<table>
<thead>
<tr>
<th>Title</th>
<th>A note on on-line broadcast scheduling with deadlines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Han, X; Guo, H; Yin, D; Zhang, Y</td>
</tr>
<tr>
<td>Citation</td>
<td>Information Processing Letters, 2009, v. 109 n. 3, p. 204-207</td>
</tr>
<tr>
<td>Issued Date</td>
<td>2009</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10722/128787</td>
</tr>
<tr>
<td>Rights</td>
<td>This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.</td>
</tr>
</tbody>
</table>
A note on on-line broadcast scheduling with deadlines

Xin Hana,*, He Guob, Dawei Yina, Yong Zhanga

a Department of Computer Science, The University of Hong Kong, Hong Kong
b School of Software, Dalian University of Technology, China

\textbf{A R T I C L E I N F O}

Article history:
Received 19 March 2008
Received in revised form 4 July 2008
Communicated by C. Scheideler

Keywords:
Online algorithms
Broadcast scheduling
Competitive ratio

\textbf{A B S T R A C T}

In this paper, we study an on-line broadcast scheduling problem with deadlines, in which the requests asking for the same page can be satisfied simultaneously by broadcasting this page, and every request is associated with a release time, deadline and a required page with a unit size. The objective is to maximize the number of requests satisfied by the schedule. In this paper, we focus on an important special case where all the requests have their spans (the difference between release time and deadline) less than 2. We give an optimal online algorithm, i.e., its competitive ratio matches the lower bound of the problem.

\section{1. Introduction}

Broadcasting technologies receive a lot attention on networks that employs broadcasting to disseminate data or information. In contrast to the traditional point-to-point mode of communication, broadcasting technologies have an advantage that one broadcast by the server can simultaneously satisfy requests required from multiple clients for an identical message. In this paper, we focus a \textit{pull-based} model of broadcast scheduling problems, which is formalized as below.

\textbf{Problem description.} There is a collection of pages \(S = \{1, \ldots, n\} \), in the server. The clients send requests to ask for these pages and each request has a release time, deadline and a distinct page to ask for. The server answers requests by broadcasting pages. Note that a broadcast of a page can satisfy all the requests asking for the same page simultaneously and there is at most one page to be broadcasted at any time. During broadcasting, the preemption is allowed, but if the broadcast of a page is preempted, then in case the server choose this page to broadcast again, it must from the start point not the break point, we call this as \textit{preemption with restart}. When the request for the page that currently broadcast arrives it must be kept in the queue of unsatisfied requests.

In this paper, we consider each page has an unit size, i.e., any page can be broadcasted during one time unit, and the requests arrive over time. The scheduling algorithm used by the server has no knowledge of requests in advance and makes decisions only with information of requests having already arrived. We call this on-line broadcast scheduling. There are two models, \textit{discrete} and \textit{continuous} models. In \textit{discrete} model, the arrival times and deadlines for all the requests are integral. For the online version of \textit{discrete} model, Kim and Chwa \cite{10} gave a best possible online algorithm with competitive ratio 2. Since new requests may arrive and end any time, the \textit{continuous} model is more general, and is well-studied during these years. The main objectives are minimizing the flow time (response time) and maximizing the total throughput, i.e., the number of satisfied requests.

\textbf{Previous results.} Most of the previous works on on-line broadcast scheduling focus on minimizing the flow time \([1,4,6,8,11]\). On maximizing the throughput of on-line broadcast scheduling, Kim and Chwa \cite{10} first gave a 5.828-competitive algorithm, then Chan et al. \cite{5} showed that the competitive ratio of algorithm in \cite{10} is at most 5. Recently, Zheng et al. \cite{13} obtained a new on-line algo-
algorithm by looking forward two steps and proved that the competitive ratio is at most 4.56. The lower bound of maximizing the throughput of on-line broadcast scheduling is 4 which is from a related on-line interval scheduling problem [12]. Fung et al. [9] first studied this on-line broadcast scheduling problem with laxity (the span of a request, i.e., the difference between deadline and release time) constraints, and got some results as below. If all the requests have their laxity at least 2 then 2 a nice and simple online algorithm with competitive ratio 2.618 is given. If all the requests have their laxity less than 2, which is optimal since the lower bound of this problem is also 4.

