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Modulation instability (MI) of cw states of a two-core fiber, incorporating the effects of coupling-coefficient dis-
persion (CCD), is studied by solving a pair of generalized, linearly coupled nonlinear Schrödinger equations. CCD
refers to the property that the coupling coefficient depends on the optical wavelength, and earlier studies of MI do
not account for this physics. CCD does not seriously affect the symmetric/antisymmetric cw, but can drastically
modify the MI of the asymmetric state. Generally, new MI frequency bands are produced, and CCD reduces (en-
hances) the original MI band in the anomalous (normal) dispersion regime. Another remarkable result is the ex-
istence of a critical value for the CCD, where the MI gain spectrum undergoes an abrupt change. In the anomalous
dispersion regime, a new low-frequency MI band is generated. In the normal dispersion regime, an MI band
vanishes, reappears, and then moves up in frequency on crossing this critical value. In both dispersion regimes,
the relative magnitude of the low-frequency band and the high-frequency band depends strongly on the total input
power. It is possible to switch the dominantMI frequency between a low frequency and a high frequency by tuning
the total input power, providing a promising scheme to manipulate MI-related nonlinear effects in two-core fibers.
The MI bands are independent of the third-order dispersion, but can be shifted significantly by self-steepening at
a sufficiently high total input power. The evolution of MI from a cw input is also demonstrated with a wave
propagation study. © 2011 Optical Society of America

OCIS codes: 060.1810, 060.4080, 060.4370, 190.3100, 190.4370.

1. INTRODUCTION
Modulation instability (MI) is the process where weak pertur-
bations imposed on a cw state grow exponentially, as a result
of the interplay between nonlinear and dispersive effects
[1–18]. MI has been studied since the 1960s in many fields
of science and engineering. In the optics community, MI is re-
levant in many topics, including Bragg gratings [1,2],
cross-phase modulations [3,4], four-wave mixing [5], novel
materials [6,7], parametric oscillators [8], polarization and bi-
refringence [9–12], saturable nonlinearity [13], spatial instabil-
ity [14], supercontinuum generation [15], and temporal
solitons in fibers [16–18]. The occurrence of MI is closely re-
lated to the classical physical phenomenon of Fermi–Pasta–
Ulam recurrence [19,20], and may lead to the formation of
solitons [21].

For temporal pulse propagation in a single-mode optical fi-
ber, governed by the nonlinear Schrödinger equation, the re-
levant factors are cubic (Kerr) nonlinearity and group velocity
dispersion (GVD). MI then occurs in the anomalous dispersion
regime [16]. With additional physics, MI can also arise in other
settings, e.g., in the normal dispersion regime by cross-phase
modulation [3], in the presence of higher even-order disper-
sions [17] and loss dispersion [18]. In this paper, we study
MI in a two-core optical fiber in both the anomalous and nor-
mal dispersion regimes, incorporating the effects of coupling-
coefficient dispersion (CCD).

In a two-core fiber, optical power can be transferred be-
tween the two cores periodically [22]. This phenomenon plays
an important role in many modern optical devices. Theoreti-
cally, the evolution of the electric-field envelopes along the
fiber is governed by a system of linearly coupled nonlinear
Schrödinger equations. The coefficient of the linear coupling,

known as the coupling coefficient, dictates the strength of the
power transfer, and its magnitude depends on the design and
the operation condition of the fiber.

In general, the coupling coefficient depends on the optical
wavelength, which is the physical principle of wavelength
filters formed with two-core fibers demonstrated a long time
ago [23]. The effects of a dispersive coupling coefficient on the
propagation of pulses in a two-core fiber, however, have
not been recognized until recently [24–31]. CCD in a two-core
fiber can lead to significant pulse distortion or even pulse
breakup, and thus seriously affect nonlinear pulse switch-
ing [25–27] and soliton formation [28,29]. The pulse breakup
effect in a two-core fiber has been observed experimen-
tally [30] and applied to the generation of high-speed pulse
trains [31].

While MI in a two-core fiber has been analyzed previously
[32,33], the effects of CCD have not been considered. The
primary objective of the present study is to show how CCD
affects MI in a two-core fiber.

