

Caduceus

VOLUME 2 NO.11

OFFICIAL PUBLICATION OF THE MEDICAL SOCIETY, H.K.U.S.U.

MEDICAL STUDENTS' CENTRE,
SASSOON ROAD,
HONG KONG.

15TH DECEMBER 1970

EDITORIAL

A new cabinet now sits in the Medic Council, so that opportunity is open to fresh improvement, and for new recruits to exercise their initiative, their responsibilities, and their ability.

It is hoped that the present Medic Council will continue to maintain all the virtues gained hitherto by the past council ex-co-members, but an additional burden is laid on them to improve, and to carry out new projects and programmes successfully, which has been said to be their aim during their campaigning round the campus. Such enthusiastic effort and time the Council members are willing to offer should receive rewarding response from the students. It is time for encouragement for greater effort in attending more co-operation and more understanding between the council and the fellow students.

May I on behalf of the Society hereby take the opportunity to appeal to all fellow students for greater support for and active participations in all the Society's activities so that the Society may continue to exert itself in its effort to promote the students' welfare.

Medical Education in China

by Laurence Chan

The changes of Medical Education in China correlated with the modernization of Chinese education along the Western lines. It can be divided into three periods. They illustrate the complete transformation of the system along modern lines and are reflective of the three stages of China's response to the West. When the Communists took over in 1949 a complete change was anticipated.

Under the Chinese Communist policy of party controlled education, neither private nor foreign-financed schools were allowed to exist. As soon as the regime became secure, confiscation of these schools started. The Peking Union Medical College which was founded by the Rockefeller Foundation was taken over by the government. St. John's University and many other missionary medical colleges were confiscated, abolished, or put through complete changes in administration. The administrators were replaced by the communist cadre. The total number of medical schools was reported to be 38 and the number of students was increased to forty-nine thousands in 1958. In 1966 there were eighty medical schools in China. As with all statistics from Communist China critical analysis is necessary in view of their political implication.

Most of the medical schools adopted a five or six years course. The First Peking Medical College has a six-year course while the Second Peking Medical College has a five-year course. The curriculum of the medical course in the First Medical College of Peking has three premedical and preclinical years. The final year is an intern year. The first year includes physics, chemistry, biology and anatomy; the second and third year, anatomy, physiology and biochemistry. Political studies all are important part of their medical training. Student's political thought are given the place of first importance in their assessment rather than the students academic performance. The course of the Second Medical College of Peking which is five years has the same curriculum, but it is completed in less time and the course also stresses the importance of public health. The relationship between western and Chinese traditional medicine is stressed. The Academy of Traditional Chinese Medicine in Peking was set up to give greater prominence to traditional medicine. The Sun Yat Sen

Medical School in Canton also followed a six-year course. This school is composed of three universities joined in 1953 to form the Medical Institute of Canton. There are four teaching hospitals with two thousand students. profession and the system of education have come under political attack as symbols of the bourgeois or the revisionist. The tendency toward professionalism and elitism which is inherent in the training and practice of medicine was totally inconsistent with the atmosphere of the cultural revolution. So a complete change is inevitable. The old system of entrance examination and enrollment of students was changed. It began with the criticism and repudiation of professors and lecturers in the major national universities and then spread to other colleges of the country at large. The president of the Wuhan Medical College and Vice-president of the Chungshan Medical College were denounced. Most of the medical schools were closed during the following years. The so-called educational revolution in medical schools continued. It was said that medical education had to serve proletarian politics, and so there was the emergence of "barefoot doctors" as a persistent theme in the cultural revolution: The "shifting of the centre of gravity" in medical work from the cities to the country-sides was stressed. In addition to medical objectives, the movement had broad political and economical implications.

For the last four years, medical education in communist China has remained in a vacuum. The cultural revolution has brought an enormous disaster. A large number of students were moved around the country, classes were closed and buildings were ruined during the armed struggles. Three years of the cultural revolution ruined the past effort in promoting medical education. A lot of new problems remained unsolved in the last two years and would probably remain for a long time. The Chungshan Medical School was reopened recently. Many other colleges will resume their classes but it will take sometime before they can regain their original shape. The outlook is still dim. The future is still uncertain.

