting phase permeability from soil water retention curves is proposed in this paper. A closed form expression can be obtained in combination with soil water retention curves. The model is mathematically simple and can easily and efficiently be implemented in numerical models of multiphase flow processes in porous media. The predicting capability of the proposed model is contrasted with well-supported models by comparing the measured and predicted relative air permeability data for 11 soils, representing a wide range of soil textures, from sand to silty clay loam. In most of the cases the proposed model improves the agreement between the predicted relative air permeability and the measured data.

1. Introduction

[2] Relative nonwetting phase permeability is an important parameter to many science and engineering fields, such as soil and agriculture sciences, petroleum engineering, hydrology, and environmental engineering [Springer et al., 1995; Dury et al., 1999]. It is indispensable for subsurface multiphase flow numerical modeling [Touma and Vanclin, 1986; Kueper and Frind, 1991; Celia and Binning, 1992]. In many cases, the nonwetting phase is air and the wetting phase is water.

[3] The relative permeability of air is a function of air saturation, or equivalently, a function of water saturation. However, experimental work on the determination of this function is limited [e.g., Collins-George, 1953; Brooks and Corey, 1964; Stonestrom and Rubin, 1989; Detty, 1992; Stylianou and Devantier, 1995; Dury et al., 1998; Springer et al., 1998; Tuli and Hopmans, 2004]. Springer et al. [1995] presented a comprehensive review on laboratory measurement of air permeability.

[4] There are basically two categories of models to describe the relative air permeability–saturation relationships, i.e., the empirical and the statistical model. The empirical model expresses the relative air permeability as a power function of water saturation [Corey, 1954; Pirson, 1958; Wyllie, 1962; Falta et al., 1989]. In the statistical model, specific expressions of relative air permeability are derived from soil water retention curves (also called the capillary pressure–saturation relationship). A large number of functional forms of the soil water retention curves exist in the literature [e.g., Gardner, 1958; Brooks and Corey, 1964; Farrel and Larson, 1972; van Genuchten, 1980; Fredlund and Xing, 1994; Kosugi, 1994; Assouline et al., 1998]. These soil water retention curves can be used in combination with relative permeability models [e.g., Burdine, 1953; Mualem, 1976] to derive specific expressions for the relative air permeability–saturation relationship.

[6] The aim of this paper is to derive a new model which improves the prediction of relative nonwetting phase permeability from soil water retention curves in a two-phase flow through porous media. Model performance is subsequently enhanced.
evaluated by comparing results with the measured data and two well-supported models.

2. Theory

2.1. General Model

[7] Relative nonwetting phase permeability is usually defined as the ratio of the effective nonwetting phase permeability to the intrinsic permeability of the porous medium [Brooks and Corey, 1964; Demond and Roberts, 1993],

\[
k_n(S) = \frac{k_n(S)}{k}.
\]

(1)

where \(k_n\) is the relative permeability of the nonwetting phase, \(k_o\) is the effective permeability of the nonwetting phase as a function of phase saturation \(S\) (volumetric phase content \(\theta = \phi S\), where \(\phi\) is the porosity of the porous medium), and \(k\) is the intrinsic permeability of the porous medium. Hoffmann-Riem et al. [1999] proposed a general model for relative wetting phase permeability. Brooks and Corey [1964] and Parker et al. [1987] show that the relative permeability of the nonwetting phase can be obtained by changing the integration interval of the relative wetting phase permeability model. After Hoffmann-Riem et al. [1999], the general expression for relative nonwetting phase permeability can be written as

\[
k_n(S) = (1 - S_n)^{\eta} \int_s^1 \frac{f_s}{h_s} dS \left(\frac{1}{S_h} \right)^{1-\eta} \nabla dS.
\]

(2)

where \(S_n\) is the effective wetting phase saturation given by

\[
S_n = \frac{\theta_w}{\theta_w - \theta_m}.
\]

