<table>
<thead>
<tr>
<th>Title</th>
<th>Tenofovir disoproxil fumarate for the treatment of chronic hepatitis B mono-infection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Seto, WK; Yuen, MF; Fung, J; Lai, CL</td>
</tr>
<tr>
<td>Citation</td>
<td>Hepatology International, 2013, v. 7 n. 2, p. 327-334</td>
</tr>
<tr>
<td>Issued Date</td>
<td>2013</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10722/137379</td>
</tr>
<tr>
<td>Rights</td>
<td>The original publication is available at www.springerlink.com</td>
</tr>
</tbody>
</table>
Tenofovir disoproxil fumarate for the treatment of chronic hepatitis B monoinfection

Wai-Kay Seto, Man-Fung Yuen, James Fung, Ching-Lung Lai

Department of Medicine, the University of Hong Kong, Queen Mary Hospital

Keywords: hepatitis B, tenofovir, resistance, HBeAg, HBsAg, HBV DNA

Correspondence and Reprint request:
Prof. Ching-Lung Lai, Department of Medicine, The University of Hong Kong
Queen Mary Hospital, Pokfulam Road, Hong Kong
E mail: hrmelcl@hkucc.hku.hk Fax: 852 28162863 Tel: 852 22554477
The authors declare they have participated in the preparation of the manuscript and have seen and approved the final version.

Conflicts of Interest

MF Yuen and CL Lai have given lectures at Gilead Sciences Symposia.

Role of the funding source

All the authors have nothing to disclose

Note: Serum HBV DNA levels are expressed as IU/mL in this review. If HBV DNA levels were originally quoted as copies/mL in their cited reference, they are converted from copies/mL to IU/mL in a ratio of 5.8 :1.
Abstract

Resistance in nucleoside / nucleotide analogue (NA) therapy has always been a challenge in the management of chronic hepatitis B (CHB). Initially developed for the treatment of HIV infection, early in vitro and clinical observational studies had shown tenofovir disoproxil fumarate (TDF) to be also active against CHB. Recent data from various multicenter phase 3 and 4 clinical trials have confirmed TDF being able to achieve a high viral suppression in both NA-naïve and -experienced CHB patients. There are also emerging data on the efficacy of TDF in decompensated CHB. Although there are in vitro studies identifying certain mutation loci associated with a reduced susceptibility to TDF, there have so far been no reports of virologic resistance to TDF in clinical studies. TDF has a favorable safety profile, although more long-term data would be needed. In conclusion, TDF has the makings of an “ideal” first-line drug for the treatment of CHB.
Introduction

Chronic hepatitis B (CHB) infection constitutes a global health burden, with 400 million patients infected with the hepatitis B virus (HBV) (1), and an estimated 600,000 people dying annually from complications of CHB (2). The last two decades have seen the introduction of various nucleoside / nucleotide analogues (NA) (3-7). There is increasing medical evidence supporting long-term NA therapy in order to maintain a permanent virologic suppression (8), since this could result in histologic improvement with reversal of fibrosis (9) and reduce the incidence of cirrhotic complications and hepatocellular carcinoma (HCC) (10, 11).

The prerequisites for long-term therapy include a simple dosing regimen to ensure drug compliance, satisfactory tolerability, minimal toxicity, favorable potency, and minimal drug resistance. Drug resistance is an important issue in NA therapy, especially with lamivudine, adefovir and telbivudine (12). Resistance to lamivudine can be up to 67% and more than 75% after 4 and 5 years of therapy respectively (11, 13). The cumulative resistance rate of telbivudine is 34% after 3 years (14). Both lamivudine and telbivudine have a low genetic barrier to resistance, with only one mutation at the rtM204V/I loci required. The acyclic structure of adefovir has a high molecular flexibility, resulting in effective drug action even when there are minor alterations in the binding pocket as a result of viral mutations (15). Despite this molecular advantage, the resistance rate of adefovir is still 22% after 2 years of therapy (16), with mutations at the rtA181T and rtN236T loci.