Around The Campus

The Students' Union

Several dramatic incidents during the last month have led to the resignation of the president and then several members of the Executive Committee. Who is going to face this distressful situation — the Statute XXX and XXXI the student unrest and the apathy of the students? On many occasions we found difficulty in forming a quorum for a general meeting. Is it due to the general dissatisfaction among the great majority of students because we are not adequately led? We are aware of the question and do not have any answer for it. It is, however, of great importance before we can have a strong students' Union. The willingness to accept the working of a system even in principle based on the will of the majority is the essence of democracy. If one feels that the conditions reflect no adequate expression either of the will of the majority or of that respect for the rights of the minorities which is essential to the success of any democratic system, then modification or removal is needed to ensure that its functions would bear relationship to students' needs and feelings.

Senator

Mr. Stephen Ng was elected ipso facto as the undergraduate member of the Senate for the Faculty of Medicine on the 30th of November.

Drug Appeal for East Pakistan

was started since November. Letters and list of the drugs that urgently needs were sent to the local drug firms to ask for their help. The Pakistan Government Trade Commission in Hong Kong has promised to deliver the drugs collected by plane to the survivors in the cyclone-ravaged coastal areas along the Bay of Bengal. It is hoped that other medical students' associations in South East Asia will respond to this drug appeal program. Letters were sent to the member countries of ARMSA to ask for their support for this relief program.

Barbecue

The traditional Medic barbecue was held on the forth of December at Medic Centre instead of the Sports Centre. This will possibly be the last occasion we can have on the lawn in the Medic centre as work will start soon for the extension of the Medic centre. The occasion was honoured by the presence of Professor Luang, the President of the Medical Society, Dr. Chen-Teoh and the Vice-President Dr. S.T. Chan. The champion of the inter-class singing competition during the occasion was the fourth year.

Biological Effects of Radiation

A. E.

The effect of radiation on cells

The effect of radiation on cells is best studied in unicellular organisms, or on cell colonies, even though their mode of growth and development differs from that of multicellular organisms. In higher animals, irradiation limited to part of the body has general effects as well as local effects (on metabolism and on the structure of the lymphoid tissue) similar to the usual non-specific response to trauma, and on studying the cells of the part irradiated it is difficult to distinguish the specific effect of irradiation from superimposed non-specific effects.

Radiation leads to alterations in cellular structures more pronounced in the nucleus than the cytoplasm. It is not certain whether the primary effect is on some vital structural unit of the cell, or on intracellular enzymes, or even on intracellular water.

1. Effect on the nucleus

The nucleus is specially sensitive to radiation, and high dosage is immediately lethal to the cell as a whole. Smaller doses may allow mitotic division to proceed but cause chromosomal abnormalities which prove lethal in the daughter cells. Still smaller doses, especially when applied to the gonads, may lead to gene mutations which are responsible for the appearance of new characteristics, nearly always unfavourable, in the offspring.

The cells are most vulnerable when they are irradiated during the process of mitotic division, and especially during prophase. Actively dividing cells can be killed by doses of irradiation from which resting cells recover. In the treatment of malignancies, the radiotherapist divides his course of treatment into many sessions, hoping that at one session or another all the malignant cells will be in mitosis at the moment of bombardment.

The gonads are very

sensitive to radiation. Moderate doses lead to sterility. Small doses may lead to minor alterations in the chromosomes, or gene mutations, in the ova or spermatozoa. If these gene mutations are compatible with progeny, they are likely to be deleterious. The question often asked is why induced mutation is so much feared. It is to be remembered that a low rate of spontaneous mutation has operated since the beginning of time, and that the present stock represents a selection of

the mutations best adapted for survival. For this reason, the chance that induced mutation will introduce useful characteristics is small, and there is an overwhelming probability of repeating mutations which competition for survival has already eliminated.

The mechanism by which radiation affects the cell nucleus is incompletely understood, but recent studies have shown that within half an hour of irradiation, the synthesis of deoxyribonucleic acid (DNA) is retarded. As cell division depends on the formation of DNA, it is probable that the effect of irradiation in delaying mitosis is a direct consequence of impaired DNA synthesis.