(3)

in which \(\theta_w\) and \(\theta_m\) are the residual and saturated volumetric wetting phase content, respectively, \(x\) is a dummy variable for integration representing \(S_n\) in the inverted function \(h(S_m)\) of the capillary pressure–saturation relationship. The values of the parameters \(\mu, \beta, \gamma\) can be varied to derive more specific expressions. For the Burdine model [Burdine, 1953], \(\mu = 2, \beta = 2, \gamma = 1\). For the Mualem model [Mualem, 1976], \(\mu = 1/2, \beta = 1, \gamma = 2\). Assouline [2001] derived a model that lumps all the unknown powers into one value \(\eta\) with \(\beta = 1\). On the basis of the analysis of 45 soils representing a wide range of texture, Mualem [1976] pointed out that \(\mu = 1/2\) is the best value for the partial correlation factor. Hence, the proposed model for \(k_n(S_n)\) becomes

\[
k_n(S_n) = (1 - S_n)^{1/2} \int_s^1 \frac{f_s}{h_s} dS.
\]

(4)

where \(r\) and \(\rho\) are pore radii in a homogeneous porous medium, \(R_{min}\) and \(R_{max}\) are the minimum and maximum pore radii, respectively, \(f(r)\) is the function describing pore water distribution, \(T(R, r, \rho)\) is the tortuosity factor (a correction factor to account for flow path eccentricity), and \(G(R, r, \rho)\) is a partial correlation factor (a correction factor to account for partial correlation between the pores \(r\) and \(\rho\) at a given water content \(\theta_w\)) [Mualem, 1976]. Assouline [2001] derived an expression for the tortuosity factor \(T(R, r, \rho)\) as a power function. According to Carman [1937] and Porter et al. [1960], a power of 2 was further assumed herein:

\[
T(R, r, \rho) = \left[\int_{S_{min}}^{S_{max}} r f(r) dr \right]^2.
\]

(5)

The partial correlation factor \(G(R, r, \rho)\) is generally assumed to be a power function of \(S_n\) for relative wetting phase permeability [Burdine, 1953; Millington and Quirk, 1961; Mualem, 1976]. For nonwetting phase, \(G(R, r, \rho)\) can be expressed as

\[
G(R, r, \rho) = (1 - S_n)^{\alpha}.
\]

(6)

Substituting (5) and (6) into (4) leads to

\[
k_n(\theta_w) = (1 - S_n)^{\alpha} \left[\int_{S_{min}}^{S_{max}} r f(r) dr \right]^4.
\]

(7)

Applying the capillary law \(r = C/h (C = 2\gamma\) where \(\gamma\) is the surface tension of the wetting phase) and the relationship \(d\theta_w = f(r) dr [Mualem, 1976]\) in (7) leads to

\[
k_n(\theta_w) = (1 - S_n)^{\alpha} \left[\int_{S_{min}}^{S_{max}} \frac{1}{h} \frac{d\theta_w}{h} \right]^4.
\]

(8)

For an analytical capillary pressure–saturation relationship \(h(\theta_w)\), a specific expression can be derived for \(k_n(\theta_w)\). On the basis of the analysis of 45 soils representing a wide range of texture, Mualem [1976] pointed out that \(\mu = 1/2\) is the best value for the partial correlation factor. Hence, the proposed model for \(k_n(S_n)\) becomes

\[
k_n(S_n) = (1 - S_n)^{1/2} \left[\int_s^1 \frac{f_s}{h_s} dS \right]^{4}.
\]

(9)

Comparing (9) with (2) leads to \(\mu = 1/2, \beta = 1, \gamma = 4\). [5] To solve (9), an expression relating the effective wetting phase saturation \(S_{ew}\) to the capillary pressure head \(h\) is required. The following expression is presented by van Genuchten [1980] for the \(h-S_{ew}\) relationship

\[
S_{ew}(h) = \frac{1}{[1 + (\alpha h)^{\gamma}]}.
\]

(10)

where \(\alpha(>0)\) is related to the inverse of the air entry pressure, and \(\gamma(>1)\) is a measure of the pore size distribution.
Solving (10) for \(h = h(S_{ww}) \) and then substituting the resulting expression into (9) leads to

\[
k_n(S_{ww}) = (1 - S_{ww})^{1/2} (1 - S_{ew}^{(1/m)})^{4m}, \quad m = 1 - 1/n.
\]

Equation (11) is the expression of the relative nonwetting phase permeability function when the van Genuchten capillary pressure–saturation relationship is combined with the proposed model (equation (9)).

