
 1

  
Abstract— This paper attempts to address the issues of 

integrating wind generations with bulk power system while 
maintaining the efficiency and reliability of system operation. The 
stochastic output of wind generations increases the difficulty of 
balance total supply and load in a timely manner, and violates the 
system reliability indices such as EENS and LOLP. An efficient 
mean is to increase the operating reserve to compensate this 
additional unpredicted imbalance. To solve this problem, ideally 
the wind power, reserve and reliability cost should be concerned 
and optimized simultaneously. However the current dispatch and 
planning models with wind energy are mostly stochastic and 
solved by Monte Carlo simulation or heuristic methods. Those 
models and methods may not satisfy the requirements for 
mid-term and short term system operations, and further on-line 
applications. In this paper we propose an analytical EENS and 
LOLP indices contributed by wind power uncertainties with 
application of Q-function approximation. These reliability indices 
are considered in the co-optimization model of energy market and 
reserve market. In the model, conventional units and wind units 
are dispatched with optimal reserve and reliability costs. The 
wind power incurred system operating costs are proposed and 
formulated by the sensitivities in the optimization model. Finally 
the numerical example based on IEEE-39 system shows validity 
and effectiveness of the proposed model.            

  
Index Terms—Wind power generation, power generation 

dispatch, operating reserve, expected energy not served, loss of 
load probability, wind incurred system cost, Q-function 
approximation.   

NOMENCLATURES 
 
w     Actual output energy (MWh) of wind turbine  

fw   Forecast output energy (MWh) of wind turbine 

wε   Forecast error of wind turbine 
PW   Actual output energy (MWh) of wind farm 

fPW   Forecast output energy (MWh) of wind farm 

wfε   Forecast error of wind farm 

fη   Ratio term of maximal capacity by forecast output in (3)  

wfε
∧

  Forecast error of wind farm in % 
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ρ   Correlation coefficients matrix  

ijρ   Correlation of forecast errors between two wind farms   

WP   Actual output energy of total wind power in system 

fWP   Forecast output energy of total wind power in system  

wpε   Forecast error of total wind power in system 

wpσ   Standard deviation of total wind power forecast error 

L   Actual system load 
fL   Forecast system load 

Lε   Forecast error of system load 
D   Actual net demand  

fD   Forecast net demand  

dε   Forecast error of net demand  

dσ   Standard deviation of forecast net demand error 
LOLP   Loss of Load Probability  
EENS   Excepted Energy Not Served  
VOLL   Value of Lost load 

)(⋅Q   Q-function  
i   Index of conventional power generation unit 
j   Index of wind farm in dispatch 
n   Index of node bus 
k   Index of possible congested transmission line  

iP   Output of conventional power generation unit i  

iR   SR provided by unit i , elements of vector R  

jPW   Dispatched output of wind farm j , elements of PW  

nL   Load on bus n  

)(⋅iC   Offer energy cost function of unit i  

)(⋅iCR   Offer reserve cost function of unit i  
PTDF   Power Transfer Distribution Factors  

kIflowmax   Capacity limit of transmission line k  
S   Upper bound of system wide LOLP index  

max
iP   Capacity limit of unit i   

iRC   Ramping capability limit for reserve of unit i  
max
jWF  Maximal output of wind farm j  available for dispatch 

based on forecast output of wind turbines 
λ  Lagrangian multiplier of constraint in (21.2) 
μ  Lagrangian multipliers of constraint in (21.3) 
α  Lagrangian multipliers of constraint in (21.4) 
β  Lagrangian multipliers of constraint in (21.5) 
γ   Lagrangian multipliers of constraint in (21.6) 
pδ   Lagrangian multipliers of constraint in (21.7) 
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rδ   Lagrangian multipliers of constraint in (21.8) 
wδ   Lagrangian multipliers of constraint in (21.9) 

τ      Lagrangian multipliers of constraint in (21.10) 
 