2. Haemopoietic tissues

Whole body irradiation affects all the cellular constituents of the blood.

(a) The lymphocytic count in the peripheral blood falls within an hour of irradiation. Formerly, the reduced number of lymphocytes was attributed to their reduced function on the degenerating lymphoid tissues. Now, it seems more likely that irradiation either arrests their recirculation (by way of the tissue fluid and lymph nodes) or destroys them in the blood stream. The lymphocytic count begins to increase after about three days, but the subsequent rate of recovery is slow. Lymphocytopenia can be a useful sign that exposure to irradiation has occurred, but is believed not to influence survival.

(b) The eosinophils disappear from the blood promptly after irradiation as they do so after other forms of trauma.

(c) The count of neutrophils begin to fall about one day after irradiation, and the fall is maximal about the tenth day. Neutrophil leucopenia may persist for up to three months.

(d) The platelets tend to follow the pattern shown by the neutrophils, except that recovery occurs even more slowly. Thrombocytopenia is of great clinical importance. It is largely responsible for the haemorrhages which characterize radiation sickness and which contribute to the development of anaemia.

(e) The red blood cells are resistant to irradiation, and are quite unaffected by exposure sufficient to cause radiation sickness. The circulating red cells live their normal life span and continue their normal functions. Nevertheless, anaemia begins about a week after whole body irradiation and progress for about three weeks, the anaemia being most marked at about the time when the lymphocyte and neutrophil counts are returning towards normal. The anaemia results from a combination of haemorrhage and bone marrow depression. Anaemia may persist for six months or longer.

3. Effect on cell metabolism

Isolated enzymes, studied in vitro, can easily be shown to be extremely radiosensitive, but interference with enzyme systems in the living cell is less easily proved. Interference with the enzyme systems concerned in the synthesis of DNA is responsible for the retarded synthesis of DNA. Cell respiration and glucose utilization are impaired. It seems possible that the destruction of enzymes is the mechanism by which radiation alters the behaviour of cells and even kills them.

The radiosensitivity of various normal tissues

The amount of damage found in the various tissues at autopsy after whole body irradiation is an indication of their sensitivity. The gonads and haemopoietic tissues are the most sensitive; the skin, mucous membranes, and the epithelium of blood vessels are moderately sensitive; bone, connective tissue, serous membranes, and new cells are relatively resistant.

1. Gonads — The gonads of mammals are very sensitive to radiation, the ovaries even more than the testes.

Permanent sterility can be induced in the female by irradiating the ovaries with a dose which would lead only to temporary sterility in the male. Irradiation of the ovaries has been used in the treatment of advanced breast cancer, but

3. Blood vessels — The blood vessels affected by radiation are the fine vessels, including capillaries, small arteries and veins. Large vessels are usually not involved directly, but involvement of their vasa vasorum may lead to secondary damage.

The capillaries are damaged immediately. Within ten minutes of irradiation the skin, intravenously injected trypan blue, appears in the treated area indicating increased

Now for Glaxo value in oxytetracycline

Clinmycin

Glaxo

Glaxo Laboratories Ltd. Greenford, Middlesex, UK
Agents for the Glaxo division of Glaxo Allenburys (Export) Ltd
Dodwell & Co Ltd, PO Box 5849, Hong Kong

TABLE OF NORMAL VALUES

By The University of Hong Kong Clinical Pathology Laboratories

HAEMATOLOGY SECTION

(we have printed this list of normal values in a previous issue, and members of the profession found it extraordinarily useful, and many requests for reprint have been received.)