Two general cw states must be considered:

• the symmetric/antisymmetric state, where the optical
powers in the two cores are always equal (the state is sym-
metric or antisymmetric depending on whether the waves
in the two cores are in phase or completely out of phase
respectively);

• the asymmetric state, where the optical powers in the
two cores are unequal.

MI for both the symmetric/antisymmetric [32] and asymmetric
[33] states has been analyzed earlier, but without taking CCD
into account.
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In this paper, linear stability calculations reveal that
CCD does not seriously affect the MI of the symmetric/
antisymmetric cw state, but can drastically modify the char-
acteristics of the MI associated with the asymmetric state. The
main results are:

a. The presence of CCD generally reduces (enhances) the
MI of the two-core fiber in the anomalous (normal) dispersion
regime.

b. The actual maximum growth rates for MI with CCD can
be substantially different from those without CCD.

c. The original MI branches into two frequency bands.
Their relative magnitude depends on the input power level,
which provides a potentially promising way to manipulate
light signals in fibers, by switching the dominant MI frequency
with a tunable total input power.

d. A critical value of CCD exists, where the MI properties
change abruptly. For anomalous GVD, a new MI band appears
around this critical value. For normal GVD, disappearance
and reappearance of a MI band can be observed.

e. The third-order dispersion has no effect on the MI gain
spectrum, while self-steepening (SS) can modify the MI gain
spectrum significantly at a sufficiently high total input power.

The MI analysis is also verified with a wave propagation
study that demonstrates the evolution of a modulated wave
from a cw input.

2. COUPLED-MODE EQUATIONS
We consider a two-core fiber, where each core supports only a
single mode. The evolution of the electric-field envelopes
along the fiber is described by a pair of generalized, linearly
coupled nonlinear Schrödinger equations [24–26]

i
∂a1
∂z

−
1
2
β2

∂2a1
∂t2

þ γja1j2a1 þ Ca2 þ iC1
∂a2
∂t

¼ 0;

i
∂a2
∂z

−
1
2
β2

∂2a2
∂t2

þ γja2j2a2 þ Ca1 þ iC1
∂a1
∂t

¼ 0; ð1Þ

where a1 and a2 are the slowly varying electric-field envelopes
in the two cores; z and t are the propagation distance and the
retarded time coordinate respectively; β2 measures the GVD
at the carrier frequency (β2 < 0 for anomalous dispersion and
β2 > 0 for normal dispersion); γ is the self-phase modulation
(SPM) parameter with γ ¼ 2πn2=ðλAeffÞ, where λ, n2, and Aeff

are the free-space optical wavelength, nonlinear refractive in-
dex of the fiber material, and the effective area of each core,
respectively; C is the coupling coefficient, which is propor-
tional to the spatial overlap between the mode fields in the
two cores and is responsible for the periodic power exchange
between the two cores [22]; C1 ¼ dC=dω (where ω denotes
the angular optical frequency) represents the CCD at the car-
rier frequency [24,25], which is equivalent to the intermodal
dispersion arising from the group-delay difference between
the even and odd supermodes of the two-core fiber.

For a typical two-core fiber, we have 1 < γ < 10=ðkW · mÞ,
0 < C < 1000=m, and 0 > C1 > −10ps=m [24,34]. The values
of C and C1 can be made arbitrarily small by increasing the
core separation. It is possible, however, to achieve C1 ¼ 0
without reducing C, by using a special fiber design [34]. Re-
cently, a photonic bandgap two-core fiber that gives C ¼ 0 has

been demonstrated [35]. Nevertheless, such a decoupled two-
core fiber can have an appreciable value of C1 (around
−1 ps=m), while maintaining C ¼ 0 [36].

Equation (1) admits both symmetric/antisymmetric and
asymmetric cw solutions. Previous studies of MI in a two-core
fiber [32,33] do not account for the effects of the C1 terms, and
our goal is to perform such an investigation.