An ideal NA would need to have a durable antiviral potency and also a high genetic barrier of resistance. Entecavir was the first drug with favorable properties, with
only a resistance rate of 1.2% after 5 years of therapy in treatment-naïve CHB patients (17, 18). However the results in lamivudine-resistant patients are suboptimal, with a resistance rate of 51% after 5 years of therapy (17, 19). This review discusses another potent NA recently available for CHB treatment: tenofovir disoproxil fumarate (TDF).

Early observational studies

TDF is an orally bioavailable prodrug of tenofovir (20), which belongs to a class of drugs known as acyclic nucleoside phosphonates (21), known for their potent antiviral activity against both DNA and RNA viruses through direct binding with the viral polymerases. TDF was first approved by the US Food and Drug Administration (FDA) for the treatment of human immunodeficiency virus (HIV) infection in 2001, and has since become the cornerstone for anti-HIV combination treatment regimens. TDF is also active against HBV, with *in vitro* studies showing potent antiviral activity against both wild-type and lamivudine-resistant HBV(22). Tenofovir is converted to its active form through a two-step phosphorylation, and terminates chain elongation catalyzed by the HBV DNA polymerase.

The initial clinical evidence of TDF in the treatment of CHB arose from HIV-HBV co-infected individuals. In 2002, van Bommel et al treated 5 lamivudine-resistant patients with HBV and HIV co-infection with TDF 300 mg daily, resulting in a 4.5 log reduction in HBV DNA by week 24 (23). Two similar studies by Ristig et al (24) and Benhamou et al (25) in 6 and 10 co-infected individuals respectively also had similar findings, with serum HBV DNA decreasing by 4.3 logs and 3.8 logs respectively at week 24. The first comparative study in 12 co-infected individuals also found TDF achieving
better viral suppression when compared to placebo (26). TDF was also found to achieve potent viral suppression in a small study of CHB patients with no HIV co-infection (27), as well as in lamivudine-resistant patients following liver transplantation (28).

The initial success of TDF led to comparative studies with adefovir dipivoxil, also an acyclic nucleoside phosphatase, which was approved by the US FDA for the treatment of CHB infection in 2002. The main use of adefovir was as “rescue” therapy in lamivudine resistance (29, 30), but its usage is hindered by the increased frequency of adefovir resistance mutations when compared to NA-naïve patients (31). In the first study comparing TDF and adefovir (32), 53 lamivudine-resistant patients were treated with TDF 300 mg daily or adefovir 10 mg daily for up to 130 weeks. The majority of patients had HIV co-infection. TDF was shown to achieve a faster HBV DNA reduction by week 4 when compared to adefovir, with the HBV DNA reduction becoming significantly better than adefovir by week 12. All patients on TDF achieved undetectable HBV DNA (less than 69 IU/mL) at week 48, compared to 44% of patients on adefovir. There was no evidence of phenotypic viral resistance to TDF up to week 130. Despite the similar molecular structure of TDF and adefovir, TDF was also effective in patients with sub-optimal virologic response to adefovir (33).

Clinical trials of tenofovir disoproxil fumarate in chronic hepatitis B

From the above observational studies, based on its antiviral potency, minimal resistance and effectiveness in lamivudine-resistant patients, TDF has the potential to become the “ideal” drug for CHB. This had led to the commencement of different trials in both treatment-naïve and NA-experienced CHB patients (Table 1).
Marcellin and Heathcote et al conducted the first randomized double-blind study concerning TDF, with both HBeAg-positive (study 103) and -negative (study 102) patients with compensated liver disease randomly assigned to receive either TDF (n=426) or adefovir (n=215) for 48 weeks (34). A small proportion of patients were previously treated with lamivudine, emtricitabine or interferon. The primary endpoint was a serum HBV DNA level of less than 69 IU/mL (or 400 copies/mL). By weeks 4 to 12, there was already an obvious difference in viral suppression between the two treatment groups. By week 48, significantly more patients on TDF achieved HBV DNA undetectability (76% for HBeAg-positive, 93% for HBeAg-negative) when compared to adefovir (13% and 63% respectively). Three percent of HBeAg-positive patients on TDF achieved hepatitis B surface antigen (HBsAg) seroclearance, while histologic improvements were similar in both treatment groups. Tenofovir produced similar viral suppression in patients with prior lamivudine treatment.