[10] Applying the Mualem model to (10), the resulting expression is [Parker et al., 1987]

\[
k_n(S_{ww}) = (1 - S_{ww})^{1/2} (1 - S_{ew}^{1/m})^{2m}, \quad m = 1 - 1/n.
\]

Equation (12) is referred to as the VGM model. This model is widely used in the literature for multiphase flow problems in porous media [e.g., Finsterle and Pruess, 1995; Jacobs and Gelhar, 2005; Papafotiou et al., 2008; Amaziane et al., 2010]. The VGM model is used herein as a reference model.

[11] As a representative of the empirical models, the Corey model [Corey, 1954] is expressed as

\[
k_n(S_{ww}) = (1 - S_{ww})^{2} (1 - S_{ew}^2).
\]

Corey’s model is also widely applied in the investigation of multiphase flow problems in porous media [e.g., Demond and Roberts, 1993; Pruess et al., 1999; Vasco, 2004]. The Corey model is used as another reference model to compare with the proposed model.

3. Results and Discussion

3.1. Testing Data Sets

[12] Experimental data sets are selected from the literature to evaluate the predicting capability of the proposed model. These data sets of soils were selected because both measured soil water retention curve and relative air permeability data are available. These soils represent a wide range of soil structure and texture from sand to silty clay loam (Table 1).

[13] The van Genuchten soil water retention function (10) is fitted to the measured data. For each soil the parameters \(\theta_{sw}, \theta_{rw}, \alpha, \) and \(n \) were determined, using an iterative nonlinear regression procedure on the basis of the Marquardt-Levenberg algorithm. The values are shown in Table 1.

3.2. Illustrative Examples

[14] Comparisons between predicted and measured relative air permeability curves for four soils are given in this section (Figure 1). The referenced relative air permeability models (VGM model and Corey model) are computed in each case.

[15] The experimental data sets for Oakley sand [Stonestrom, 1987; Stonestrom and Rubin, 1989] were taken from Dury et al. [1999]. This soil has a rather narrow pore size distribution, which is indicated by the relatively high \(n \) value. Figure 1 shows that the calculated soil water retention curve is in very good agreement with the measured data. Furthermore, the relative air permeability predicted by the proposed model is also in very good agreement with the measured data. However, the reference models significantly overestimate the relative air permeability over the entire range of water saturation.

[16] The experimental data sets for mixed sand [Dury, 1997; Dury et al., 1998]; were also taken from Dury et al. [1999]. As can be seen from Figure 1, somewhat similar results are obtained. The proposed model predicts the relative air permeability fairly well and slightly overestimates the experimental data only when the water saturation is larger than 0.4. However, the VGM model overestimates the data over almost the entire range of water saturation, and the Corey model overestimates the data when water saturation is greater than 0.25.

[17] For the Amarillo silty clay loam [Brooks and Corey, 1964], the proposed model predicts the relative air permeability very satisfactorily over the entire range of water saturation. The Corey model also presents a reasonable fit. However, the VGM model still significantly overestimates the experimental data.

[18] For the Grenoble sand [Touma and Vauclin, 1986], Figure 1 shows that in this case the Corey model performs the best. Both the VGM and the proposed model overestimate the relative air permeability when water saturation is less than 0.7.

