<table>
<thead>
<tr>
<th>Title</th>
<th>A continuum modeling approach to congestion management of transportation system in an urban city</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Wong, SC</td>
</tr>
<tr>
<td>Citation</td>
<td>The Inaugural INFORMS Transportation Science and Logistics Society Workshop, Pacific Grove, CA., 27-29 June 2011.</td>
</tr>
<tr>
<td>Issued Date</td>
<td>2011</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10722/136201</td>
</tr>
<tr>
<td>Rights</td>
<td></td>
</tr>
</tbody>
</table>

A Continuum Modeling Approach to Congestion Management of Transportation System in an Urban City

S.C. Wong
Department of Civil Engineering
The University of Hong Kong
E-mail: hhecwsc@hkucc.hku.hk
URL: http://web.hku.hk/~hhecwsc/

Supported by a grant RGC HKU 7183/08E from the Hong Kong Research Grants Council
Introduction

• Continuum transportation system in an urban city
• Model formulation and solution algorithm
• Some applications
• Conclusions and further works
Two approaches for modeling traffic equilibrium problems

- Discrete modeling approach
 Patriksson (1994); Gendreau and Marcotte (2002); Lee (2003);
 etc.

- Continuum modeling approach
 - Idealized city configuration (e.g. circular city)
 Lam and Newell (1967); Zitron (1967); D’Este (1987); Wong (1994);
 etc.
 - General city configuration
 Beckmann (1952), one of the earliest works in this area; Wardrop
 (1971); Williams and Ortuzar (1976); Puu (1977); Buckley (1979);
 Dafermos (1980); Sasaki et al. (1990); Yang et al. (1994); Wong
 (1998) etc.
Basic assumptions in continuum modeling approach

- The difference in land use pattern and network configuration between adjacent areas is relatively small, compared with the variation over the entire city.
- The characteristics of the land use and network can be represented by piecewise smooth mathematical functions (Vaugham, 1987).
- The interrelation among these mathematical functions are governed by some appropriate forms of differential or integral equations.
- The user equilibrium conditions that are commonly adopted in discrete network modeling can be generalized to the continuum case in a two-dimensional plane.
Rationale for using continuum modeling approach

- For the initial phase of planning and modeling in broad-scale regional studies, the focus may be on the general trend and pattern of the distribution and travel choice of users, and their changes in response to policy changes at the macroscopic level.
- Insufficient data for setting up the “dense” transportation network for detailed analysis.
- Conceptual plan for the catchment regions of competing facilities (such as airports, ports), locations of cordons for congestion charging, location of an additional CBD, strategic expansion of transportation system in different parts of the city, etc.
- Travel demand is inherently continuously spread over the city.
Model formulation and solution algorithm

The modeled city

Single center (destination) ~ Multiple centers (destinations)
Single class ~ Multiple classes
Travel demand

\[q_{mn}(x, y) \]

Travel demand per unit area for class \(m \) and destination \(n \) (heading CBD \(n \))

\[\Omega \]

Boundary, \(\Gamma \)

CBD 1

CBD 2

\[dx \times dy \]

Model formulation and solution algorithm
Traffic flows

 Flux in the y-direction per unit width (dx) for class m and destination n

 Flux in the x-direction per unit width (dy) for class m and destination n

Model formulation and solution algorithm
Conservation of flows

\[\frac{\partial f_{1mn}(x,y)}{\partial x} + \frac{\partial f_{2mn}(x,y)}{\partial y} = q_{mn}(x,y) \]
Model formulation and solution algorithm

Local cost function

\[c_m(x, y, f) = a_m(x, y) + b_m(x, y) \sum_{r} \sum_{s} |f_{rs}| \]

Flow intensity for class \(m \) and destination \(n \):

\[f_{mn} = \sqrt{f_{1mn}^2 + f_{2mn}^2} \]

Boundary, \(\Gamma \)

CBD 1

CBD 2

\(f_{1mn}(x, y) \)

\(f_{2mn}(x, y) \)

Flow intensity for class \(m \) and destination \(n \)
Model formulation and solution algorithm

Path travel cost

\[u_{mn}(x, y) = C_{mn} + \int_\Omega c_m \, ds \]

Integrate along the path (streamline) from the location concerned to the CBD

\[= \int_\Omega c_m \, ds \]

CBD n, with a congestion cost of \(C_{mn} \)