3. SYMMETRIC/ANTISYMMETRIC
SOLUTIONS
A symmetric/antisymmetric cw solution of Eq. (1) is

a1 ¼
ffiffiffiffiffiffi
P0

p
expðikzÞ; a2 ¼ δ

ffiffiffiffiffiffi
P0

p
expðikzÞ; ð2Þ

with k ¼ γP0 þ δC, and δ ¼ �1 with the positive and negative
signs corresponding to the symmetric and antisymmetric
solutions, respectively. To study the stability of the solutions,
we put

a1 ¼
� ffiffiffiffiffiffi

P0

p
þ u

�
expðikzÞ;

a2 ¼
�
δ

ffiffiffiffiffiffi
P0

p
þ v

�
expðikzÞ; ð3Þ

where u and v represent weak perturbations in the two cores.
On substituting Eq. (3) into Eq. (1), linearization gives

i
∂u
∂z

−
1
2
β2

∂2u
∂t2

þ ½ðγP0 − δCÞuþ γP0u�� þ Cvþ iC1
∂v
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¼ 0;

i
∂v
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−
1
2
β2

∂2v

∂t2
þ ½ðγP0 − δCÞvþ γP0v�� þ Cuþ iC1

∂u
∂t

¼ 0: ð4Þ

We now search for sidebands in the following form:

u ¼ F1 expðiKz − iΩtÞ þ G1 expð−iKzþ iΩtÞ;
v ¼ F2 expðiKz − iΩtÞ þ G2 expð−iKzþ iΩtÞ; ð5Þ

where F1, G1, F2, and G2 are real, and K and Ω are the
wavenumber and the modulation frequency, respectively. In-
sisting on nontrivial solutions of F1,G1, F2, andG2 leads to the
dispersion relation

½ðK − δC1ΩÞ2 − r1�½ðK þ δC1ΩÞ2 − r2� ¼ 0; ð6Þ

r1 ¼
1
4
β2Ω2ðβ2Ω2 þ 4γP0Þ;

r2 ¼
1
4
ðβ2Ω2 − 4δCÞðβ2Ω2 − 4δC þ 4γP0Þ:

ð7Þ

MI occurs when K is complex for real Ω, i.e., when the weak
perturbations grow along the fiber with a gain given by ImðKÞ.
The necessary condition for Eq. (6) is

r1 < 0 or r2 < 0: ð8Þ

The MI that corresponds to a negative r1 occurs only in the
anomalous dispersion regime. The MI that corresponds to a
negative r2 can occur in both the anomalous and normal dis-
persion regimes, and arises from the presence of the coupling
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coefficient C. The analysis is mathematically identical to that
obtained previously [32,33]. In essence, CCD just shifts the
range of the instability frequency and does not change the
growth rate of the MI. Physically, the symmetric (or antisym-
metric) wave is carried only by the even (or odd) supermode
of the two-core fiber. As only one supermode is present, inter-
modal dispersion does not play a significant role here [24].

4. ASYMMETRIC SOLUTIONS
Equation (1) also admits asymmetric cw solutions

a1 ¼
ffiffiffiffiffiffi
P1

p
expðikzÞ; a2 ¼

ffiffiffiffiffiffi
P2

p
expðikzÞ; ð9Þ

with P2 ¼ C2=ðγ2P1Þ and k ¼ γP ¼ γðP1 þ P2Þ, where P ¼
P1 þ P2 is the total power launched into the fiber. There
are two observations here:

• For a fiber with a given C, a minimum total power,
Pmin ¼ 2C=γ, is necessary to sustain this cw, and at this spe-
cial value (P ¼ Pmin), P1 ¼ P2 ¼ C=γ gives a symmetric
cw state.

• For P > Pmin, P1 ≠ P2, and an asymmetric state is gener-
ated. The power distribution in the two cores is given by

ðP1; P2Þ ¼
�
1
2
P � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 − P2

min

q
;
1
2
P∓

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 − P2

min

q �
: ð10Þ

Thus, for an asymmetric cw, the difference between the
powers in the two cores becomes larger if the total power in-
creases.