TEST	NORMAL VALUES (Adult)	TEST	REMARKS	NORMAL VALUES
GENERAL HAEMATOLOGY		BLOOD		
Haemoglobin	Some of these values are subject to alteration when normal values for Hong Kong are available	Alkaline Phosphatase	Adults 4—11. Children 5—12 K-A units/100 ml	
RBC Count	Male: 13.5—18 G%; Female: 11.5—16.5 G%	Acid Phosphatase	1.5—15 K-A units/100 ml	
Microhaemocrit	Male: 3.9—5.6; Male: 4.5—6.5 X 10 ⁹ /mm ³	Amylase	0.1—0.5 mg/100 ml	
Reticulocyte Count	Male: 40—54%; Female: 35—47%	Bilirubin	0—4 units	
White Cell Count	0.2—2.6	Thymol Turbidity	0—8 units	
Differential WBC Count	4000—10,000/c.mm.	Zinc Sulfate	4—40 Cibacron units	
Absolute Eosinophil Count	N: 40—75%; 2500—7500/mm ³ ; L: 20—45%	SGOT	1—45 Cibacron units	
Platelet Count	1500—3500/mm ³ ; Mono: 2—10% 200—800/mm ³	SGPT	6.5—7.9 gm/100 ml	
ESR	Eosin: 1—6%; Baso: 1%	Protein	4.2—5.2 gm/100 ml	
SPECIAL HAEMATOLOGY	40—440/mm ³	Albumin	1.5—3.0 gm/100 ml	
Haemoglobin Pattern	150,000—400,000/mm ³	Globulin	As % total protein: albumin, 52—58; globulins, 41.2—5.3; α_1 6.6—13.5; β 8.5—14.5; γ 10.7—21.0	
RBC Osmotic Fragility	Male: 0—15; Female: 0—20 mm/1st hr. (Westergren)	Protein Pattern	140—280 mg/100 ml	
Haptoglobin			14—38 mg/100 ml	
COAGULATION		Cholesterol	2.7 mg/100 ml	
Prothrombin Time	HB A: HB A ₂ < 3%; HB F < 2%	Urea	1—3.5 mg/100 ml	
Partial thromboplastin Time	Lysis from 0.5% to 0.3% NaCl.	Uric Acid	0.1—1.5 mg/100 ml	
SEROLOGY	30—200 mg HB-binding capacity/100 ml serum	Creatinine	3.8—5.2 mEq/L	
LE Cells	10—15 secs. (Quick's one stage method)	Potassium	136—149 mEq/L	
Coombs' test Direct	Up to 100 secs. (Non-activated)	Sodium	100—107 mEq/L	
Indirect		Chloride	23—28 mEq/L	
Cold & Warm Antibodies	Cold agglutinins up to 1:32.	CO ₂ Combining Power (Heparin)	4.7—5.5 mEq/L	
VDRL	Negative	Calcium	110—130 μ gm/100 ml (diurnal variation)	
ASOT	Up to 250 Todd Unit	Iron	2.8—4.2 mg/100 ml	
Paul-Bunnell	Mono-test: Negative. Presumptive P.B.: less than 1:14	Inorganic Phosphate (as P)	63—100 mg/100 ml	
Anti-thyroglobulin antibodies	Negative	Glucose (Fluoride)	No flocculation: negative	
URINALYSIS		R-A/C-R Protein	AH	
Reaction	Acid under usual circumstances	Ceruloplasmin	Different units may be employed for the same enzyme	
Protein	0—15 mg%	Lactic Phosphokinase	Indirectly on the method and conditions of assay.	
Sugar	Negative	Lactic Dehydrogenase		
Specific gravity	1015—1035	Alkalase		
Microscopy	0—5 WBC: 0—1 RBC/HPF	Lipase		
Occult blood	Negative	Pyruvic Acid (10% TCA)		
Bile	Negative	Lactic Acid (10% TCA)		
Urobilinogen	Up to trace or 4 mg/day	Salicylate		
Ketone Bodies	Negative	BSP		
Bence-Jones Protein	Negative	Fibrinogen		
24 hrs Protein	0—0.5 gm/24 hrs.			
Chyle	Negative			
C.S.F. AND OTHER FLUIDS		URINE (24 hours)		
Cytology	CSF 0—5 mononuclears/cu.mm. RBC neg.	Copper	Use stringent precautions < 70 μ gm per 24 hrs.	
VDRL	Negative	Iron	with Cu nil per 24 hrs.	
SEmen ANALYSIS	Sperm count: 70—150 Million/ml. Below 60M, Abnormal Motility: 80% or more active Morphology: 80—90% normal forms.	Inorganic Phosphate (as P)	0.3—1.0 Gm per 24 hrs.	
		Chloride (as NaCl)	50—400 mg per 24 hrs.	
CEREBROSPINAL FLUID		Potassium	1—5 Gm (26—123 mEq) per 24 hrs.	
Chloride (as NaCl)	Interference by blood 700—750 mg/100 ml	Sodium	1—5 Gm (43—217 mEq) per 24 hrs.	
Glucose	Interference by blood 50—70 mg/100 ml	Diastase	6—30 Wohlgemuth units/ml per 24 hrs.	
Protein	Interference by blood 15—45 mg/100 ml	Creatinine	Adult 12—25 mg/Kg body weight per 24 hrs.	
Colloidal Gold	Interference by blood 000 110 0000	Urea	12—35 Gm per 24 hrs.	
FECES		Uric Acid	250—750 mg per 24 hrs.	
Occult blood	Deliver immediately 1—7 Gm/24 hrs	Porphobilinogen (qual.)	Below 2.0 mg per 24 hrs.	
Fat	Deliver immediately Adult 30—200 mg/100 Gm	Porphyrins (qual.)	80—250 μ g per 24 hrs.	
Urobilinogen		Xylose (5 hours)	(25 Gm does) 4—9 Gm/5 hr; (5 Gm does) over 1.2 Gm/5 hr per 24 hrs.	
		Alpha-amino acid N	50—200 mg per 24 hrs.	
		Catecholamines	0—160 μ gm per 24 hrs.	
		Methorepinephrine +	Below 1 mg per 24 hrs.	
		Methepinephrine		
		VMA		
		17-Ketosteroids	1.8—7.1 mg per 24 hrs.	
		Total 17-hydroxysteroids	Adult male 8—26 mg } Output varies with sex and age per 24 hrs.	
		5-hydroxy indole acetic acid (qual.)	Adult male 6—20 mg } per 24 hrs.	
		Acid mucopolysaccharides	Below 10 mg per 24 hrs.	
		Refrigerate	Adult male 4.4—7.3 mg as glucuronic acid per 24 hrs.	

