BORPH: Operating system support on the NetFPGA
platform

Brandon Kyle Hamilton*
University of Cape Town

ABSTRACT

This paper introduces the concepts behind BORPH, an op-
erating system for reconfigurable computers. The porting
and implementation of this operating system for the NetF-
PGA platform, as well as the the tool flow integration are
described.

1. INTRODUCTION

The design of applications targeted for reconfigurable plat-
forms, which include both standard CPU processors as well
as reconfigurable FPGA fabric, is a complex and highly spe-
cific process, with a large amount of effort going into efficient
hardware/software co-design. Due to the non-standard ar-
chitecture of these platforms, there exists a lack of design
reusability as interfaces between the hardware and software
are typically highly specific to the target platform. Addi-
tionally, these applications tend to be limited by the mas-
ter/slave accelerator model, whereby a software program has
to be written to control the running and data communica-
tion requirements of a hardware design.

The adoption of an operating system that provides an ab-
straction layer to the reconfigurable platforms is needed to
allow designers to shift their focus more towards their appli-
cations without needing to deal with these implementation
issues, as well as promote portability and usability within
the operating environment.

The BORPH operating system has been ported to the
NetFPGA platform to provide a unified operating environ-
ment for the development and execution of hardware de-
signs. This enables developers and users to easily access the
NetFPGA through standard Unix binary utilities and file
system access.

2. RELATED WORK

HASTE (Hybrid Architectures with a Single, Transformable

Executable) [2] provides a single unified file containing hard-
ware and software components of a reconfigurable applica-
tion. The architecture to support this consists of a CPU, Re-
configurable Unit (RCU), and a Hardware Conversion Unit
(HCU). The hardware conversion unit is responsible for cre-
ating the reconfigurable logic at run-time. An Instruction
Set Architecture (ISA) is provided that allows the HCU to
convert sequential code into parallel spatial code during ap-
plication execution. The partitioning between hardware and
software is determined at run-time.

*Supported by SKA, South Africa

Hayden Kwok-Hay So
University of Hong Kong

A real-time embedded operating system, hThreads[1], was
introduced by Andrews et. al. that extends the principle of
a software thread to hardware. Their system allows threads
to be run simultaneously on a CPU and the FPGA fabric.
A thread scheduler runs on the FPGA fabric as well as the
CPU simultaneously. An API is provided that exposes sys-
tem calls for communication with registers on the FPGA
fabric.

ReconOS[4] is another real-time operating system devel-
oped for reconfigurable platforms, based on the eCos Real-
Time Operating System. This system provides a multi-
threaded programming model for hardware and software de-
sign. An abstraction layer allows for the creation of portable
and flexible multi-threaded applications.

3. BORPH

BORPH is an operating system designed for FPGA-based
reconfigurable computers[5], implemented as an extension of
the Linux kernel. Reconfigurable hardware, such as FPGAs,
are treated as computational resources within the operating
system. These resources are defined as hardware regions
(HWRs), which can be implemented as an entire FPGA,
or partially reconfigurable regions within a single FPGA.
This abstraction allows the kernel to deal with the platform
specific details and removes the need for the application de-
signer to address these low level implementation details.

Through a UNIX process model, BORPH provides a uni-

fied hardware/software application runtime environment. Run-

time support services, such as file system access, network
access, and signal handling are made available to hardware
designs by the kernel.

BORPH aims to provide increased usability for reconfig-
urable platforms, with a focus on simplifying hardware/-
software co-design. An entire design, consisting in part of
either hardware, software or both hardware and software
components, is encapsulated in a BORPH executable file.
A unified interface to execution and communication with
the application is provided by the kernel. This allows de-
signers to focus efforts on the application specific function-
ality of their designs, without the need to worry about low
level implementation details such as writing device drivers
for communication.

3.1 Hardware Processes

Analogous to a standard UNIX process (an executing in-
stance of a software program), BORPH introduces the con-
cept of a hardware process, which is an executing instance
of a gateware program. As software processes are executed

on the system CPU, hardware processes are executed on the
reconfigurable hardware regions (HWRs) within the system.

A key advantage following from this is that the running
gateware is an active entity within the system, with no con-
trol transfer needed between hardware and software. This is
in contrast to the typical accelerator (master/slave) model of
a software program providing control to a passive gateware
design via an APIL.

An additional advantage of this approach is that the al-
location of reconfigurable hardware regions and resources
(including the ability to run multiple designs at the same
time if more than one HWR is present) is dealt with by
kernel instead of the application designer.