Patients from the above studies, irrespective of their therapeutic response, were then enrolled in a follow-up study to receive open-label TDF for 7 years (35). Patients from both groups with detectable serum HBV DNA at week 72 were eligible to receive tenofovir together with emtricitabine at the discretion of the investigators. The primary endpoints were the serologic and virologic outcomes and the resistance profile at week 144 (n=542). Up to 72% and 87% of HBeAg-positive and -negative patients respectively achieved undetectable HBV DNA (less than 69 IU/mL) by week 144. Patients who were originally on adefovir and subsequently switched to TDF at week 48 also had similar outcomes. No resistance to tenofovir was detected. A cumulative 8% of HBeAg-positive patients (the majority being genotype A and D) achieved HBsAg seroclearance,
although there were no cases of HBsAg loss in HBeAg-negative patients. When the same patient cohort was followed up to week 192, rates of undetectable HBV DNA were 77% and 86% in HBeAg-positive and -negative patients respectively. HBsAg seroclearance rate among HBeAg-positive patients increased to 10%, with 7.5% seroconverting to serum antibody to HBsAg (anti-HBs) (36, 37). In a sub-group analysis of patients with high baseline viral load (more than 8.3 log IU/mL), more than 95% achieved undetectable HBV DNA and 15.2% of HBeAg-positive patients achieved HBsAg seroclearance (38) at week 192. Another subgroups analysis of 198 Asian CHB patients also found 79% (74% HBeAg-positive, 84% HBeAg-negative) achieving HBV DNA undetectability at week 192, although there were no Asian patients achieving HBsAg seroclearance (39). Of the 51 patients eligible for receiving combination of TDF and emtricitabine, 34 had combination therapy while 17 remained on TDF monotherapy. There was no difference in viral suppression between those receiving combination therapy and those whom continued to receive TDF monotherapy up to year 3 (35).

TDF is also effective in patients with prior exposure to different NAs. A randomized double-blind study by Berg et al. in Europe (40) recruited patients with an incomplete virologic response to adefovir (n=105) with 31 having proven adefovir resistance mutations and 25 having lamivudine resistance mutations. They were randomly assigned to either TDF or TDF plus emtricitabine. At 48 weeks, 81% of patients in both treatment groups had HBV DNA levels of less than 69 IU/mL. A continued follow-up of the same patient cohort showed similar viral suppression (86%) up to week 168 (41). Another prospective study by Patterson et al in Australia (42) enrolled 60 patients with incomplete virologic response to both lamivudine and adefovir.
After 96 weeks of TDF or combination TDF and lamivudine, 64% of patients achieved HBV DNA levels of less than 15 IU/mL. Viral suppression was similar regardless of the addition of lamivudine. Both the European and Australian studies found treatment response to be independent of baseline mutations. An preliminary Italian study also showed similar findings (43).

However, the above findings were not entirely reproduced in a retrospective multicenter study from Germany (44), with 131 NA-experienced patients having previous treatment failure with lamivudine, adefovir, combination lamivudine and adefovir or entecavir. After a mean treatment duration of 23 months, 79% achieved a HBV DNA level below 69 IU/mL. HBsAg seroclearance occurred in 3% of patients. Unlike the previous three studies, the presence of adefovir mutations impaired TDF efficacy when compared to the presence of lamivudine mutations (52% versus 100% respectively achieving viral suppression). The outcome of adefovir-resistant patients in different trials is depicted in Table 2. For all 4 studies, the number of patients with proven genotypic adefovir resistance is actually small. In addition, different methods of resistance methods were used. Two of the four studies (42, 44) only used direct sequencing for resistance detection, a method which could only detect mutations if there are at least 20-30% of mutants circulating in the total viral population (45). The other 2 studies (40, 43) used a line probe assay (LiPA), which is able to detect mutations constituting 5% of the total viral population (46). Further studies with a larger study population are needed to determine the efficacy of TDF in adefovir-resistant patients.
Tenofovir in decompensated chronic hepatitis B