I. INTRODUCTION 
OWADAYS the world is facing the problem of global 
warning and energy crisis. Power generation sector 

contributes more than 30% of carbon dioxide emissions in the 
world and the collective efforts are needed from the power 
sector for this global warming issue. It is a trend to use clean 
energy (renewable energy), including wind, solar, hydro tidal 
and biology etc, to replace conventional fuel generations in the 
future. U.S. department of energy (DOE) has investigated the 
feasibility of supplying 20% of national demand by wind 
energy by 2030 [1].  North American Electric Reliability 
Corporation (NERC) also published the report to review the 
challenges of integrating high levels of variable generations 
into bulk American power system [2]. European Union targets 
at reducing greenhouse gas emission by 20%, establishing a 
20% share of renewable energy and reducing the overall energy 
consumption by 20%, which is 20/20/20 target by 2030 [3]. 
Since the large penetrations of intermittent renewable energy 
sources, such as wind power, will greatly impact the 
conventional operation of power system, integrating high level 
of intermitted renewable energy is also one of the major tasks 
of the next generations of power grid, the smart grid [4]. 
  Beyond the economic and environmental benefits of 
renewable energy, the reliability of supplying all loads must be 
highlighted first. Power system reliability is concerned with 
possibility for the risk of not having sufficient generation 
capacity to serve all loads and it is measured in terms of the 
largest contingency, loss of load probability (LOLP), loss of 
load expectation (LOLE), expected energy not served (EENS), 
reserve at risk (RaR) [5], etc. Such risks are associated with the 
uncertainties in the system operation, such as largest generating 
unit outage, unforeseen increase in load, transmission line 
outage due to bad weather or the combination of these cases, 
etc. It is important to maintain the minimal amount of operating 
reserve to lower the risk at an accepted level, or say to run the 
power system at a secure manner. Obviously, the requirement 
of reserve highly depends on the uncertainties in the system, 
and the cost of such reserve resource is far from negligible.  

The variable outputs of renewable energy generations 
significantly increase the uncertainty in system operation. It is 
not an easy task for system operators to match the supply and 
demand while maintaining operation criteria such as frequency 
and voltage within limits. Intuitively the operating reserve 
requirement will increase in accordance with penetration of 
intermittent renewable energy source. Therefore some issues 
related to market operation and system dispatching are rising. 
For example, connecting a large portion of wind power to a 
system with short or expensive resources of spinning reserves 
(SR) may not be practical or economic. It is desired to 
determine the optimal SR by integrated amounts of wind power 
for the power system, associated with the most economical and 

reliable system operation manner [6]-[8].  
This paper will investigate the timely issue of scheduling 

variable generations of renewable energy in a market operation 
framework. Integrating renewable energy can impact both 
energy market and reserve market. Therefore the 
co-optimization for energy and reserve markets is used in this 
paper. The risk contributed by connecting renewable source is 
valued by predefined cost of loss function, with value of lost 
load (VOLL) and EENS. The problem is solved in the optimal 
power flow (OPF) framework, and the methodology is easy to 
convey to the traditional economic dispatch scenarios. The 
variation of total renewable energy sources in the system is 
modeled by statistical forecast error with Gaussian distribution. 
The wind power is used in the model as the type of renewable 
energy for its widely application and adequate data for 
simulation. Since the methodology is to resolve the system 
operation problem, the probabilistic solution methods, such as 
Monte Carlo simulation and heuristic methods, have the 
shortage of low computation speed. Thus we use Q-function to 
approximate the renewable energy contributed risk indices so 
that they become explicit and differentiable expressions and 
easy to solve in the optimization model. 

This paper is organized as follows. In Section II, the wind 
power contributed reliability indices LOLP and EENS, are 
formulated. These indices are also related to the level of 
spinning reserves. The approximations are derived for 
sensitivity analysis and further optimization. In Section III the 
optimization model for coordinating wind power, traditional 
generations and cost of load loss is proposed and solved. In 
Section IV numerical simulation result are given based on the 
IEEE 39-bus system to show validities of proposed model and 
methodology. Section V is the conclusions.  