(Continued from page 2) A. E.

capillary permeability. The continuous transudation of fluid, combined with full dilatation of all the capillaries in the area, gives rise to an inflammatory response which reaches full development only after some hours.

In smaller arteries and veins radiation damage is most obvious in the intima, which becomes oedematous and covered by platelet thrombi. The endothelium grows over these thrombi and incorporates them into the intima which becomes greatly thickened. Later, all coats of the vessel become increasingly fibrosed. Endarteritis of tumour vessels may be beneficial, but endarteritis of the overlying skin makes the skin intolerant of further irradiation.

4. Suppression of immunological response — This suppression has been used in preventing the rejection of homografts, especially kidney homografts. But the body resistance to infection is greatly lowered.

5. Carciogenic effect — Radiation may lead to the development of cancer, but the

fundamental change in irradiated cells which is responsible for their turning malignant is no better understood than the cause of cancer in general.

Squamous carcinoma of the skin was common in radiologists until the need for protecting the hands was appreciated. The high incidence of bone sarcoma in workers in radium paint factories is probably due to small amounts of radium being incorporated into the bones. Irradiation of the neck in childhood predisposes to the development of thyroid carcinoma ten or more years later.

The long interval between the exposure and the development of malignancy is a feature of irradiational cancer.

6. Cataract — There is a long latent period, and five or ten years may elapse between irradiation and the onset of blindness. Direct irradiation of the orbit is a more important cause of cataract than irradiation of the rest of the body.

Factors affecting radiosensitivity

1. Factors reducing radiosensitivity.

The sensitivity of a tissue to irradiation can be reduced by a number of factors causing anoxia, including oxygen lack, cold, reduced blood supply, and drugs which reduce blood flow or interfere with cellular respiration.

Recent research has shown also that chemical protection can be given by compounds containing a mercapto (-SH) radical. It is believed that much of the cell damage caused by irradiation results from the formation of highly reactive substances from intracellular water; these include H^+ , OH^- , HO_2 (in the presence of oxygen), and H_2O_2 . Anoxia is believed to hinder the formation of these reactive substances, whereas the mercapto-compounds rapidly remove them.

2. Factors potentiating radiosensitivity.

The converse effect, potentiation of the action of irradiation, is aimed at when a patient with bronchial carcinoma is irradiated in an oxygen tent.

