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Abstract— This is a summary of the presentation in the special
session: “Digital Signal Processing for Green Power Systems and
Delivery”. In recent years, wind power penetration level in power
systems has increased significantly. Grid integration has become
one of the major issues for wind power growth due to the
intermittent characteristics of wind power. The uncertainty of
power generation from wind farms may result in power system
stability and security problems. Accurate wind power forecasting
could reduce the uncertainty to generation scheduling to certain
extent, hence increase the wind power penetration level in the
system.

Index Terms— Wind power, Wind power forecasting, power
grids

I. INTRODUCTION

orldwide environmental concern, particularly global
warming, has prompted the repaid growth of renewable
resources, such as wind and solar, into the electric power
generation system. In North America, an additional 8,500MW
of new wind capacity has been installed during 2008 resulting
in total installed wind capacity to more than 26,200 MW[1].
Furthermore, the US has set a target of 20% of its power
generation coming from wind by 2030. As pioneers, significant
wind power resources are integrated into European power grids
and more wind power resources are planned. For instance, until
2008, wind power capacities in Denmark, Spain and Ireland are
3.1GW, 16.74GW and 1.0 GW associated with, respectively,
200%, 90.5% and 15%, maximum penetrations (wind power
capacity/minimum demand) [2]. German intends to increase a
national target for renewable energies of 30% by 2020 [3].
China also supports the endeavor for renewable resources and
requires that any investment in new fossil-fuel generator should
simultaneously put a proportional percentage into renewable
source generation [4]. This tendency implies the critical need to
integrate wind power into the current power systems, which is
mainly designed for large fossil fuel, hydro and nuclear
generating units[5].
As energy resource with significant different from traditional
ones, wind power’s integration leads to some critical challenges
from the point of view of the electricity system. The major
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challenges come from the non-dispatchable property of wind
power associated with variability and uncertainty. The variability
due to the changing wind resource For example, the total wind
power distribution in Spain from 2001 to 2005 shows that 50% of
the time below 27% and 50% of time above 27% of wind
capacity. This characteristic is definitely different from the
conventional generation units associated with a very small force
outage rate [6]. Meanwhile, uncertainty related to inability to
predict the weather and wind. Fig. 1 illustrates an example of the
performance of Numerical Weather Prediction (NWP) based
physical prediction method compared to time series method for a
horizon larger than a few hours ahead [7]. No matter what
methods are employed so far, the errors of predictions can not
be ignored.
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Fig. 1 Performance of different prediction methods

As one of the most fundamental issues of wind power
integration, the accuracy of wind power forecasting is directly
tied to the need for balancing energy and maintaining system
security. In recent years, researchers have made significant
efforts on wind power forecasting, and large numbers of
methods are established. Generally, state-of-the-art wind power
forecasting methodology is established on statistical models
[8-17], physics-based methods [18-28], or their combination[1,
5, 7, 13, 29-32]. As a topical stochastic process, more
sophisticated methods have been proposing for the purpose of
accurate wind power forecasting. The objective of this paper is
to present the development of state-of-the-art techniques in this
area.

II. WIND POWER FORECASTING

Today’s wind power forecasting tools are typically
established on a combination of physics-based and statistical
models. Generally, for a wind power forecasting tool, the



objective is to predict mainly wind speed and direction. The
typical input vectors include:

¢ Available meteorological forecasts up to a certain number

of hours or several days

¢ Historical data of wind power production and weather

variables. Depending on the time horizon of the forecast
data, from minute data to hourly data might be needed.

Usually, the results are:

¢ Minute or hourly wind power forecast of a single park,

group of parks or a larger area.

¢ Probabilistic output with confidence intervals.

Currently, physics-based models are referred to as numerical
weather prediction (NWP), which is the first step of wind
forecasting. These models based on meteorological
observations and measurements all over the globe. According
to from physical laws, a set of equations are derived. With the
data come from meteorologists, weather stations, satellites, etc,
the behavior of atmosphere of this planet can be calculated [19,
20, 33]. As an analytical method, training based on historical
data is unnecessary. In theory, under a set of conditions, an
NWP models can predict an event by super-computers, even it
never happened. However, as a typically nonlinear system, the
complexity of such a calculation requires a huge computational
cost and, thereby, cannot be accomplished within reasonable
time. Furthermore, the knowledge of the initial state of the
atmosphere is incomplete[34]. As a result, even if the equations
could be solved mathematically within limited computational
time, the solution may not be accurate.