Boundary, \(\Gamma \)
Model formulation and solution algorithm

User equilibrium

Any used routes would have equal and minimum cost, u_{used}

Any unused route would have greater or equal cost, i.e. $u_{\text{unused}} \geq u_{\text{used}}$

Unused path (not along a streamline)
Model formulation and solution algorithm

Elastic demand

\[q_m(x, y) = D_m(x, y, u_m(x, y)) \]
Model formulation and solution algorithm

Trip distribution function

\[q_{mn} = q_m \frac{\exp(-\zeta_m u_{mn})}{\sum_s \exp(-\zeta_m u_{ms})} \]
Model formulation and solution algorithm

Boundary conditions

- Normal vector \mathbf{n}
- $\mathbf{f}_{mn} = (f_{1mn}, f_{2mn})$
- $\mathbf{f}_{mn} \cdot \mathbf{n} = g_{mn}$
- $\int_{\Gamma_n} \mathbf{f}_{mn} \cdot \mathbf{n} \, d\Gamma = Q_{mn}$
Model formulation and solution algorithm

Mathematical program

Minimize \(z(\mathbf{f}, \mathbf{q}, Q) = \sum_{m} \sum_{n} \tilde{\theta}_{mn} Q_{mn} + \sum_{n} \int_{0}^{1} q_{n}(\xi) d\xi + \int_{\Omega} \left\{ \sum_{m} \sum_{n} \tilde{a}_{m} |\mathbf{f}_{mn}| \right\} \)

\[+ \frac{1}{2} \sum_{m} \sum_{n} \sum_{r} \sum_{s} |\mathbf{f}_{mn}| |\mathbf{f}_{rs}| + \sum_{m} \sum_{n} \frac{1}{\zeta_{m} b_{m}} (q_{mn} \ln q_{mn} - q_{mn}) \]

\[- \sum_{m} \frac{1}{b_{m}} \int_{0}^{d_{m}} D_{m}^{-1}(\xi) d\xi - \sum_{m} \frac{1}{\zeta_{m} b_{m}} (q_{m} \ln q_{m} - q_{m}) \}

subject to

\[\nabla \mathbf{f}_{mn} - q_{mn} = 0, \quad \forall (x, y) \in \Omega, n \in \mathbb{N}, m \in \mathbb{M} \]

\[q_{m} - \sum_{n} q_{mn} = 0, \quad \forall (x, y) \in \Omega, m \in \mathbb{M} \]

\[\mathbf{f}_{mn} = 0, \quad \forall (x, y) \in \Gamma, n \in \mathbb{N}, m \in \mathbb{M} \]

\[\int_{\Gamma_{nc}} \mathbf{f}_{mn} \cdot \mathbf{n} d\Gamma - Q_{mn} = 0, \quad \forall n \in \mathbb{N}, m \in \mathbb{M} \]
Model formulation and solution algorithm

Equivalent set of partial differential equations

\[\nabla \cdot f_{mn} - q_{mn} = 0, \quad \forall (x, y) \in \Omega, n \in \mathbb{N}, m \in M \]
Conservation equation

\[\tilde{c}_m | f_{mn} | + \nabla \alpha_{mn} = 0, \quad \forall (x, y) \in \Omega, n \in \mathbb{N}, m \in M \]
Cost potential function

\[\frac{\ln q_{mn}}{\zeta_m b_m} + \alpha_{mn} + \beta_m = 0, \quad \forall (x, y) \in \Omega, n \in \mathbb{N}, m \in M \]
Distribution function

\[\beta_m + \frac{1}{b_m} D_m^{-1}(q_m) + \frac{\ln q_m}{\zeta_m b_m} = 0, \quad \forall (x, y) \in \Omega, m \in M \]
Elastic demand

\[\tilde{c}_{mn} + \pi_{mn} = 0, \quad \forall n \in \mathbb{N}, m \in M \]
Boundary conditions

\[q_m - \sum_{n} q_{mn} = 0, \quad \forall (x, y) \in \Omega, m \in M \]

\[f_{mn} = 0, \quad \forall (x, y) \in \Gamma, n \in \mathbb{N}, m \in M \]

\[\pi_{mn} + \alpha_{mn} = 0, \quad \forall (x, y) \in \Gamma_{nc}, n \in \mathbb{N}, m \in M \]

\[\int_{\Gamma_{nc}} f_{mn} \cdot n d \Gamma - Q_{mn} = 0, \quad \forall n \in \mathbb{N}, m \in M \]
Finite element method