2. Preliminaries

A request R_i is defined as a triple (p_i, r_i, d_i), where p_i is the requested page, r_i and d_i are its release time and deadline, respectively.

Definition 1 (Laxity). For a request $R = (p, r, d)$, its laxity is defined as $(d - r)$.

Definition 2 (Alive and dead). Given a request $R = (p, r, d)$, if $(d - t) \geq 1$ then we say the request is alive at time t, otherwise, dead at time t.

For a request $R = (p, r, d)$, at time t its weight $W(R, t)$ is defined as the following table, i.e., if it is alive at time t then its weight is 1 otherwise 0.

<table>
<thead>
<tr>
<th>$d - t$</th>
<th>$\left(-\infty, 1\right]$</th>
<th>$[1, +\infty)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

For a page P, its weight $W(P, t)$ is defined as the number of all requests alive at time t in a pending list, i.e.,

$$W(P, t) = \sum_{p_i = P} W(R_i, t).$$

Definition 3 (Competitive ratio). To evaluate an online algorithm, we use the standard measure called competitive ratio. For any input sequence L, let $A(L)$ be the cost by an online algorithm A and $OPT(L)$ be the cost by an optimal off-line algorithm. The competitive ratio of algorithm A is then defined as $RA = \sup_{L} \frac{OPT(L)}{A(L)}$.

3. A tight upper bound for laxity less than 2

We first give an on-line algorithm then show that its competitive ratio is 4 which matches the lower bound [12]. Our algorithm is quite similar with ones in [5,10]. The main ideas of our algorithm are: (i) whenever we decide to broadcast a page, the page with the maximal weight is selected to be served; (ii) when a new request for page p_0 arrives if to start broadcasting page p_0 can double the profit (i.e., throughput), then we abort broadcasting the current page, and put the new request into a pending list and select a page with the maximal weight and broadcast that page (this is the difference between our algorithm and the ones in [5,10]). Otherwise, continue to broadcast the current page and put the new request in the pending list.

Let P_0 be the page of a new request which arrives at the current time t, let P_c denote the currently broadcast page if it exists. Our algorithm is described (see Algorithm 1).

We first define a concept called basic chain and observe an important property related to it. Then, we divide the broadcasts by our algorithm into a set of basic chains and combine the property to get an upper bound 4 for the competitive ratio.

Definition 4 (Basic chain). For $i \leq j$, a sequence of broadcasts $(P_1, P_{i+1}, \ldots, P_j)$ is called a basic chain if pages P_i, \ldots, P_{j-1} are aborted broadcasts and page P_j is a completed broadcast, and the broadcast just before P_i is empty or a completed broadcast.

Theorem 1. For any input list of requests with laxity less than 2, the competitive ratio of our algorithm is 4.

Proof. Let the sequence of broadcasts (P_1, P_2, \ldots, P_j) be the first basic chain generated by our on-line algorithm. Let $(P_1^*, P_2^*, \ldots, P_m^*)$ be the first pages broadcast by an optimal scheduling such that the starting point of broadcasting page P_m^* is sat in the time interval for broadcasting page P_j, shown as Fig. 1 (if P_m^* does not exist, then we set P_m^* as a dummy page). Let time t_i (t_j^*) denote the starting point of broadcasting page P_i (P_j^*) for $1 \leq i \leq m$ and $1 \leq j \leq m$ respectively, also we can get another optimal schedule by broadcasting P_i^* at time t_i^* except for page P_j^* and doing nothing during $[t_i^*, t_j^* + 1)$.