The use of NAs in decompensated CHB had previously shown mixed results. Lamivudine was able to improve liver function in decompensated CHB (47), but evidence on its effect in improving survival has been mixed (48, 49). The use of adefovir in decompensated CHB also improved liver function significantly, however 14% of patients died within the first year and 33% still required liver transplantation for long-term survival (50). Entecavir in decompensated CHB achieved an 87% to 91% 1-year patient survival (51, 52). However there were reports of 5 cases of lactic acidosis according to a study with limited number of patients (53) The same center subsequently describe similar cases of lactic acidosis with other NAs There was also a possible increase in short-term mortality when used in acute exacerbation of CHB in a retrospective study comparing entecavir and lamivudine in 36 and 117 patients respectively (54).

A recent study compared TDF (n=45), emtricitabine / TDF (n=45) and entecavir (n=22) in patients with decompensated CHB for 48 weeks (52). All 3 treatment arms had comparable biochemical and virologic improvements. Patients on TDF or emtricitabine / TDF were more likely to achieve HBeAg loss. There were no cases of lactic acidosis reported for any treatment group.

Tenofovir in acute on chronic liver failure

A recent prospective study randomized patients diagnosed with acute-on-chronic liver failure due to CHB to either TDF (n=14) or placebo (n=13) (55). Patients were followed up for 3 months, with no liver transplantation offered due to its
unavailability. Fifty-seven percent of patients on TDF survived compared to 15% of the placebo patients. One patient on TDF developed HBsAg seroclearance. Patients on TDF also showed marked virologic and biochemical improvements, with a 2 log HBV DNA reduction within 2 weeks independently predicting survival. Despite its small sample size, the authors concluded that responders to TDF could be identified within 2 weeks, thus optimizing patient selection for liver transplantation. Prospective studies on a larger scale are needed to confirm this finding.

Tenofovir in solid organ transplant recipients

The use of TDF in solid organ transplant recipients has not been extensively studied, with most studies to date focusing on lamivudine. A recent small study on 7 transplant recipients with prior suboptimal response to other NAs found TDF to be both efficacious and safe (56). Another small study followed up 8 patients with HBV recurrence after liver transplantation. Four patients had detectable viremia despite entecavir, and eventual viral suppression was achieved with the addition of TDF (57). While more large-scale studies are required to determine efficacy and safety of TDF in this special group of patients, it would be reasonable to anticipate an optimal virologic response and low rates of resistance.

Resistance profile of tenofovir

To date, there are no reports of any virologic resistance to TDF among patients with CHB monoinfection.
A phenotypic analysis with recombinant HBV was performed using serum derived from studies 102 and 103 (34, 35). The majority of these patients were NA-naïve, and baseline genotypic mutations were only found in 1.1% of patients (all lamivudine-related rtM204V/I with or without rtL180M). Serum was chosen from patients who developed virologic breakthrough, although virologic breakthroughs were infrequent and found to be mostly associated with drug non-compliance. No patients developed amino acid substitutions associated with resistance to TDF up to week 144 (58).

The first study to suggest a mutation loci associated with TDF resistance was based on 43 CHB patients with HIV co-infection (59). The rtA194T substitution found in 2 patients was found to be associated with reduced susceptibility to TDF in vitro when the lamivudine mutations of rtM204V and rtL180M were present. Nevertheless, further studies concerning the rtA194T mutation showed mixed results. A subsequent in vitro study failed to reproduce the results of Sheldon et al (60). Another study using replicated HBV plasmid harboring rtA194T alone or with lamivudine-associated mutants found the rtA194T mutation to be associated with partial resistance to TDF; however, the effect on resistance is negated when the mutations occur together with precore or basic core promoter substitutions (61).