Pen Pal Wanted - from Ceylon

The Editor, "Caduceus", Medical Students Centre, Sassoong Road, HONG KONG.

Dear Sir,

I received your address from a medical student of the Ceylon University, Colombo. I am very keen to have pen pals from your country, but so far I have been unable to do so.

So I shall be very grateful if you could kindly publish my name on your magazine as a person who would like to have pen pals from Hong Kong. Further I give below the following details about myself. I am a second year engineering student. Age 21 plus. My hobbies: stamps, collecting view cards, pop music and dancing. student of international affairs. My sports: football, hockey, swimming. I also take part in Drama.

I shall be very grateful if you could publish my name in your magazine.

Thanking you ever so much,

Yours faithfully,

Tony Perera.

My Address: TONY PERERA, 11, UIVEKANANDA ROAD, COLOMBO 6, CEYLON

啟思

香港大學學生會
醫學會月刊

第十一期

一九七〇年十二月十五日

The views expressed by our Contributors are not necessarily those of the Editorial Board.

The Editorial Board wishes to thank the special support of the Glaxo Lab. Ltd.

EDITORIAL BOARD

Hon. Adviser: Dr. Rudy Khoo
Editor-in-Chief: Peter Lau Kwong Fu
General Editors: 任燕珍
Loretta Yam Yin Chun
(Hon. Secretary)
Margaret Cheung Tsui Wan
(Hon. Treasurer)
Managing Editor: Frederick Ko Wai Keung
Academic Editor: 譚裕基
William Tam Yu Kay
Art & Photography Editor: 何榮
Ho Sun, Alan
Chinese Editor: Robert Law
羅致廉
External Affairs Editor: Wong Shou Pang
王壽鵬
Features & Correspondence Editor: 梁振文
Connie Leung Chun Man
Internal Affairs Editor: Laurence Chan
陳光輝
Sports Editor: Wong Chun Chung
黃振宗
Representative of previous Editorial Board:
Yeung Wai Chow
Chief Editor of Elixir: Stephen Ho
何詠銓

Sub-Editors:
Au Wing Fai
Fong Chin Wan
Yeung Kwok Wai,
Henry
Chow Sze Fu, Joseph
周斯富

區永輝
方展雲
楊國維
周斯富

草原已在眼簾中出現，潺潺的水聲也隱隱可聞。疲倦飢渴而口渴的途人給這些景象吸引了，但他們沉重的步伐並不保證能帶他們到達這裡想人受過各種不同的挫折，但挫折就是經驗，越多挫折，積累起來的經驗就越豐富，對於以後所採取的步驟，更是有計劃，越戰越精神，越奮鬥越勇敢。有一副百折不撓的精神，你是永不會向任何因難低頭，你是永遠能夠克服一切挑戰。因還有一部份人是經不起這條路途的挑戰。因為他們不肯擺全副精神在那兒，這種人一遇到紳腳石，就要摔倒，就要低頭，他們毫無爬起再來一次嘗試的念頭。這種人必然在半途中受到淘汰。

中的人們，看著誰是勝利者，誰是失敗者。所以旅途中的人時刻都受到旁人的注視。偶爾，途人也會受到旁人的鼓勵和指點，這對於正在跋涉的旅行者，真是一種興奮劑。

路的兩旁，還有千萬對雪亮的眼睛凝視著途人，抹抹自己的汗，細心檢討一下自己的實力，有沒有再進一步發揮的餘地。遇到野獸，也可以採摘來吃。在艱苦的旅途中得到一時舒暢，以後的路途更覺輕鬆，更覺有味。

無題

遙遠的

路

途

喜。

雖然這是一條遙長而艱苦的路途，但很少人會為了旅程的困難而半途棄權。雖然他們中不少的人受過各種不同的挫折，但挫折就是經驗，越多次挫折，積累起來的經驗就越豐富，對於以後所採取的步驟，更是有計劃，越戰越精神，越奮鬥越勇敢。有一副百折不撓的精神，你是永不會向任何因難低頭，你是永遠能夠克服一切挑戰。因

還有一部份人是經不起這條路途的挑戰。因為他們不肯擺全副精神在那兒，這種人一遇到紳腳石，就要摔倒，就要低頭，他們毫無爬起再來一次嘗試的念頭。這種人必然在半途中受到淘汰。