II. WIND POWER CONTRIBUTED LOLP AND EENS 

A. Forecast Error of Wind Power Output 
With large penetration of wind power capacity, forecasting 

outputs of wind turbines and their error are very important for 
system operators. Wind power forecasting models provide the 
probabilistic estimation of wind turbines. The system operator 
can use the expected outputs of wind generations for generating 
units scheduling, such as unit commitment (UC) and economic 
dispatch (ED), and use the forecast errors of wind turbines to 
arrange operating reserves.  

As a common practice in the literature, the forecast error of a 
wind turbine is viewed as a statistical error. Many researches 
have shown that the standard deviation of forecast error is 
against the forecast horizon.  The actual output of a wind 
turbine can be assumed to be equal to the forecast value plus a 
statistical forecast error. 

 
wfww ε+=           (1) 

 
Now considering the wind farm with many installed wind 

turbines with similar sizes, the forecast error of hourly output of 
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each wind turbine is completely correlated for their same 
geographical locations. Thus the forecast error of whole wind 
farm can be the algebraic summation of errors of the connected 
wind turbines.  The actual output of a wind farm can be also 
formulated as the forecast value plus a statistical forecast error, 
with respect to the individual forecast parameter fw  and 

statistic error wε  in (1). 
 

wffPWPW ε+=             (2) 
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The overall forecast error of total wind power in the system 

can be modeled as Gaussian distribution. The standard 
derivation of this total forecast error needs to concern the 
variances and correlation coefficients of each wind farm. Such 
correlation of two wind farms decreases as the distance 
between them increases, which is shown in Fig.1 from [9]. 
With statistics data of wind farms in the system, a correlation 
matrix can be drawn to formulate the overall error of wind 
power. Therefore the forecast error of overall wind power in 
the system with the normal distribution can be formulated as 
follows.     

 
  NN][ ×= ijρρ             (4) 

wpfWPWP ε+=            (5) 
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Fig. 1. Correlation coefficient between forecast errors of two wind farms’ 
versus their distances 

 

B. Net Demand 
The actual system load is stochastic and it can be formulated 

as the forecast load plus a normal distributed forecast error.  
 

LfLL ε+=            (7) 
 

The net demand is defined as the system load minus the 
overall wind power output in the system and needs to be 
balance by conventional units in the system.  
 

dfwpLff DWPL
WPLD

εεε +=−+−=
−=

  (8) 

 
The net load is the sum of two stochastic values, load and 

wind power.  In a common sense, the load and wind power can 
be assumed to be uncorrelated. Such case may be also altered 
with increased distributed renewable generation deployed in 
demand side in the future. In this paper, with separated load and 
wind power, the error of forecast net demand follows Gaussian 
distribution and is given as follows. 
 

22
dd )()()( wpL εσεσεσσ +==    (9) 

   

C. Formulation of Wind Power Contributed LOLP/EENS 
Intuitively, increased penetration of wind power generation 

will deteriorate reliability index of the system. Wind power 
increases forecast error of net demand from (9) and such error 
is far from negligible. The net demand should not exceed the 
capacity of scheduled generating units Q  plus amount of total 
spinning reserve R in the system to avoid undesired load 
shedding.  

 

⎩
⎨
⎧

=−
+≥+−=

QWPL
RQWPLD dσ

       (10) 

Rd ≥⇒σ             (11) 
 
The equation (11) is the power balance equation. The LOLP 

is the cumulative probability that the net demand error dσ  is 
larger than SR. The EENS is the expect load shedding while 

dσ  is larger than SR. By synthesizing (10) and (11), the 
expressions of LOLP and EENS are given respectively in 
follows. 

 
)(Prob RLOLP d >= σ         (12) 

}{ RREEENS dd >−= σσ      (13) 
 
Since the error of the net demand is modeled as Gaussian 

distribution with standard derivation dσ , the details of (12) and 
(13) are presented in follows. 
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The error function in (16) is a complex function and can not 

be solved directly. The proper approximation is desired for the 
expression of LOLP and EENS in (14) and (15) for fast 
computation and implementation in further optimization model. 
Therefore we use Q-function to approximate the error function 
of Gaussian distribution.  
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The Q-function in (17) is the upper limit of the error function 

in (16). This explicit Q-function is a good approximation for 
the error function and with the considerable feature that the 
accuracy of approximation increases sharply while Z becomes 
large [10].  The Q-function approximation and the true value 
for the standard Gaussian distribution is compared in Table I 
and Fig. 2 as follows. 
 