Different from the NWP models, statistical models focus on
empirical relationships between historical data and forecast
variables. Since statistical models learn from experience, the
explicit knowledge of the underlying relationship is
unnecessary. Sophisticated method based on time series
algorithms[ 10, 11, 35-39], artificial neural networks[9, 17, 18,
20, 31, 37, 38, 40, 41], support vector machines, Kalman
Filters[42], and similar technologies have been employed. The
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values from NWP models and measured data from the wind
plant to predict the wind speed, wind-power output, and so on.
Due to the capability of “learning from experience”, the
statistical models can account for the local terrain and other
details that can’t realistically be represented in the NWP
models [1]. For the same reason, statistical models tend to
predict typical events better than rare events. The framework
for a combination wind power forecasting is illustrated in Fig.
2.

From the practical point of view, different data sources and
forecasting techniques varies significantly with the time scope
of forecasting. Generally, by exploiting recent data from wind
plant or nearby location, statistical models are typically used
for the short term forecasting, i.e., from zero to few hours.
While NWP models results tend to have large error for the very
short horizons. This is due to the fact that the data acquisition is
not instantaneous, does not cover the full areas of the NWP
models, and is too sparse to allow a perfect description of the
atmospheres initial state. The longer-term forecasts will depend
much more heavily on the NWP models. Since for long-term,
when most data is available, the model, typically set up to cover
the whole globe or at least a quarter of it, runs for another two
hours or so, which means that the newest and most accurate
results of the NWP model are based on a four hour old snapshot
of the atmosphere. The accuracy of a NWP model is typically
best after 36 hours[7]. After about six to 10 days, the skill of
NWP models is typically less than that of a climatology
forecast, which uses the long-term average by season and time
of day[1].

Typically, the accuracy of next day hour-by-hour power
forecasts using current state-of-the-art methods will have a
mean absolute error (MAE) of perhaps 10-15% of the rated
(nameplate) capacity of the wind plant. While, for the next few
hours can typically with MAEs on the order of 5% of rated
wind plant capacity. Notably, the accuracy of energy forecasts,
for example total wind energy for tomorrow, can be
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Fig. 2 Wind power forecasting by a combination method

basic approach for the utilization of statistical models is use



significantly better than the accuracy of power forecasts. These
errors tend to balance out over longer periods of time so the
accuracy of energy forecasting can be quite good. In addition,
forecasting errors are significantly reduced when aggregated on
a system wide basis. Due to the smoothing effects of
geographic dispersion, system wide forecasting errors for
multiple dispersed wind plants may be reduced by perhaps
30-50% when compared with the errors of individual wind
plants[32].

III. ERRORS WIND POWER FORECASTING
Notably, the error of wind power forecasting is unavoidable
and, therefore, in addition to the forecast values, the prediction
tool should provide a prediction of the uncertainty of this
forecast.

A. Criteria of error measurements

No prediction model forecasts perfectly. To evaluate the
performance of a prediction model, criterion or measurement is
essential. Following criteria are widely used.

(1) Mean absolute error (MAE)

1 N
MAE—F§|£,.|

where N is the number of measurements, € =R —F, is the

)

error of prediction P, relative to the target value R; at time i.
(2) Total probabilistic prediction error (TPPE)
Two TPPEs upward one (TPPE,) and downward one
(TPPE,) can be defined as follows:

TPPE, = Tmax(P—R, 0)- £,(R)-dR Q)

TPPE, = Tmax(R -P,0)- £,(R)-dR 3)

where f,(R) is the density function of prediction, R is the

target value of prediction.

TPPE, describes the expected value of prediction over real
data, and TPPE, describes the expected value of prediction
under real data.

(3) Square error (MSE)

sE-L 31, )
NG2"
This is a classical criterion, which is the similar as MAE.
(4) Error Entropy (EE)
N N
EE = %ZZG(&} -¢,,20°) )
i=1 i=l

where G is a Gaussian function with a variance given by a value

represented by 20, ¢”I is the covariance matrix.
(5) Correntropy (CC)

ﬁ: G(e,,0°T) Q)

i=]

EE = L
N
(6) Error entropy with fiducial points (EEF)
N N N
EEF = y%ZG(&,O'ZI)Hl - }’)%ZZG(S,. -¢£,,20°1) (7)
i=1 i=1 i=1
where 7y is a weighting constant between 0 and 1.
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Obviously, a good forecast is with minimal MAE, TPPE and
MSE and, furthermore, it can be proved that maximal EE, CC
and EEF imply the good performance of a forecasting tool [9].