For MI, the same theoretical techniques, as detailed in
Section 3, generate the dispersion relation

��
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2
γ2P2 − 2C2 þ 1

4
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�
1
2
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1 þ
ffiffiffi
2

p
β2C
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s ¼ 1
2
β22C2

1Ω6 − ð5β22C2 þ C4
1 − β22γ2P2ÞΩ4

− ðγ2P2 − 4C2Þðβ2γP þ 2C2
1ÞΩ2 þ 1

4
ðγ2P2 − 4C2Þ2: ð14Þ

Again, MI occurs when K is complex for real Ω, and the gain is
then

gðΩÞ ¼ ImðKÞ: ð15Þ

At the minimum power Pmin ¼ 2C=γ, Eq. (11) reduces to
Eq. (6), consistent with the fact that the asymmetric state de-
generates to the symmetric state at that point, as P1 ¼ P2 ¼
Pmin=2 there.

As the dispersion relation is even, i.e., gðΩÞ ¼ gð−ΩÞ, it is
sufficient to show the spectrum for a positive Ω. The numer-
ical results are presented in Sections 4.A and 4.B.

A. Anomalous Dispersion Regime
As an illustrative example, we select β2 ¼ −0:02ps2=m and
γ ¼ 2:5=ðkW · mÞ. It is instructive to establish a benchmark
by examining the variation of MI with the total power P
and the coupling coefficient C in the absence of CCD (i.e.,
C1 ¼ 0).

a. For a typical value of C ¼ 200=m, there is a single MI
band, with the maximum gain increasing with larger total in-
put power P, as shown in Fig. 1.

b. For a typical value of P ¼ 200kW, there is again a single
MI band, but now the maximum gain decreases with larger
values of C, as shown in Fig. 2. At C ¼ 0, the two cores
are actually uncoupled. Consequently, any power transfer be-
tween the two cores, i.e., a nonvanishing C, always lowers the
MI gain.

We next concentrate on the effects of C1 by fixing
C ¼ 200=m, which corresponds to Pmin ¼ 160 kW. Figure 3
shows the variation of the MI gain spectrum gðΩÞ with C1

at a total power of P ¼ 170kW, which is slightly larger than
Pmin. Around C1 ¼ 0, a single low-frequency band exists, with
maximum gain rate decreasing with increasing jC1j.

As C1 reaches a critical value, termed C1cr here (at around
−2 ps=m for this example), the instability band shifts gradually
toward the high frequency and eventually becomes a weak,
narrow high-frequency band. On the other hand, a new
low-frequency band is generated quickly as jC1j crosses the
critical value, and the gain of this band is insensitive to any

Fig. 1. (Color online) (a) Three-dimensional (3D) and (b) two-
dimensional (2D) plots showing the variation of the MI gain spectrum
gðΩÞ with the total power P, calculated for the anomalous dispersion
regime with β2 ¼ −0:02 ps2=m, γ ¼ 2:5=ðkW · mÞ, C ¼ 200=m, and
C1 ¼ 0.
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further increase in jC1j. These new features are purely caused
by CCD, and have not been studied previously.

Figure 4 shows the dependence of the MI gain spectrum
gðΩÞ on C1 at a total power of P ¼ 400kW, which is much lar-
ger than Pmin. While the patterns in Figs. 3 and 4 are similar,
significant differences exist:

a. a much larger critical value C1cr (at around −5:4ps=m)
for the present case of higher total power

b. a more pronounced gain in the high-frequency band, as
the low-frequency band weakens

These results suggest the possibility of switching the domi-
nant MI from a low-frequency band to a high-frequency band
by increasing the total input power P, as long as the value of
jC1j is sufficiently large.

The magnitude of C1cr, jC1crj, increases with P, γ, and jβ2j,
but decreases with an increase in C, as shown in Fig. 5.

B. Normal Dispersion Regime
As an illustrative example, we take β2 ¼ 0:02ps2=m, which
can be achieved by operating the fiber at a sufficiently short
wavelength. Accordingly, the value of γ is adjusted to
5:0=ðkW · mÞ. Again, we first set C1 ¼ 0, and study the depen-
dence of MI on P (total power) and C (coupling coefficient) as
background information.

For a typical value C ¼ 200=m, there is a single MI band at
P ¼ Pmin ¼ 80kW, as shown in Fig. 6. As P increases slightly,
a new MI band on the low-frequency side is generated. Both
the original band and the new band shift toward the high-
frequency range as P increases. The gain of the low-frequency
band increases rapidly initially, but later becomes saturated.
The gain of the high-frequency band decreases as P increases.
At extremely large values of P, the gain will eventually vanish
for the following reason. According to Eq. (10), one core
would then dominate the dynamics, and MI cannot exist for
one core in the normal dispersion regime.