The finite element method (FEM) (Zienkiewicz and Taylor, 1989) is used to approximate the continuous variables in the modeled city.

\[V(x, y) = v_i N_i(x, y) + v_j N_j(x, y) + v_k N_k(x, y) \]

Continuous variables

Discretized

Nodal variables: \((v_i, v_j, v_k) \)
Model formulation and solution algorithm

Finite element method

\[\Pi(\Psi(x, y)) = 0 \]

\[\Psi(x, y) = (f, u, \lambda) \]

A set of partial differential equations

The Galerkin formulation of the weighted residual technique
(Cheung et al., 1996; Zienkiewicz and Taylor, 1989)

\[\bar{\Pi}(\bar{\Psi}) = 0 \]

\[\bar{\Psi} = (\bar{f}, q, \bar{\lambda}) \]

A set of nonlinear algebraic equations
Model formulation and solution algorithm

Newtonian algorithm

\[\overline{\Pi}(\Psi) = \overline{\Pi}(\Psi^0) + \nabla \overline{\Pi}(\Psi^0)(\Psi - \Psi^0) + \ldots \]

Residual vector, \(R \)
Jacobian matrix, \(J \)

- Neglect higher order terms
- Set for a stationary point

\[\overline{\Pi}(\Psi) = R + [J](\Psi - \Psi^0) = 0 \]

- Set a recursive procedure
- Convergence criterion, \(R \to 0 \)

\[\Psi^{(k+1)} = \Psi^{(k)} - [J(\Psi^{(k)})]^{-1}R(\Psi^{(k)}) \]
Some applications

Facility competition problem

Airports competition within Pearl River Delta Region

- There are four major airports Hong Kong, Guangzhou, Shenzhen and Zhuhai within the PRD region serving both international and domestic flights

- Passengers within this region make their choice of airport based on the geographical location, congestion, and costs

- Other factors such as the cross boundary penalty affect passengers’ choice of airport

- A macroscopic model is used to study the route and airport choice of passengers
Some applications

Facility competition problem

The model region

Legend:
1. Qingyuan Municipality
2. Zhouqing Municipality
3. Foshan Municipality
4. Jiangmen Municipality
5. Guangzhou
6. Zhongshan Municipality
7. Zhuhai
8. Huizhou Municipality
9. Dongguan Municipality
10. Shenzhen
11. Hong Kong
12. Fictitious Boundary Layer
Some applications

Facility competition problem

Finite element mesh

Hong Kong
Shenzhen
Zhuhai
Guangzhou

Distance (km)
Some applications

Facility competition problem

Flow pattern for domestic service

Catchment boundary
Some applications

Facility competition problem

Cost potential for domestic service
Some applications

Facility competition problem

Flow pattern for international service

Catchment boundary
Some applications

Facility competition problem

Cost potential for international service
Some applications

Facility competition problem

Market shares among airports in the region

<table>
<thead>
<tr>
<th>Airport</th>
<th>Domestic Base Case</th>
<th>International Base Case</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Demand (passengers/year)</td>
<td>Estimated market share (%)</td>
</tr>
<tr>
<td>Hong Kong</td>
<td>5,618,463</td>
<td>22.7</td>
</tr>
<tr>
<td>Shenzhen</td>
<td>5,467,913</td>
<td>22.1</td>
</tr>
<tr>
<td>Zhuhai</td>
<td>2,661,705</td>
<td>10.7</td>
</tr>
<tr>
<td>Guangzhou</td>
<td>10,993,485</td>
<td>44.4</td>
</tr>
<tr>
<td>Cross Boundary flow from Hong Kong</td>
<td>1,773,651 passengers/year</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Demand (passengers/year)</td>
<td>Estimated market share (%)</td>
</tr>
<tr>
<td>Hong Kong</td>
<td>26,971,302</td>
<td>97.6</td>
</tr>
<tr>
<td>Shenzhen</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Zhuhai</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Guangzhou</td>
<td>671,665</td>
<td>2.4</td>
</tr>
<tr>
<td>Cross Boundary flow from Mainland</td>
<td>609,170 passengers/year</td>
<td></td>
</tr>
</tbody>
</table>
Some applications