B. Distribution of prediction errors

Most of researches of this area focus on the algorithms to
improve the accuracy of a forecast. Some criteria are selected to
evaluate the proposed method. Few researches address the
problem of the distribution of prediction error, which tied
directly with the problem of system reserve and storage system
dispatch.

The autoregressive or related time series models are widely
used in wind modeling, and large numbers of sophisticated
algorithms are designed based on these models. Usually, these
models presuppose the errors subject to the normal distribution.
For a large geographic scope, due to the statistical
compensation of combined errors, it is definitely acceptable.
However, for a small area with a short time interval, empirical
data show that the wind power distribution is fat-tailed and
nonsymmetrical[9, 11, 43]. Models based on errors with normal
distribution will not easy to model these characteristics.

To cover these essential characteristics of wind power, a
convenient option is modeled the error by the conditional
Gaussian distributions. The method proposed in [43] is to
transform well-behaved Gaussian distributions of the forecast
error of the wind speed into non-Gaussian distributions.

pdf[ P(u,), P(u,) ] = pdf[P(um)lP(up)] pdf[ P(u,) ]

) -1
=pdf(um|up).pdf(up)-z_5 Z_Z

®)

u,, u,

where u, is the predicted wind speed, u, is the measured
values of wind speed, pdf ( u, ) is the unconditional wind speed
distribution (the Weibull distribution is used in [43]),
pdf (um |up) is the conditional probability density function

calculated by

pdf(u,,u,)
pdf(u,)

where pdf(u,,u,) is the joint distribution assumed as a

pdf(u, [u,) = ©)

normal distribution.
A more straightforward wind power prediction error model
is given by a Beta distribution as follows [11, 16]:

Pt .(1- Py
B(a, )

B(a, B) = jP"“ -A-Py"'dp

pdf(P) = (10)

1n

where a and f are parameters.

Fig. 3 illustrates the probability density function of Beta
distribution with different parameters. The major reason for
selection of Beta distribution is its variable kurtosis, which
make is suitable for the fat-tailed data.
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IV. APPLICATIONS OF WIND POWER FORECASTING

The objectives of a wind power forecast depend on the
application and, therefore appropriate methods are selected. At
present, the most important application for wind power
forecasting is to evaluate energy and reserve of a power system,
an essential issue for system operation. Another application is
to provide forecasting of wind power feed-in for power system
operation and system security assessment. Due to the location
of wind farms are often far from the load center, wind power
forecasting precision will significantly affect congestion caused
by physical flows.

Generally, different technologies for wind power forecasting
are established based on the purposes of applications. From the
point of view of the power systems, following applications are
critical:

® Optimal generation schedule requires wind generation
forecasting of the whole control area. For this objective,
the time horizon will be determined by the types of
conventional generating units, as well as the trading gate
closure times. Unit commitment for systems with
significant wind penetration is one of the hot topic in this
areas [12, 35, 44-48].

To determine reserve power and energy, an accurate wind
power forecasting is critical[48-51]. To accomplish this
issue, the net forecasting errors associated with wind
power and demand should be minimized. The difficulties
lie in the relative error on wind production forecast is
usually larger than the error on the load forecast.
Furthermore, the standard deviation of this error increases
with the prediction horizon[52].

For the purpose of security management, such as grid
operation and congestion management, the forecast wind
power generation in each grid area or grid connection point
is needed. For this purpose, a forecast for small region or a
single wind farm is required.

To cover the requirements of application, generally, current
wind power forecasting tools may be classified into a couple of
groups. According to the scope of the forecasting, following
three kinds of forecasting are implemented.

¢ Single park forecasting
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e Multi-park forecasting

o Wide area forecasting
Usually, geographic dispersion increases relative forecasting
errors decrease as a consequence of statistical compensation of
combined errors.

On the other hand, according to the time horizon, other three
kinds of forecasting are used, they are

¢ Long term forecast. Normally used to estimate wind power

energy outcome during long periods of time.
o Short term forecast 1 hour to several days.
e Very short term forecast <1 hour.

V. CONCLUSION

For the purpose of establishment of green power systems and
delivery, power systems have been undergoing fundamental
changes. During this process, with significant wind power
generation penetration into power systems, sophisticated wind
power forecasting tools associated a variety of meteorology
input and their active integration into power-system operation
are critical needed. Large numbers of methods for different
applications have been developed based on various theories.
Among these models, digital signal processing theory is
playing a key role for data analysis, fitting and prediction.
Although, until now, no perfect wind power forecasting tools
are available, it is believed that associated with new technology,
dramatic improvement will be accomplished.
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