中的人們，看著誰是勝利者，誰是失敗者。所以旅途中的人時刻都受到旁人的注視。偶爾，途人也會受到旁人的鼓勵和指點，這對於正在跋涉的旅行者，真是一種興奮劑。

恭祝聖誕

並賀新禧

編輯部同人鞠躬

1. Eff Th sensit dosage c doses divisio chro which doses, to gene respon of ne alway offspr

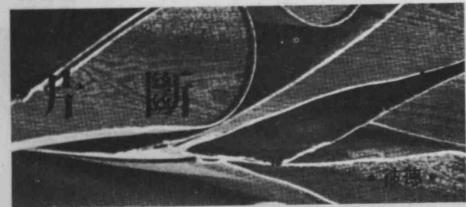
「昨夜我進入夢鄉，一輛小馬車飛到我身旁。我騎上馬車，撤開了鞭韁。飛呀，飛呀，馬車到了天堂。」

「不行了，小弟，要是姊姊能像你一般的唱，那就好了。」

「姊姊你，來唱。」

「姊姊給我買風車。」

「姊姊給我買風車，迎風旋轉，小弟看得心花怒放，拍手叫好。風車，轉又轉。小弟，你可知道人在這世界上也是不停的在轉，轉得目眩眼花，轉得失去了自己的真面目。」


「是的，小弟，他們很好。可是這兒的好人，一樣，太美了。」

「不了，小弟，還是你看吧。姊姊看過的萬花筒不如你的好。一樣比一樣醜惡，厭得要死，却又不能不看。」

「姊姊帶我去看你的。」

「姊姊我怕。」

「小弟，你還是看你的萬花筒，轉你的風車，唱你的歌，珍惜你這段時光，姊姊看到的一切，你將來也不能避免，那時你看的是醜陋的人間萬花筒，轉的是你自己，唱的是哀歌。」

空氣調節機聲消失於空中，緊張的圖書館氣氛加添了一分落漠。週圍的人都非常專心，只間中聽到微弱的紙張摩擦聲和鄰桌一雙男女的細語。

神智開始為密麻麻的字句打昏了，腦子的效率經過數小時的填塞正在急劇下降，我只好收拾書本離去。出門口時差點和一個手持白袍的撞個正著，他滿不在乎的走過，掛了一臉傲氣，這些畢竟見慣了，但孤疑著自己將來高班時是否也會長了這個臉色。

渡海輪上，我揀了一個開放的位子，澈涼的海風把昏頓了的腦子吹醒過來。船開後，冬日的斜暉散播滿身，夾著了一股和暖，有著說不出的舒暢。夕陽將西邊的天空抹上了一彩橙紅，反映在遠處的海面，反映在西環海旁大廈的窗子上。

搭客大都是工人階級，穿迷你裙的時髦小姐可說絕無僅有。殘舊的單衣，粗黑的皮膚，滿臉的風霜，刻下了他們艱辛的經歷，他們大聲地談論著物價的上漲，子女的學業，不平的遭遇……。

空氣間有點枯燥，而且滲了一絲灰暗，心頭湧起莫名的感受，是一份優越感？還是發覺自己並不在現實中打滾的疑惑。

打開了七十年代雙週刊，欣然地看到裏面很詩意化的安排，有約翰連儂的性版畫；並不很特出，但比起花花公子的漫畫則美得多。其中一篇文章很有意味，是敘述一個留美的中國學生和一個從加納來的黑人的傾談，那個黑人因為國家貧困農業落後才遠涉洋到美國攻讀農業，希望將來替國家推進農業，使同胞的生活可以好過些。

我從未想過畢業後要回國服務，但也不感到慚愧，只是羨慕他有一個明確的理想。

電台的播音剛完了，實驗報告還沒有做，只怪自己平日連記錄也懶得抄下，還是待明日借人的壙上，否則明早課時又打瞌睡了。

合上了眼，良久仍未入夢鄉，日間所見的都湧到腦海裏，不期然的想起了那意氣風發的醫生，想起那由加納來的黑人，也想起了滿臉風霜的工人……。