For the dependence on C, we choose the typical value
P ¼ 100kW. At C ¼ 0, which corresponds to a single-core
fiber, there is no MI. As C increases from zero, two MI bands

Fig. 2. (Color online) (a) 3D and (b) 2D plots showing the variation
of the MI gain spectrum gðΩÞ with the coupling coefficient C, calcu-
lated for the anomalous dispersion regime with β2 ¼ −0:02ps2=m,
γ ¼ 2:5=ðkW · mÞ, C1 ¼ 0, and P ¼ 200kW.

Fig. 3. (Color online) (a) 3D and (b) 2D plots showing the variation
of the MI gain spectrum gðΩÞ with the coupling-coefficient param-
eter C1, calculated for the anomalous dispersion regime with
β2 ¼ −0:02 ps2=m, γ ¼ 2:5=ðkW · mÞ, C ¼ 200=m, and P ¼ 170kW.

Fig. 4. (Color online) (a) 3D and (b) 2D plots showing the variation
of the MI gain spectrum gðΩÞ with the coupling-coefficient dispersion
parameter C1, calculated for the anomalous dispersion regime with
β2 ¼ −0:02ps2=m, γ ¼ 2:5=ðkW · mÞ, C ¼ 200=m, and P ¼ 400kW.
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emerge, as shown in Fig. 7. The two MI bands grow with C and
eventually merge into a broad band.

We now concentrate on C1. For the typical values P ¼
100 kW (slightly larger than Pmin ¼ 80kW) and C ¼ 200=m,
there are two bands at C1 ¼ 0, as shown in Fig. 8. As jC1j in-
creases from zero, the low-frequency band grows rapidly
initially and then saturates, while the high-frequency band
shrinks. The high-frequency band actually vanishes at a criti-
cal value of C1, termed again C1cr here. As jC1j > jC1crj, the
high-frequency band reappears and grows gradually with
jC1j, shifting toward even higher frequencies.

Regarding the magnitude of the instability, the MI growth
rates can be tremendously higher for a finite value of C1,
as compared with those for the case of C1 ¼ 0 (Fig. 8 and,

in a dramatic manner, Fig. 9, where a higher input power is
employed).

The relative magnitude of the frequency bands depends on
the power, as shown in Fig. 9. At P ¼ 600 kW (much larger
than Pmin ¼ 80kW), the critical value C1cr decreases to a value

Fig. 5. (Color online) Dependence of the critical value C1cr on
(a) total input power P for β2 ¼ −0:02ps2=m, γ ¼ 2:5=ðkW · mÞ, and
C ¼ 200=m; (b) coupling coefficient C for β2 ¼ −0:02ps2=m, γ ¼
2:5=ðkW · mÞ, and P ¼ 200kW; (c) SPM parameter γ for β2 ¼
−0:02ps2=m, C ¼ 200=m, and P ¼ 200kW; and (d) magnitude of
GVD jβ2j for γ ¼ 2:5=ðkW · mÞ, C ¼ 200=m, and P ¼ 200kW.

Fig. 6. (Color online) (a) 3D and (b) 2D plots showing the variation
of the MI gain spectrum gðΩÞwith the total power P, calculated for the
normal dispersion regime with β2 ¼ 0:02ps2=m, γ ¼ 5:0=ðkW · mÞ,
C ¼ 200=m, and C1 ¼ 0.

Fig. 7. (Color online) (a) 3D and (b) 2D plots showing the variation
of the MI gain spectrum gðΩÞ with the coupling coefficient C, calcu-
lated for the normal dispersion regime with β2 ¼ 0:02ps2=m,
γ ¼ 5:0=ðkW · mÞ, C1 ¼ 0, and P ¼ 100kW.