3.3. Statistical Analysis

[19] Further comparison of the proposed model and the two existing models with more measured data sets are carried out by means of the root-mean-square error (RMSE), which is an indicator of the magnitude of the differences

<table>
<thead>
<tr>
<th>Soil Name</th>
<th>(\phi)</th>
<th>(\theta_{sw})</th>
<th>(\theta_{rw})</th>
<th>(\alpha) (cm(^{-1}))</th>
<th>(n)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mixed sand</td>
<td>0.360</td>
<td>0.285</td>
<td>0.0216</td>
<td>0.031</td>
<td>5.65</td>
<td>Dury [1997]</td>
</tr>
<tr>
<td>Oakley sand</td>
<td>0.365</td>
<td>0.314</td>
<td>0.102</td>
<td>0.023</td>
<td>5.62</td>
<td>Stonestrom [1987]</td>
</tr>
<tr>
<td>Grenoble sand</td>
<td>0.370</td>
<td>0.312</td>
<td>0.0265</td>
<td>0.044</td>
<td>2.22</td>
<td>Touma et al. [1984]</td>
</tr>
<tr>
<td>Silty sand</td>
<td>0.431</td>
<td>0.431</td>
<td>0.0138</td>
<td>0.040</td>
<td>1.52</td>
<td>Springer et al. [1998]</td>
</tr>
<tr>
<td>Cambridge sand</td>
<td>0.380</td>
<td>0.380</td>
<td>0.0327</td>
<td>0.069</td>
<td>8.00</td>
<td>Collins-George [1953]</td>
</tr>
<tr>
<td>Fine sand</td>
<td>0.377</td>
<td>0.377</td>
<td>0.066</td>
<td>0.021</td>
<td>6.20</td>
<td>Brooks and Corey [1964]</td>
</tr>
<tr>
<td>Poudre river sand</td>
<td>0.364</td>
<td>0.364</td>
<td>0.0455</td>
<td>0.059</td>
<td>6.20</td>
<td>Brooks and Corey [1964]</td>
</tr>
<tr>
<td>Volcanic sand</td>
<td>0.351</td>
<td>0.351</td>
<td>0.0555</td>
<td>0.045</td>
<td>4.20</td>
<td>Brooks and Corey [1964]</td>
</tr>
<tr>
<td>Glass beads</td>
<td>0.370</td>
<td>0.370</td>
<td>0.036</td>
<td>0.031</td>
<td>11.5</td>
<td>Brooks and Corey [1964]</td>
</tr>
<tr>
<td>Berea sandstone</td>
<td>0.206</td>
<td>0.206</td>
<td>0.0616</td>
<td>0.020</td>
<td>5.80</td>
<td>Brooks and Corey [1964]</td>
</tr>
<tr>
<td>Amarillo silty clay loam</td>
<td>0.455</td>
<td>0.455</td>
<td>0.114</td>
<td>0.020</td>
<td>4.50</td>
<td>Brooks and Corey [1964]</td>
</tr>
</tbody>
</table>
Figure 1. A comparison of measured data for four soils with predicted results. (left) Soil water retention curve and (right) relative air permeability.
between the predicted and measured data. The RMSE is computed as

$$\text{RMSE} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \left(k_{rn,i} - k_{rn}(S_{\text{err}}) \right)^2},$$ \hspace{1cm} (14)$$

where N is the number of measurements in the data set, and $k_{rn,i}$ and $k_{rn}(S_{\text{err}})$ are the measured and predicted relative air permeability, respectively. Table 2 summarizes the RMSE of the proposed model and the other two models for 11 data sets, including four sets elaborated in section 3.2. For each soil, the lowest values of RMSE are highlighted in bold. Table 2 shows that the proposed model (equation (11)) is the best model for nine out of 11 testing data sets. The averaged value of RMSE for (11) is 0.057, which is 2.6 times smaller than that of the VGM model and 1.7 times smaller than that of the Corey model. As shown, the proposed model improves the agreement between the predicted and measured data. It should be noted that the Corey model has one fitting parameter less than the VGM and the proposed model. However, Table 2 shows that it is the best model in two cases.