A running hardware process behaves almost identically
to any other software process in a Linux system, including
standard functionality such as process management and hi-
erarchies, and the handling of signals and interrupts. As an
example: the status of a hardware processes can be checked
by using a command such as ps, and can be controlled by
sending signals such as SIGTERM using the kill command,
or SIGINT by pressing Ctri-C.

3.2 BORPH Object File

A BORPH Object File (BOF) is a binary executable that
encapsulates a gateway design, as well as additional run-
time information needed by the kernel. At compile-time,
the system is partitioned into hardware (FPGA bitstream)
and software (ELF file), and these elements are encapsu-
lated in the BOF file. A BOF file is run in the same way
as any other Linux executable file, such as ELF, and can be
spawned with the standard fork and ezxec system calls. Upon
execution, the kernel interprets the hardware configuration
that is encapsulated within the BOF file, and automatically
configures an appropriate hardware region (HWR).

3.3 IOREG system

Memory mapped registers are exposed via a virtual file
system interface by the kernel during execution of a hard-
ware process. This IOREG interface extends the proc file
system (procfs), providing a systematic, language indepen-
dent interface, allowing for easy communication with hard-
ware processes. This removes the need for the hardware
designer to redesign a driver interface with each design.

A new hw directory is created and populated for each run-
ning hardware process with information specific to the hard-
ware design. This /proc/<pid>/hw/ directory, correspond-
ing to a hardware process running with process id <pid>,
will contain three files:

hardware _region : A virtual file that contains informa-
tion about physical location of the hardware process. On
platforms that only contain a single hardware region, such
as the NetFPGA, all processes will be run at the same phys-
ical location.

ioreg-mode : The contents of this file determines the op-
erating mode of the ioreg directory. ASCII mode operation
(the default) is indicated as 0, whereas a 1 indicates binary
mode operation. Writing the desired value to this file will
cause the kernel to transfer data in the corresponding mode
when reading or writing to registers in the ioreg directory.

ioreg : A directory containing virtual files corresponding
to each user defined register described by the symbol table in
the BOF file. Reading or writing to files in this directory will
cause the kernel to transfer data to and from the hardware

region.

As an illustration of the usage of this interface, retrieving
the contents of a 4-byte on-chip register called MYREG can be
accomplished by a simple shell ¢p command:

1:bash$ cp /proc/1337/hw/ioreg/MYREG ~/

or similarly, in a C program:

memfile = fopen("/proc/1337/hw/ioreg/MYREG", "r");
fread(buf, 4, 1, memfile);

3.4 Hardware/Software interaction

A BOF file encapsulates both the hardware and software
components of a reconfigurable computing application. A
BOF file can be created (using the mkbof utility) with either
a specified software component (ELF file) included, or with
only the hardware component (FPGA bitstream). Including
the software component of an application in the BOF file
enables the use of the FPGA as an accelerator, where the
running application consists of both software and hardware
components as a single process. If this process is killed, both
the software and hardware components will be stopped, and
the BORPH kernel will remove the corresponding IOREG
entries. Alternatively, the hardware is run as an independent
entity, and communication with the hardware process can be
achieved via the JOREG filesystem interface.

4. PORTING AND IMPLEMENTATION

The process model provides a consistent interface across
different FPGA-accelerated systems. Based on the standard
Linux kernel, BORPH is portable to any platform with a
processor capable of running a Linux kernel. The low level
platform specific functionality required to port BORPH to a
new platform includes a few simple functions defining com-
munication with the reconfigurable hardware on the target
platform. These are:

e configure - This function handles the reconfiguration
of a hardware region. It receives the configuration data
file extracted from a BOF file and is responsible for
transferring that to configure the FPGA.

e unconfigure - This function is called when a hard-
ware process is terminated. It is responsible for un-
configuring the FPGA.

e reserve_hwr - This function is called to identify an
available hardware region that will execute the current
hardware process.

e release_hwr - This function is called to release a hard-
ware region, making it available for future use.

e get buffer - This function returns a pointer to a buffer
that will be used for data transfer.

e put_buffer - This function will Deallocate the data
buffer obtained in get_buffer.

e send_buffer - This function initiates a transfer of data
to the FPGA.

=

NetFPGA E —~_ 1GE
PCI
x86 | 1GE
CPU < > CPCI User E i
FPGA E —~_ 1GE
| RAM | E —~_ 1GE

Figure 1: NetFPGA schematic

e recv_buffer - This function initiates a transfer of data
from the FPGA.