TABLE I 
Comparison of the Q-function approximation and true value for standard 

normal distribution 
 

Z True value Approximation 
value Error in % 

2 0.02275 0.02466 -8.41 
3 0.001350 0.001350 0.0148 

3.3 0.0004834 0.0004769 1.35 
3.5 0.0002326 0.0002278 2.07 
3.7 0.0001078 0.0001049 2.70 
4 0.00003167 0.00003057 3.48 

4.5 0.000003398 0.000003245 4.49 
 

 
The approximation in (17) is suitable for modeling reliability 

problem of power system. Power industry always needs to 
maintain a high standard of reliability. As industry standard 
“one day in ten years”, it is a small number and in term of 
probability, it is in the order of 410− . This reliability standard 
falls outside 3.5 times of standard derivation. From the 

comparisons above, the error offset of approximation can be 
less than 510− which is relative small. Such approximation can 
fasten the computation of reliability and easy the optimization 
model while maintaining the accuracy of result. 

 
Fig. 2. Q-function approximation for standard normal distribution in lognormal 
plots 

 
With the approximation in (17), expression of EENS and 

LOLP can be explicit given as follows with parameters from (1) 
to (18). 
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The value of dσ  can be solved from (1)-(9). Thus, the LOLP 

and EENS contributed by stochastic output of wind generation 
can be computed very fast without Monte Carlo simulation. 
The expressions (19) and (20) can maintain high accuracy 
while reliability standard of system is high, such as LOLP>99%, 
which is a normal case for power system. Beside the high 
accuracy, the approximation is with good mathematical 
properties such as smooth and differential. Such properties 
greatly facilitate the optimization model in next section.     

 

III. CO-OPTIMIZATION MODEL WITH WIND FARMS, 
OPERATING RESERVE AND RELIABILITY COST  

 
With operating costs nearly zero, the wind farms are usually 

pre-dispatched before the UC/ED procedures of market 
operation for other conventional generating units for the system 
with limited wind power capacity. However the situation will 
change with large penetrations of wind power in total system 
generation capacity, such as more than 30% wind power in 
system capacity. The stochastic output of wind generation can 
greatly increase the error of net demand in (9) and violate 
LOLP in (19) and EENS in (20). To maintain the reliable 
supply for the load, the system should increase the operating 
reserve capacity by means such as procurement from ancillary 
service market and synchronizing back up generating units. 
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The wind generations can lower the cost by saving in energy 
market, and simultaneously they increase the reliability cost of 
system and cost of operating reserve.  

One alternative is to coordinate the wind generation with 
additional operating reserve to maintain reliability standard 
higher than a desired level. This equals to predetermine the 
required capacity of operating reserve with assumption that 
demand of operating reserve is inelastic. With the development 
of smart grid technologies, such as AMI and energy storage, 
demand side of power system will become more and more 
flexible. It is desired to involve reliability index (or interruption 
cost) into the model of operating reserve. However such kinds 
of operating reserve models are mostly probabilistic models 
and complicated to solve. 

For future power system with a large penetration of wind 
generations, the operator may need to analyze the wind power, 
operating reserve and reliability index in a unified framework. 
In a market structure, wind power impacts energy market and 
the operating reserve resource is procured from reserve market.    
Therefore this paper attempts to co-optimize the energy market 
including wind generations, reserve market and reliability cost 
simultaneously with proposed EENS and LOLP in (19) and 
(20). For simplicity, the interruption cost caused by 
conventional generation outage is omitted from calculation of 
reliability index.   