In (9), the parameter $\mu = 1/2$ was assumed. In order to investigate the impact of μ on the predicted results, seven different values of μ were used: $\mu = -1 + 0.5i$, $i = 0, 1, \ldots, 6$. For each soil and each value of i, the RMSE was computed. For each value i the average RMSE was computed for the 11 soils. Figure 2 presents the variation of the average RMSE with μ, which shows that $\mu = 1/2$ may indeed be considered as the optimal value.

Figure 3 shows scatter charts of measured versus predicted relative air permeability values. It can be seen from Figure 3 that the VGM model tends to generally overestimate relative air permeability over the entire range of water saturation. The Corey model overestimates the measured data to a lesser extent but can underestimate the measured data significantly for relatively fine textured soils. In contrast, the values predicted by the proposed model are close to the measured values, which is shown by a much better linearship.

Table 2. RMSE Values Obtained With the VGM Model, the Corey Model, and Equation (11) for the Relative Air Permeability

<table>
<thead>
<tr>
<th>Soil Name</th>
<th>VGM</th>
<th>Corey</th>
<th>Equation (11)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mixed sand</td>
<td>0.146</td>
<td>0.076</td>
<td>0.037</td>
</tr>
<tr>
<td>Oakley sand</td>
<td>0.173</td>
<td>0.100</td>
<td>0.037</td>
</tr>
<tr>
<td>Grenoble sand</td>
<td>0.224</td>
<td>0.049</td>
<td>0.149</td>
</tr>
<tr>
<td>Silty sand</td>
<td>0.161</td>
<td>0.328</td>
<td>0.106</td>
</tr>
<tr>
<td>Cambridge sand</td>
<td>0.090</td>
<td>0.045</td>
<td>0.053</td>
</tr>
<tr>
<td>Fine sand</td>
<td>0.111</td>
<td>0.065</td>
<td>0.022</td>
</tr>
<tr>
<td>Poudre river sand</td>
<td>0.105</td>
<td>0.057</td>
<td>0.020</td>
</tr>
<tr>
<td>Volcanic sand</td>
<td>0.095</td>
<td>0.023</td>
<td>0.021</td>
</tr>
<tr>
<td>Glass beads</td>
<td>0.128</td>
<td>0.113</td>
<td>0.051</td>
</tr>
<tr>
<td>Berea sandstone</td>
<td>0.271</td>
<td>0.192</td>
<td>0.115</td>
</tr>
<tr>
<td>Amarillo silty clay loam</td>
<td>0.109</td>
<td>0.023</td>
<td>0.012</td>
</tr>
<tr>
<td>Mean RMSE</td>
<td>0.147</td>
<td>0.097</td>
<td>0.057</td>
</tr>
</tbody>
</table>

4. Conclusions

A new model is proposed to predict the relative non-wetting phase permeability from soil water retention curves. The performances of the proposed model are tested on 11 data sets and compared with two other well-supported models. In most of the cases, the relative air permeability predicted by the proposed model is in better agreement with the measured data. The VGM model generally overestimates the measured data for all of the cases.
The Corey model overestimates the measured data to a lesser extent but can significantly underestimate the measured data in some cases. The proposed model is mathematically simple and can easily be integrated into existing numerical models of multiphase flow phenomena in porous media.

Acknowledgments. The authors thank the reviewers for their insightful comments. This research was supported by the Research Grants Council of the Hong Kong Special Administrative Region, China (HKU 701908P).

References

Collis-George, N. (1953), Relationship between air and water permeabilities in porous media, Soil Sci., 70(4), 239-250.

Luckner, L., M. Th. van Genuchten, and D. R. Nielsen (1989), A consistent set of parametric models for the two-phase flow of immiscible fluids in

J. J. Jiao and X. Kuang, Department of Earth Sciences, University of Hong Kong, Pokfulam Road, Hong Kong. (jjiao@hku.hk)