We have ported the BORPH kernel to the NetFPGA[3]
platform, based on the latest Linux 2.6 kernel. The kernel
runs on the host system CPU and all communications be-
tween the kernel and the single user FPGA on the NetFPGA
card are achieved over the PCI bus (Figure 1). The NetF-
PGA is viewed as a single HWR in the kernel, and executing
a BOF file simply involves the automatic configuration of the
NetFPGA hardware region by the kernel.

On system start-up, the PCI interface is initialized by the
BORHP kernel, which maps the CPCI device into system
memory and creates the network devices. The CPCI is then
re-programmed with gateware that exposes the networking
devices and FPGA via the PCI bus.

The platform-specific communication functions within the
kernel are then able to read and write to the NetFPGA
hardware region over the PCI bus via the memory-mapped
locations using DMA. Configuration is performed (in the
configure function) by setting the relevant CPCI registers
and writing the configuration gateware to it, which it then
uses to program the FPGA.

Communication through the IOREG interface is handled
by accessing the memory-mapped FPGA locations in the
send buffer and recv_buffer functions.

5. INTEGRATION WITH THE NETFPGA EN-
VIRONMENT

The NetFPGA kernel driver code has been integrated
into the corresponding BORPH kernel functions mentioned
above. Access to the NetFPGA via DMA works as in the
kernel device driver, and performance will be comparable.
The NetFPGA projects have been converted to use the IOREG
system through file 1/0, removing the need for memory
mapped register access.

6. TOOL FLOW INTEGRATION

6.1 NetFPGA register file system

The NetFPGA register file system uses an XML file to
specify the registers provided by modules that are included
in a project. The register generation tool (nf2_register_gen.pl),
provided with the NetFPGA software distribution, reads the
project description and relevant modules, and performs the
required register and memory allocation. The output con-
sists of a set of files with interfaces available for Verilog, C
and Perl.

For use with BORPH, this tool has been modified to out-
put an additional file, consisting of a symbol table describ-
ing the register memory locations and sizes. This file is then

used, together with the FPGA bitstream, as input to a util-
ity (mkbof) that will generate a corresponding BOF binary
executable file.

6.2 Developing software for BORPH

BORPH enables developers and users to easily create soft-
ware that communicates with the available reconfigurable
regions. The hardware/software interface is abstracted, and
exposed by the kernel via the file system. This allows soft-
ware to be created in any language that supports file I/0O,
as well as make use of standard binary utilities (such as the
Linux cat command).

As an example of this advantage, we take the GUI of the
SCONE router included with the NetFPGA package, which
is written in Java. Currently this implementation requires a
native interface wrapper to a compiled C library in order to
communicate with the NetFPGA via the memory-mapped
registers. Within the BORPH environment, the Java ap-
plication only has to read or write from the corresponding
file to achieve this communication, eliminating the need for
low level memory-mapped access via the compiled library
module.

Software applications need to be aware of the Process 1D
(PID) of the running hardware process in order to access the
correct directory in the /proc filesystem for communication
with the FPGA. If the software component is included as
part of the BOF file, the software will simply use its own
PID. Otherwise, standalone software can be passed the PID,
or the full file path, via a command line argument.

7. EXAMPLE: REFERENCE NIC AND SCONE
ROUTER IN BORPH

The Reference NIC project included with the NetFPGA
software distribution is used to demonstrate the process of
creating and running NetFPGA gateware with the BORPH
operating system. The corresponding commands and out-
put are illustrated in Figure 2, and Figure 3. This project
makes use of a standalone hardware process model. The
SCONE router project has also been modified for BORPH,
with the software and hardware components unified in a sin-
gle process.

7.1 Generating the BOF file

The first step is the generation of the register information
from the project XML file using the modified nf2_register_gen.pl
script. This script would be automatically executed during
synthesis/simulation of the project, or can be directly exe-
cuted to regenerate the register memory map, as in this case
(Figure 2). The resulting symbol file (reference nic.symtab)
and gateware bitstream (reference nic.bit) are passed to
mkbof, to produce the binary executable (reference nic.bof).

For the SCONE project, the Makefile has been modified to
produce the BOF file, using the compiled SCONE software
and the reference router bitstream. The SCONE software
has been modified to use the IOREG interface via file 10
instead of memory-mapped register access.

7.2 Executing the BOF file

Running the design in BORPH can be done via executing
the binary file on the command line, which will create the
hardware process. In this example of the Reference NIC, the
hardware is run as a standalone background process, so we

can further read and write to the exposed device registers via
the IOREG interface. The last command in Figure 3 shows
a read from the register representing the number of packets
received over the first network interface in the Reference
NIC design, returning a value of 2.