Fig. 8. (Color online) (a) 3D and (b) 2D plots showing the variation
of the MI gain spectrum gðΩÞ with the coupling-coefficient dispersion
parameter C1, calculated for the normal dispersion regime with
β2 ¼ 0:02ps2=m, γ ¼ 5:0=ðkW · mÞ, C ¼ 200=m, and P ¼ 100kW.
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around −0:7ps=m and the high-frequency band grows with
jC1j beyond the critical value. The gain of the high-frequency
band can be larger than that of the low-frequency band at high
values of C1 (Figs. 8 and 9). It is possible to change the domi-
nant MI in terms of the frequency by increasing the total in-
put power.

The magnitude of C1cr, jC1crj increases with C and jβ2j, but
decreases with an increase in P and γ, as shown in Fig. 10, and
the patterns are different from those in the anomalous disper-
sion regime (Fig. 5).

5. HIGH-ORDER EFFECTS
It is of interest to know how robust the effects of C1 are in the
presence of high-order effects. With the third-order dispersion
(TOD) and SS taken into account, Eq. (1) are generalized to

i
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where β3 is the TOD coefficient and σ ¼ γ=ω0 is the SS coeffi-
cient with ω0 being the angular optical carrier frequency.

By applying the mathematical procedure described in Sec-
tion 3, we obtain the following dispersion relation:
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where the parameters s1, s2, and s are given by Eqs. (12)–(14),
respectively, and
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According to the above expressions, β3 affects only the real
part of K and has no effect on the imaginary part of K and
hence the MI gain spectrum. This is, in fact, also the case
for a single-core fiber [37,38].

The effects of SS on the MI gain spectrum are shown in
Fig. 11 for the anomalous dispersion regime with
C ¼ 200=m, C1 ¼ −1 ps=m, γ ¼ 2:5=ðkW · mÞ, λ ¼ 1:5 μm,
and γ=ω0 ¼ 1:99 × 10−3 ps=ðkW · mÞ, and in Fig. 12 for the
normal dispersion regime with C ¼ 200=m, C1 ¼ −1 ps=m,
γ ¼ 5:0=ðkW · mÞ, λ ¼ 1:0 μm, and γ=ω0 ¼ 2:65×
10−3 ps=ðkW · mÞ. We can see that the effects of SS become
more significant only as the total input power increases. At
a low input power, SS modifies the MI gain and frequency only
slightly. At a very high input power (for example, 700kW),
however, SS can shift the MI bands significantly, as shown
in Fig. 12. In general, apart from modifying the MI gain and
shifting the MI band, SS does not generate significant new
MI characteristics. The results are similar to those obtained
for a single-core fiber [38].

Fig. 9. (Color online) (a) 3D and (b) 2D plots showing the variation
of the MI gain spectrum gðΩÞ with the coupling-coefficient dispersion
parameter C1, calculated for the normal dispersion regime with
β2 ¼ 0:02ps2=m, γ ¼ 5:0=ðkW · mÞ, C ¼ 200=m, and P ¼ 600kW.

Fig. 10. (Color online) Dependence of the critical valueC1cr on (a) to-
tal input power P for β2 ¼ 0:02ps2=m, γ ¼ 5:0=ðkW · mÞ, and
C ¼ 200=m; (b) coupling coefficient C for β2 ¼ 0:02ps2=m,
γ ¼ 5:0=ðkW · mÞ, and P ¼ 100kW; (c) SPM parameter γ for
β2 ¼ 0:02ps2=m, C ¼ 200=m, and P ¼ 100kW; and (d) magnitude of
GVD jβ2j for γ ¼ 5:0=ðkW · mÞ, C ¼ 200=m, and P ¼ 100kW.
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For the sake of simplicity, our MI analysis ignores stimu-
lated Raman scattering. For a single-core fiber, stimulated
Raman scattering can generate complicated MI characteris-
tics, especially at high input power levels [39,40]. We expect
similar results for a two-core fiber, given the experience with
the TOD and SS. Incorporation of Raman effects in the MI
analysis of a two-core fiber is a complicated problem, which
deserves a detailed investigation in the future.

6. COMPARISON WITH THE WAVE
PROPAGATION ANALYSIS
To study the evolution of MI along a two-core fiber, we solve
numerically the coupled nonlinear equations Eq. (1) by
launching a cw into the fiber together with a small white noise.
In these simulations, we employ a pseudospectral method in
the time domain and a fourth-order Runge–Kutta scheme with
adaptive step-size control in the space domain [41]. The power
of the added white noise is 1 × 10−4% of the input cw power,
and it covers a frequency range of �1200THz around the op-
tical carrier frequency. From the theory of MI, the cw should
evolve into a modulated wave as it propagates along the fiber.
The onset of the modulation should occur at the dominant MI
frequency, i.e., the MI frequency that has the maximum gain.
The wave propagation analysis can serve as a verification of
the MI analysis.