Now, for $1 \leq i \leq j$, we define a set of intervals, $I_i = [t_i, t_i + 1)$, where $t_i + 1 = t_j + 1$. For an input list L, let $A(L)$ and $OPT(L)$ be the number of requests satisfied by our algorithm and an optimal schedule respectively. For $1 \leq i \leq m, \lambda_i^*$ be the number of requests which are satisfied by broadcasting page P_i^* in the optimal schedule.
Remember that the whole sequence of broadcasts \((P_1, P_2, \ldots, P_j)\) by our algorithm is a basic chain. Then we have the following observation.

Claim 1. For \(1 \leq i \leq m\), \(x_i^* \leq 2^{j+1-m}W\), where \(W = W(P, t_j)\).

Proof. Recall that \(t_i^*\) is the start time to broadcast page \(P_i^*\).
For \(1 \leq i \leq m\), we have
\[
(t_i^* - t_i) \geq 1. \tag{1}
\]
On the other hand, the whole sequence of broadcasts \((P_1, P_2, \ldots, P_j)\) by our algorithm is a basic chain, by the definition of a basic chain, for \(1 \leq i \leq j\) we have
\[
t_{i+1} - t_i \leq 1. \tag{2}
\]
Let \(I_f = [t_f, t_{f+1}]\) be the interval such that \(t_i^* \in I_f\). By (1) and (2), we have the number of broadcasts during \([t_f, t_j]\) by our algorithm is not less than the number by the optimal schedule during \([t_i^*, t_m]\), i.e.,
\[
(j - f) \geq (m - i) \Rightarrow f \leq j - (m - i) = j + i - m. \tag{3}
\]
According to algorithm WP, for any page \(P\), we have
\[
W(P, t_f) \leq 2^{j-f}W(P, t_j) = 2^{j-f}W. \tag{4}
\]
Let \(t_i^*\) be the time when the last request for page \(P_i^*\) released at or before time \(t_i^*\) in the input list. Let \(t_i^* = \max(t_f, t_i^*)\). According to algorithm WP, at time \(t_i^*\) there is a comparison between \(W(P_i^*, t_i^*)\) and \(W(P, t_f)\). Since page \(P_j\) is broadcast at time \(t_i^*\) by our algorithm, we have
\[
W(P_i^*, t_f) < 2W(P, t_f). \tag{5}
\]
By inequalities (3)-(5), we have
\[
W(P_i^*, t_i^*) \leq 2^{j+1-m}W. \tag{6}
\]
Let \(x_i^*\) be the number of requests for page \(P_i^*\) which are alive at time \(t_i^*\). By the definition of \(x_i^*\) and \(t_i^*\), we have
\[
x_i^* \leq x_i^*. \tag{7}
\]
By (7) and (6)
\[
x_i^* \leq W(P, t_i^*) \leq 2^{j+1-m}W. \tag{8}
\]
Next we are going to bound \(OPT(L)\), i.e., the throughput by the optimal schedule. Without loss of generality, broadcasts generated by our algorithm and the optimal algorithm looks like Fig. 1.

![Fig. 1. Page \(P_m^*\) starts in time interval \([t_j, t_j+1]\).](image)

First, we prove that the theorem holds if the whole broadcast generated by algorithm WP is a basic chain. Then we assume that the theorem holds for the case in which there are \(h\) basic chains. Finally, we prove that the theorem still holds for \((h+1)\) basic chains.