For the SCONE example, the SCONE software is included
in the BOF file. Running this file results in the configura-
tion of the FPGA, and execution of the SCONE software

component.

8. CONCLUSION

BORPH extends the familiar UNIX semantics to reconfig-
urable computers, providing a unified and well known inter-
face to using and running hardware designs. This operating
system has been ported to the NetFPGA platform, and the
NetFPGA development tool flow has been extended to take
advantage of this model, allowing users and application de-
signers can to benefit from its advantages.

9. REFERENCES

[1] David Andrews, Ron Sass, Erik Anderson, Jason
Agron, Wesley Peck, Jim Stevens, Fabrice Baijot, and
Ed Komp. Achieving Programming Model Abstractions
for Reconfigurable Computing. IEEE Transactions on
Very Large Scale Integration (VLSI) Systems,
16(1):34-44, January 2008.

[2] B.a. Levine and H.H. Schmit. Efficient application

representation for HASTE: Hybrid Architectures with a

Single, Transformable Executable. 11th Annual IEEE

Symposium on Field-Programmable Custom Computing

Machines, 2003. FCCM 2003., pages 101-110, 2003.

John W. Lockwood, Nick McKeown, Greg Watson,

Glen Gibb, Paul Hartke, Jad Naous, Ramanan

Raghuraman, and Jianying Luo. NetFPGA-An Open

Platform for Gigabit-Rate Network Switching and

Routing. 2007 IEEE International Conference on

Microelectronic Systems Education (MSE’07), pages

160-161, June 2007.

[4] E. Liibbers and M. Platzner. ReconOS: An RTOS

supporting hard-and software threads. In 17th

International Conference on Field Programmable Logic

and Applications (FPL), Amsterdam, Netherlands,

2007.

Hayden Kwok-Hay So, Artem Tkachenko, and Robert

Brodersen. A unified hardware/software runtime

environment for FPGA-based reconfigurable computers

using BORPH. Proceedings of the 4th international
conference on Hardware/software codesign and system

synthesis - CODES+I1SSS 06, page 259, 2006.

3

5

:bash$ nf2_register_gen.pl --project reference_nic

:bash$ mkbof -o reference_nic.bof -s reference_nic.symtab -t 4 reference_nic.bit
:bash$ 1s

reference_nic.bit

reference_nic.bof

reference_nic.symtab

WN -~

Figure 2: Generating the BOF file

1:bash$./reference_nic.bof &

[1] 9368

2:bash$ ps j

PPID PID PGID SID TTY TPGID STAT UID TIME COMMAND

1224 1226 1226 1226 pts/0 1399 Ss 1000 0:00 -bash

1226 1399 1399 1226 pts/0 1399 R+ 1000 0:00 ps j

9367 9368 9368 9368 pts/0 1399 S 1000 0:00 reference_nic.bof
3:bash$ 1ls /proc/9368/hw/ioreg

0Q_QUEUE_O_CTRL
0Q_QUEUE_O_NUM_PKT_BYTES_STORED
0Q_QUEUE_O_NUM_OVERHEAD_BYTES_STORED
0Q_QUEUE_O_NUM_PKT_BYTES_REMOVED
0Q_QUEUE_O_NUM_OVERHEAD_BYTES_REMOVED
0Q_QUEUE_O_NUM_PKTS_STORED
0Q_QUEUE_O_NUM_PKTS_DROPPED
0Q_QUEUE_O_NUM_PKTS_REMOVED
0Q_QUEUE_O_ADDR_LO
0Q_QUEUE_O_ADDR_HI
0Q_QUEUE_O_RD_ADDR
0Q_QUEUE_O_WR_ADDR
0Q_QUEUE_O_NUM_PKTS_IN_Q
0Q_QUEUE_O_MAX_PKTS_IN_Q
0Q_QUEUE_O_NUM_WORDS_IN_Q
0Q_QUEUE_O_NUM_WORDS_LEFT
0Q_QUEUE_O_FULL_THRESH
0Q_QUEUE_1_CTRL
0Q_QUEUE_1_NUM_PKT_BYTES_STORED
0Q_QUEUE_1_NUM_OVERHEAD_BYTES_STORED
0Q_QUEUE_1_NUM_PKT_BYTES_REMOVED
0Q_QUEUE_1_NUM_OVERHEAD_BYTES_REMOVED
0Q_QUEUE_1_NUM_PKTS_STORED
0Q_QUEUE_1_NUM_PKTS_DROPPED

4:bash$ cat /proc/9368/hw/ioreg/0Q_QUEUE_O_NUM_PKTS_STORED
2

Figure 3: Executing the BOF file