We first consider the anomalous dispersion regime in the
absence of CCD (C1 ¼ 0 ps=m). The parameters used in the
simulation are C¼ 200=m, β2¼−0:02ps2=m, γ¼2:5=ðkW·mÞ,
λ ¼ 1:5 μm, P ¼ 200kW, and P1=P2 ¼ 4. Figure 13 shows the
wave propagation dynamics in the two cores, where the dis-
tance is normalized with respect to the coupling length
Lc ¼ π=ð2CÞ. The cw input evolves into a modulated wave
with a period of 33:4 fs (at z ¼ 3:2Lc), which corresponds
to a modulation frequency of 29:9THz. This frequency com-
pares favorably with the dominant MI frequency, 30:4THz, ob-
tained from the MI analysis. We then include the effects of
CCD by setting C1 ¼ −1 ps=m and show the wave propagation
dynamics in Fig. 14. In this case, the cw evolves into a modu-
lated wave with a period of 32:6 fs (at z ¼ 3:4Lc) which cor-
responds to a modulation frequency of 30:7THz. The
dominant MI frequency obtained from the MI analysis is
31:6THz, in good agreement with the result from the wave
propagation analysis. A comparison of Figs. 13 and 14 shows
that, in the presence of CCD, it takes a longer distance for MI
to occur, which agrees with the finding in Section 4.A that
CCD lowers the MI gain in the anomalous dispersion regime
and thus increases the distance required for the growth of the
modulated wave.

We next consider the normal dispersion regime. The MI
analysis predicts that, without CCD, there exist two MI bands
with the high-frequency one being the predominant one, while
with CCD, the low-frequency band is the predominant one, as
shown in Fig. 8. Figure 15 shows the wave propagation
dynamics in the two cores in the absence of CCD
(C1 ¼ 0 ps=m). The parameters used in the simulation are
C ¼ 200=m, β2 ¼ 0:02ps2=m, γ ¼ 5:0=ðkW · mÞ, λ ¼ 1:0 μm,
P ¼ 100kW, and P1=P2 ¼ 4. The modulated wave evolved
has a period of 32:7 fs (at z ¼ 8:0Lc), which corresponds to
a modulation frequency of 30:6THz, in excellent agreement
with the dominant MI frequency in the high-frequency band
30:6THz. Figure 16 shows the wave propagation dynamics

Fig. 12. (Color online) Variation of the MI gain spectrum gðΩÞ with
the total power P, calculated for the normal dispersion regime with
β2 ¼ 0:02ps2=m, γ ¼ 5:0=ðkW · mÞ, λ ¼ 1:0 μm, C ¼ 200=m, and C1 ¼
−1 ps=m without (solid curve) and with (dashed curve) SS.

Fig. 13. (Color online) Evolution of MI from a cw input in the
absence of CCD (C1 ¼ 0 ps=m), calculated for the anomalous disper-
sion regime with β2 ¼ −0:02ps2=m, γ ¼ 2:5=ðkW · mÞ, λ ¼ 1:5 μm,
C ¼ 200=m, P ¼ 200kW, and P1=P2 ¼ 4.

Fig. 14. (Color online) Evolution of MI from a cw input in the pre-
sence of CCD (C1 ¼ −1 ps=m), calculated for the anomalous disper-
sion regime with β2 ¼ −0:02ps2=m, γ ¼ 2:5=ðkW · mÞ, λ ¼ 1:5 μm,
C ¼ 200=m, P ¼ 200kW, and P1=P2 ¼ 4.