Cordon-based congestion-charging problem

- Common charging methods: point-based, time-based, distance-based, and area-based
- Cordon-based charging schemes have been implemented in Singapore, Oslo, Trondheim, Bergen, and London
- Easy implementation, socially acceptable
- Location of cordons?
- Charging levels?
- Social benefits: first or second best?
- Exhaustive evaluations by discrete network optimization approach
Some applications

Cordon-based congestion-charging problem

Cordon-based toll for each cordon layer

Flat toll charged for entering Layer j, $\tau_j = T_{j+1} - T_j$

Charging levels for the multi-layer cordons: \{\tau_0, \tau_1, \tau_2, \tau_3, \ldots\}
Some applications

Cordon-based congestion-charging problem

The example city

Local travel cost function: \(c = 0.8 + 0.0002f^{1.2} \)

CBD travel cost function: \(C_0 = 150 + 2 \times 10^{-17} Q^4 \)

Demand function: \(D = 100e^{-0.0015u} \)
Some applications

Cordon-based congestion-charging problem

Traffic flow pattern
Some applications

Cordon-based congestion-charging problem

Flow intensity
Some applications

Cordon-based congestion-charging problem

Location-dependent toll rate

CBD flat toll = $117.30
Some applications

Cordon-based congestion-charging problem

Distance-based toll paid by a user

For cordons were determined at $10, $15, $20 and $25
Some applications

Housing problem

- It is well recognized that land use and transportation systems interact strongly with each other.
- For example, if the accessibility of a place increases, residents and investors will be attracted to this place. Thus, the land use will be changed.
- Also, if a large residential estate is built, the accessibility and demand of travel will be altered.
- Arnott (1995) and Boyce and Matsson (1999) studied the interaction of the land use and transportation systems by incorporating the concept of “rent”
- This study aims to develop a continuum user equilibrium model for the land use and transportation problem.
Some applications

Housing problem

Optimum housing allocation using bi-level programming approach

For a given budget, find an optimum housing allocation pattern that maximizes the total utility of the system users

Upper-level model

Optimized housing provision pattern, subject to
- Maximum housing development
- Budgetary constraint
- Meeting housing needs
- Non-negativity constraint

Sensitivity information of the lower level variables at optimum point

Lower-level model

For a given housing provision pattern, find the distributions of different classes of system users such that all users travel in an user optimal manner
Some applications

Housing problem

Numerical example

- Total demand:
 - Class 1 commuters: 60,000 units (more sensitive to rent)
 - Class 2 commuters: 80,000 units (more sensitive to travel cost)

- Cost impedance functions:
 - Class 1 commuters: \[c_1 = 0.50v(x, y) + 0.0004v(x, y)(|f_1| + |f_2|)^{1.2} \]
 - Class 2 commuters: \[c_2 = 0.75v(x, y) + 0.0006v(x, y)(|f_1| + |f_2|)^{1.2} \]
 where \[v(x, y) = 1.10 - 0.005\sqrt{(x - 14)^2 + (y - 20)^2} \]

- Housing rent functions:
 - Class 1 commuters: \[h_1 = 80(1 + 10q/(350 - q)) \]
 - Class 2 commuters: \[h_2 = 80(1 + q/(350 - q)) \]
Some applications

Housing problem

Numerical example

- The finite element mesh adopted
Some applications

Housing problem

Distribution of the additional housing units

Higher housing provision cost near CBD

Pressure to build more housing near CBD to reduce the travel cost of commuters
Some applications

Housing problem

Demand contour for class 1 users

Demand of class 1 users (users/sq. km)

Demand contour for class 2 users

Demand of class 2 users (users/sq. km)

Class 1 commuters are more seriously affected as they are more sensitive to rent.
Some applications

Housing problem

Housing rent of class 1 user (before upper-level optimization)

Housing rent of class 1 user (after upper-level optimization)
Some applications

Housing problem

Map of Hong Kong Territory

CBD

New towns
Conclusions and Further Works

• The continuum modeling approach to traffic equilibrium problems in an urban city has been briefly described.

• The model formation and finite element solution algorithm for a typical continuum model have been discussed.

• Some potential applications of this continuum approach, such as facility competition, cordon-based congestion-pricing, and housing problems, have been given.

• Directions of future research
 - Extension to discrete/continuous model, in which the major freeway are modeled by discrete links, and surface streets by continuum.
 - Extension to dynamic problems.
 - Evaluation of environmental impacts, such as greenhouse gas and air pollutions.