The model pursues an optimal solution for conventional 
power generation units, renewable energy units, operating 
reserve and reliability cost all together. Energy and reserve are 
co-optimized in a market clearing process. Reliability cost is 
measured by value of lost load (VOLL) multiple by EENS. For 
simplification, only spinning reserve is considered in this paper.  
The objective function is formulated as follows. 

 

⎭
⎬
⎫

⎩
⎨
⎧ ×+∑+∑ VOLLEENSRCRPC

i
ii

i
ii ),()()(min PWR  (21.1) 

 
The market structure is assumed to be a pool. The first term 

of objective function (21.1) is the total offered costs of 
conventional generating units. Vector PW  is consisted of the 
dispatched outputs of each wind farm. The outputs of wind 
farm are adjusted by controlling the number of connected wind 
turbines with individual forecasted output. Here the wind farm 
outputs are modeled as continuous variables for simplification. 
The neglectable operating cost of wind farm is not considered 
here but the model can allow the wind farm bids in the energy 
market by adding terms in objective function. The second term 
of objective function is the total offered cost of provided 
reserve from conventional generating units. The third term of 
objective function is the expression of reliability cost 
accounting for the cost of the risk of load loss caused by the 
stochastic output of wind generations. VOLL is defined as 
the value an average consumer puts on an unsupplied MWh of 
energy [12]. The expression of EENS has been given in (1)-(9) 
and (20).        

The objective function is subject to the following 
constraints: 

1) Energy balance constraints 
 

( λ ):  ∑=∑+∑
n

n
j

j
i

i LPWP       (21.2) 

 
The energy balance constraint ensures that the total supply 
of generating units and total forecast output of wind 
generations can meet the total demand in (21.2). The 
system loss is not considered here for simplicity. 

2) Transmission constraints 
   

( kμ ): n
n

k
nj

j

k
ji

i

k
i LPTDFPWPTDFPPTDF ⋅∑−⋅∑+⋅∑  

 kIflowmax≤  for any congested line k   (21.3) 
 

The DC power flow with Power Transfer Distribution 
Factors (PTDF) is used to represent the transmission flow 
by each individual resource’s out in this paper. 

3) Lower limit of system wide LOLP: 
 

(α ): SLOLP ≥),( PWR        (21.4) 
 

From engineering views, it is assumed that the probability 
of losing load should be under a certain level, such as 
5-10% which is much higher than the current industry 
reliability standard. This constraint can also use other 
indices, such as EENS, RaR [5] or the largest on line 
generating units etc. The constraint in (21.4) also ensures 
that approximations in (19) and (20) are accurate enough 
for the model.   

4) Capacity constraints for generation units 
 

( iβ ): max
iii PRP ≤+   for any i     (21.5) 

 
5) Ramp capacity constraints for reserve units 

 
( iγ ): ii RCR ≤   for any i       (21.6) 

 
6) Bounds of control variables   

 
( ipδ ): 0≥iP  for any i          (21.7) 
( irδ ): 0≥iR  for any i         (21.8) 
( jwδ ): 0≥jPW  for any j               (21.9) 

( jτ ): max
jj WFPW ≤  for any j            (21.10) 

 
The upper limits of wind farm output max

jWF  are the 
maximal outputs with total wind turbines available for 
dispatching based on their forecast outputs. In addition the 
reserve from offline units is not concern for simplicity.  

 
The co-optimization model has been given in above 

formulations.  With (1) to (20), all the expressions in model are 
analytical and explicit, and available to be solved by existing 
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nonlinear optimization solvers such as MINOS [11].  
Otherwise with proposed formulation and optimization 

model, the marginal system costs of wind energy can be easily 
calculated according to Karush-Kuhn-Tucker (KKT) condition. 
Such marginal cost index can help independent system operator 
(ISO) to dispatch according to the incremental costs by 
additional wind generations and allocate such costs to each 
wind farms fairly. 