Fig. 11. (Color online) Variation of the MI gain spectrum gðΩÞ with
the total power P, calculated for the anomalous dispersion regime
with β2 ¼ −0:02 ps2=m, γ ¼ 2:5=ðkW · mÞ, λ ¼ 1:5 μm, C ¼ 200=m, and
C1 ¼ −1 ps=m without (solid curve) and with (dashed curve) SS.
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in the two cores for C1 ¼ −1 ps=m. In this case, the modula-
tion period is 47:1 fs (at z ¼ 7:8Lc), which gives a modulation
frequency of 21:2THz, in good agreement with the dominant
MI frequency of the low-frequency band 19:7THz.

In the above examples, because the input power is much
higher than the critical switching power of the two-core fiber,
which is equal to Pc ¼ 4C=ðγπÞ ¼ 102 kW for the anomalous
dispersion regime or 51kW for the normal dispersion regime,
there is little power exchange between the two cores during
the evolution of MI [42]. At a sufficiently low input power,
strong periodic power exchange between the two cores
can be observed. It is difficult to determine the modulation
frequency precisely from the wave propagation dynamics be-
cause of the quasi-periodic nature of the evolved modulated
wave. To highlight the dominant modulation frequency, we
display the wave propagation dynamics up to a distance that
shows the onset of MI, as shown in Figs. 13–16. As the pro-
pagation distance increases, the waveform starts to lose its
periodicity and becomes increasingly irregular and spiky,
which implies the presence of a range of frequency compo-
nents. This phenomenon is consistent with the fact that the
frequency components in the MI band can grow along the fi-
ber at different gains. The results from the MI analysis and the
wave propagation analysis agree well with each other.

7. CONCLUSIONS
We present a detailed analysis of the MI characteristics of a
two-core fiber based on solving a pair of generalized, linearly
coupled nonlinear Schrödinger equations. In particular, we
calculate the MI gain spectrum of the fiber in both the anom-
alous and normal dispersion regimes. The MI analysis agrees
with the wave propagation analysis that shows explicitly the
evolution of MI along the fiber from a cw input. Our study
focuses mainly on the effects of the CCD, as measured by
the parameter C1 in the coupled system Eq. (1).

In general, C1 does not affect the MI growth rate of the
symmetric/antisymmetric cw state, but only changes the fre-
quency of the MI. However,C1 can drastically modify the MI in
the asymmetric cw configuration. Roughly speaking, C1 de-
creases (increases) the maximumMI growth rate in the anom-
alous (normal) dispersion regime, respectively. Indeed the
change in maximum growth rate can be very substantial.

Another remarkable result is the existence of a critical
value, C1cr, for the CCD, where the MI gain spectrum under-
goes an abrupt change. In the anomalous dispersion regime, a
new low-frequency MI band is generated at C1cr and the ori-
ginal MI band is dragged toward the high-frequency range
(Figs. 3 and 4). In the normal dispersion regime, an MI band
vanishes, reappears across C1cr, and then moves up in
frequency with increasing jC1j, while the other MI band is en-
hanced in a monotonic manner (Figs. 8 and 9). In both disper-
sion regimes, the relative magnitude of the low-frequency
band and the high-frequency band depends strongly on the
total input power. It is possible to switch the dominant MI fre-
quency from a low-frequency band to a high-frequency one by
increasing the total input power, provided that the absolute
value of C1 is sufficiently large.

We also consider some high-order effects. In particular, we
find that the TOD has no influence on the MI gain spectrum,
while SS can shift the dominant MI band significantly only at a
sufficiently high input power level.

Although the MI analysis is strictly valid for a cw input, the
results should be valuable for a quasi-cw input, namely, pulses
generated by ordinary high-power lasers. As shown by our re-
sults, the MI frequencies are located in the range from
10–100THz for a typical two-core fiber, which corresponds
to modulated waves with periods 10–100 fs or the generation
of spectral components 80–800 nm away from a pump wave-
length of 1550 nm. Consequently, the MI effects should contri-
bute to the observed generation of multiple resonance peaks
in the output spectrum of a photonic crystal two-core fiber,
pumped by intense 100 fs pulses at 1550 nm [43]. In fact,
the output spectrum calculated by numerically solving
Eq. (1) for 100 fs pulses propagating along the same fiber
[44] shows resonance characteristics that are consistent with
the MI analysis. The many novel features of MI obtained in our
study could shed new light on the understanding of MI-related
nonlinear effects in two-core fibers.
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