The clinical impact of the rtA194T mutation is still unknown. A preliminary clinical study followed up 10 CHB patients with the rtA194T mutation present before commencing on TDF. After receiving either TDF monotherapy or in combination with either lamivudine or emtricitabine for 1.5 years, all patients had at least 3 log reduction
in DNA after 12 weeks, and 9 patients achieved HBV DNA levels of less than 100 IU/mL at their last follow-up (62).

In vitro studies had also found the adefovir-associated mutations rtA181T and rtN236T to be associated with reduced susceptibility to TDF (63, 64). As mentioned previously, clinical studies on the efficacy of TDF in adefovir-resistant patients showed mixed results (40, 42-44).

It is possible that TDF results in rapid viral suppression, thus preventing resistant strains with reduced replicative capacity from taking over the majority of the viral population, making the rtA194T, rtA181T or the rtN236T mutations clinically irrelevant. More long-term studies with larger cohort of patients on TDF harboring the above mutations would be needed before definitive conclusions can be drawn.

Cost utility analysis of tenofovir

Data on the cost-effectiveness of TDF is emerging. A recent study from the United Kingdom investigated this issue, using a Markov model to compare TDF with lamivudine, adefovir and entecavir. First-line TDF was found to be the most cost-effective treatment for patients with CHB, costing £19,084 per quality-adjusted life-year gained compared with the next best alternative (65). Another study compared the 12-month treatment outcomes of the five NAs and pegylated interferon in various randomized control trials using a Bayesian mixed treatment comparison model. TDF was found to be most cost-effective in HBeAg-negative disease (66). Given its limited availability in Asia, similar cost utility analysis of TDF in Asia is lacking, although a Hong
Kong study on the cost-effectiveness of other NAs found TDF to be the most cost-effective if TDF was priced similarly to telbivudine (67).

Safety

An understanding of the safety profile of TDF is essential, especially when NA therapy is likely to be long-term in order to achieve permanent viral suppression. Tenofovir is primarily excreted by the kidneys, and the most important safety concern of TDF would be its association with renal dysfunction. The majority of cases with TDF-associated renal impairment were reported from the HIV population. Although less commonly seen when compared to adefovir therapy, prolonged treatment with TDF is associated with renal proximal tubular dysfunction (68-70) and hypophosphatemia, the latter secondary to reduced phosphate reabsorption and excessive loss of urinary phosphates (71-73). Fanconi syndrome and acute renal failure have also been reported (74, 75), although the nephrotoxicity is usually reversible when therapy is stopped. TDF is associated with a 4% decline in glomerular filtration rate (GFR) in HIV patients over one year (76) and a decline of 9.8 mL/min/1.37 m² up to 5 years(77), although given the differences in disease nature, such data might not be directly applicable in CHB.

Safety data of long-term TDF in CHB is emerging. In patients with HIV co-infection taking TDF, GFR declined by 22.19 ml/min/1.73 mm² from baseline over a median follow-up period of 251 weeks (78). However, clinical trials of TDF in CHB monoinfection mentioned previously did not detect any significant changes in creatinine levels or creatinine clearance up to 144 weeks (35, 42, 44). An preliminary Italian study
followed 737 CHB patients on TDF for a median period of 16 months, of which 524 had prior exposure to other NAs. Less than 1% of patients had an increase in serum creatinine of more than 44 umol/L (or 0.5 mg/dL). In terms of tubular function, 37% patients had a significant decrease in urinary phosphate reabsorption, of which the majority had prior exposure to adefovir. The authors concluded that TDF had a favorable safety profile, with only a few patients (mainly NA-experienced) showing a mild degree of renal dysfunction (79). TDF usage in decompensated liver disease is of special concern, especially since many such patients have concurrent renal impairment. In a study on patients with decompensated CHB, only 7.8% had an increase in serum creatinine of more than 44 umol/L after 48 weeks of TDF (52), which was not significantly different from the 4.5% observed with entecavir in the same study.

Dosage adjustments are required for patients with a creatinine clearance of less than 50 ml/min. TDF is taken at 300mg every 48 hours for patients with a creatinine clearance of 30 to 49 ml/min, and every 72 to 96 hours for those with a creatinine clearance of 10 to 29 ml/min. Patients on hemodialysis should take TDF every 7 days following dialysis.