IV. SIMULATION RESULTS 
In this section, we will present the case studies of proposed 

co-optimization model based on the IEEE-39 bus system. The 
optimization of simulation is solved by software platform 
GAMS. In the example, 9 thermal generators and 6 wind farms 
participate in the energy and reserve markets. Generators G3 
and G4 have no capability of spinning reserve. The forecast and 
error data of wind turbines in wind farms are collected from 
U.S. eastern interconnection. The value of VOLL is chose from 
1000 to 8000 USD/MWh in the case study. Considering 
EENS/LOLP are contributed only by wind energy, generator 
outages are not concerned here for simplicity. 

 

 
Fig. 3. IEEE-39 bus system with generating units in test  

 
The results of the co-optimization are given in Table II, 

where VOLL is 4000USD/MWh. The computation time by 
GAMS is 0.001 seconds. The objective value, total hourly cost 
in (21), is 308,188 USD. The system LOLP and EENS are 
0.0167% and 1.701 respectively.  

 
 
 
 
 

 

TABLE II  
Results of co-optimization model  

 

Units 
number 

Energy 
(MWh) 

Reserv
e 

(MWh) 

Maximal 
outputs  (MWh) 

G1 233.7 103.8 337.5 
G2 485.5 243.5 729 
G3 1170 0 1350 
G4 922.1 0 1120.5 
G5 533.8 222.2 756 
G6 623.9 253.6 877.5 
G7 490.0 195.8 685.8 
G8 618.8 234.4 853.2 
G9 661.6 215.9 877.5 

Wind farm  maxWF  
W1 303.3 

 

350 
W2 300.0 300 
W3 310.0 310 
W4 400.0 400 
W5 340.0 340 
W6 299.9 540 

 
The dispatch results of wind farms with different values of 

VOLLs are presented in Table 3. The outputs of wind farms in 
optimal solution of system decease with increased VOLL. 
While the VOLL is small, such as 1000 USD/MWh in the 
second column, wind farms W1 to W5 are arranged to output at 
their maximal levels. For these wind farms in this case, the 
marginal incurred reliability costs are lower than the marginal 
deceased costs in energy market. For W6, the system is 
inefficient to add reserve to support its increasing output. 
Otherwise it can be observed that only W1 and W6 are 
decreasing with increased VOLL.  It is because that the output 
value jW weighs slightly in the sensitivity of wind cost in (27).  
Therefore for the practical market operation, the outputs of 
wind farms may need to be re-allocated to balance the revenue 
for wind farms with various allocation and forecast tools.  

 
TABLE III 

Results of wind farms with various VOLLs  
 

maxWF  
(MWh) 

VOLL  (USD/MWh) 
1000 2500 4800 8000 

W1=350 350.0 350.0 287.1 247.1 
W2=300 300.0 300.0 300.0 300.0 
W3=310 310.0 310.0 310.0 310.0 
W4=400 400.0 400.0 400.0 400.0 
W5=340 340.0 340.0 340.0 340.0 
W6=540 454.5 334.8 268.2 226.5 

 

V. CONCLUSIONS 
This paper presents an analytical framework for the dispatch 

problem of power system with significant installed capacity of 
wind generations. The reliability indices, EENS and LOLP, 
contributed by stochastic outputs of wind generation are 
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modeled and formulated. The Q-function approximation is 
used for deriving the explicit expressions of index formulations. 
A co-optimization model of energy and reserve market with 
consideration of reliability cost by EENS is presented to study 
the optimal allocation of wind power, reserve and reliability 
cost. The proposed model is deterministic and analytical. An 
equivalent marginal wind power incurred cost is proposed and 
given in (26). Such equivalent wind costs can be used to 
allocate the incremental system cost with respect to reserve and 
reliability (interruption) cost to the dispatched wind 
generations. The simulation test based on IEEE-39 bus system 
is carried out to prove the validities of proposed model and 
formulation.  The model can be easily implemented and solved 
very fast with the now available optimization software, such as 
GAMS. The future works include elaborating the model and 
formulation with truncated distribution of wind forecast errors. 
Under the assumption that the forecast error of overall wind 
power is normal distribution, the analysis framework in this 
paper can work with considerations of altered means and 
standard deviations by truanted distribution for forecast error of 
individual wind generations.   
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