Step 1. There is only one basic chain in the whole broadcast generated by our algorithm. In this case, we prove \(P_m^*\) is the last page in the optimal schedule. Otherwise there is at least one request alive at time \(t_m^* + 1\), where \(t_m^* \geq t_j\). Since all the requests have laxity less than 2, the alive request must be released after \(t_j\). So, the request would have been broadcasted by our algorithm after \(t_j + 1\). But, this contradicts with the fact that the whole sequence of broadcasts \((P_1, P_2, \ldots, P_j)\) generated by our algorithm is one basic chain. So page \(P_m^*\) is the last page in the optimal schedule. By Claim 1, we have
\[
OPT(L) = \sum_{i=1}^{m} x_i^* \leq \sum_{i=1}^{m} 2^{j+1-m}W = 4W = 4A(L). \tag{9}
\]

Step 2. Assume that this theorem holds when there are \(h\) basic chains in the whole broadcast generated by our algorithm, where \(h \geq 1\). Next we consider the case in which there are \(h+1\) basic chains in our broadcast. First, we define four sublists of requests. We define \(L_2\) as the sublist of requests that will be considered by our algorithm after time \(t_j + 1\), i.e., the sublist of requests with release time at least \(t_j + 1\) or requests which are still alive at time \(t_j + 1\) \((t_m^* + 1)\) and not satisfied by our algorithm before \(t_j + 1\). In the same way, we define \(L_2^*\) as the sublist of requests that will be considered by the optimal schedule after \(t_m^* + 1\), i.e., \(L_2^*\) is the sublist of requests with release time at least \(t_m^* + 1\) or requests which are still alive at time \(t_m^* + 1\) and not satisfied by the optimal algorithm before \(t_j + 1\). Let \(L_1 = L - L_2\) and \(L_1^* = L - L_2^*\). By definitions, \(L_1\) is the sublist of requests with release time before \(t_j + 1\) and not alive at time \(t_j + 1\), i.e., requests with release time before \(t_j + 1\) and not satisfied, or requests satisfied before \(t_j + 1\). Observe that for any request \(R \in L_1\), if request \(R\) is not satisfied by algorithm WP, then request \(R\) is not alive at time \(t_j + 1\), therefore \(R\) is not alive at time \(t_m^* + 1\) too, where \(t_m^* \geq t_j\). Then \(R \notin L_2\). If request \(R\) is satisfied by algorithm WP before \(t_j + 1\), then it is not alive at time \(t_m^* + 1\) since every request has laxity less than 2. So, in both cases, we have \(R \notin L_2^*\), where \(R \in L_1\). Then
\[
L_2 \subset L - L_2 = L_1. \tag{9}
\]
To estimate the throughput by algorithm WP and the optimal algorithm, we need to modify \(L_2\) and \(L_2^*\) slightly. For every request in \(L_2\) \((\in L_2^*)\), if its release time is at least
if \(t_j + 1 \) then just copies it into \(L_2^1 \) \((L_2^*)\) else modifies its release time to \(t_j + 1 \) then copies it into \(L_2^2 \). For every request in \(L_2^* \), if its release time is at least \(t_m^* + 1 \) then just copies it into \(L_2^2 \) else modifies its release time to \(t_m^* + 1 \) then copies it into \(L_2^2 \). By the above definitions and (9), we have

\[
\text{OPT}(L_2^1) \geq \text{OPT}(L_2^*) \geq \text{OPT}(L_2^2). \tag{10}
\]

\[A(L) = A(L_1) + A(L_2^1). \tag{11} \]

\[\text{OPT}(L) = \text{OPT}(L_1^*) + \text{OPT}(L_2^2). \tag{12} \]

And by the assumption for \(h \) basic chains and Claim 1, we have

\[
4A(L_2^1) \geq \text{OPT}(L_2^1) \quad \text{and} \quad 4A(L_1) \geq \text{OPT}(L_1^*). \tag{13}
\]

So,

\[
4A(L) = 4(A(L_1) + A(L_2^1)) \quad \text{by (11)}
\]

\[
\geq \text{OPT}(L_1^*) + \text{OPT}(L_2^1) \quad \text{by (13)}
\]

\[
\geq \text{OPT}(L_1^*) + \text{OPT}(L_2^2) \quad \text{by (1)}
\]

\[
= \text{OPT}(L) \quad \text{by (12)}
\]

Hence, this theorem holds. \(\square \)

References