Concerning non-renal side effects of TDF, there had been some concerns of TDF being associated with a low bone mineral density and fat redistribution (80, 81). However, a recent study of HIV-infected individuals with 10 years of follow-up did not find any significant changes in both bone mineral density and limb fat (82). More safety data is needed concerning the significance of non-renal side effects of TDF in CHB.

TDF is labeled by the US FDA as a category "B" pregnancy drug. Animal reproduction studies using doses up to 19 times the human dose revealed no evidence
of impaired fertility of harm to the fetus. There are currently no adequate well-controlled studies of TDF in pregnant woman. However in a follow-up of 3695 HIV-infected mothers treated with TDF or lamivudine, the incidence of congenital fetal abnormalities was 2.3% and 2.7% respectively, which was not different from the incidence of congenital abnormalities in NA-naïve mothers(83). Maternal bioavailability may be decreased in the third trimester. Concerning lactation, animal studies have demonstrated that TDF is secreted in milk, and breastfeeding is not advised for mothers taking TDF (84).

Future directions and conclusions

One interesting phenomenon with TDF is the relatively high HBsAg seroclearance noted in HBeAg-positive CHB with genotypes A and D, with a cumulative rate of 10% after 192 weeks of therapy (36). Given the low incidence of spontaneous and NA-induced HBsAg seroclearance (18, 85-87), the possibility of HBsAg seroclearance as a treatment endpoint is finally potentially achievable. Despite this optimism, preliminary studies of TDF in Asians (majority being genotypes B and C) did not achieve HBsAg seroclearance (39). This could be related to the different immunology of HBV infection in Asians compared to Caucasians, with Asians acquiring the infection at the early stages of life (8). Further long-term studies in different ethnic groups are needed to address this issue. Additional data of the efficacy of TDF in adefovir-resistant cases and long-term safety profile would also be needed.
In conclusion, with its potent viral suppression, favorable resistance profile, and superior efficacy in lamivudine rescue therapy when compared to adefovir, TDF is perhaps the “ideal” first-line drug in the treatment of CHB.
References

immunodeficiency virus/hepatitis B virus-coinfected individuals for whom interferon-
25. Benhamou Y, Tubiana R, Thibault V. Tenofovir disoproxil fumarate in patients
9;348(2):177-8.
of tenofovir disoproxil fumarate in antiretroviral therapy-naive and -experienced patients
27. Kuo A, Dienstag JL, Chung RT. Tenofovir disoproxil fumarate for the treatment of
therapy for lamivudine resistance following liver transplantation. Ann Pharmacother.
Adefovir dipivoxil alone or in combination with lamivudine in patients with lamivudine-
resistance to adefovir combined with lamivudine: a 3-year study of 145 lamivudine-
adefovir resistance in patients with lamivudine-resistant chronic hepatitis B after 48

viral load (HBV DNA ≥9log copies/mL): preliminary analysis (abstract). Hepatology. 2010;52(4 (Suppl)):388A.

52. Liaw YF, Sheen IS, Lee CM, Akarca US, Papatheodoridis GV, Suet-Hing Wong F, et al. Tenofovir disoproxil fumarate (TDF), emtricitabine/TDF, and entecavir in

62. Fung S, Mazzuli T, Sherman M, Popovic V. Tenofovir (TDF) is effective in lamivudine (LAM)-resistant chronic hepatitis B patients who harbor rtA194T at baseline (abstract). Hepatology. 2009;50(4 (Suppl)):493A.

66. Woo G, Tomlinson G, Nishikawa Y, Kowgier M, Sherman M, Wong DKH, et al. Tenofovir and Entecavir Are the Most Effective Antiviral Agents for Chronic Hepatitis B:

73. Buchacz K, Brooks JT, Tong T, Moorman AC, Baker RK, Holmberg SD, et al. Evaluation of hypophosphatemia in tenofovir disoproxil fumarate (TDF)-exposed and

