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Abstract- This is a summary of the presentation in the special 
session: "Digital Signal Processing for Green Power Systems and 
Delivery". In recent years, wind power penetration level in power 
systems has increased significantly. Grid integration has become 
one of the major issues for wind power growth due to the 
intermittent characteristics of wind power. The uncertainty of 
power generation from wind farms may result in power system 
stability and security problems. Accurate wind power forecasting 
could reduce the uncertainty to generation scheduling to certain 
extent, hence increase the wind power penetration level in the 
system. 

Index Terms- Wind power, Wind power forecasting, power 
grids 

I. INTRODUCTION 

W
orldwide environmental concern, particularly global 

wanning, has prompted the repaid growth of renewable 
resources, such as wind and solar, into the electric power 
generation system. In North America, an additional 8,500MW 
of new wind capacity has been installed during 2008 resulting 
in total installed wind capacity to more than 26,200 MW[I]. 
Furthennore, the US has set a target of 20% of its power 
generation coming from wind by 2030. As pioneers, significant 
wind power resources are integrated into European power grids 
and more wind power resources are planned. For instance, until 
2008, wind power capacities in Denmark, Spain and Ireland are 
3.lGW, 16.74GW and 1.0 GW associated with, respectively, 
200%, 90.5% and 15%, maximum penetrations (wind power 
capacity/minimum demand) [2]. Gennan intends to increase a 
national target for renewable energies of 30% by 2020 [3]. 
China also supports the endeavor for renewable resources and 
requires that any investment in new fossil-fuel generator should 
simultaneously put a proportional percentage into renewable 
source generation [4]. This tendency implies the critical need to 
integrate wind power into the current power systems, which is 
mainly designed for large fossil fuel, hydro and nuclear 
generating units[5]. 

As energy resource with significant different from traditional 
ones, wind power's integration leads to some critical challenges 

from the point of view of the electricity system. The major 
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challenges come from the non-dispatchable property of wind 
power associated with variability and uncertainty. The variability 
due to the changing wind resource For example, the total wind 

power distribution in Spain from 2001 to 2005 shows that 50% of 
the time below 27% and 50% of time above 27% of wind 
capacity. This characteristic is definitely different from the 
conventional generation units associated with a very small force 
outage rate [6]. Meanwhile, uncertainty related to inability to 
predict the weather and wind. Fig. 1 illustrates an example of the 

performance of Numerical Weather Prediction (NWP) based 

physical prediction method compared to time series method for a 
horizon larger than a few hours ahead [7]. No matter what 
methods are employed so far, the errors of predictions can not 
be ignored. 
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Fig. I Perfonnance of different prediction methods 

As one of the most fundamental issues of wind power 
integration, the accuracy of wind power forecasting is directly 
tied to the need for balancing energy and maintaining system 
security. In recent years, researchers have made significant 
efforts on wind power forecasting, and large numbers of 
methods are established. Generally, state-of-the-art wind power 
forecasting methodology is established on statistical models 
[8-17], physics-based methods [18-28], or their combination[l, 
5, 7, 13, 29-32]. As a topical stochastic process, more 
sophisticated methods have been proposing for the purpose of 
accurate wind power forecasting. The objective of this paper is 
to present the development of state-of-the-art techniques in this 
area. 

II. WIND POWER FORECASTING 

Today's wind power forecasting tools are typically 
established on a combination of physics-based and statistical 
models. Generally, for a wind power forecasting tool, the 



objective is to predict mainly wind speed and direction. The 
typical input vectors include: 

• Available meteorological forecasts up to a certain number 
of hours or several days 

• Historical data of wind power production and weather 
variables. Depending on the time horizon of the forecast 
data, from minute data to hourly data might be needed. 

Usually, the results are: 

• Minute or hourly wind power forecast of a single park, 
group of parks or a larger area. 

• Probabilistic output with confidence intervals. 
Currently, physics-based models are referred to as numerical 

weather prediction (NWP), which is the first step of wind 
forecasting. These models based on meteorological 
observations and measurements all over the globe. According 
to from physical laws, a set of equations are derived. With the 
data come from meteorologists, weather stations, satellites, etc, 
the behavior of atmosphere of this planet can be calculated [19, 
20, 33]. As an analytical method, training based on historical 
data is unnecessary. In theory, under a set of conditions, an 
NWP models can predict an event by super-computers, even it 
never happened. However, as a typically nonlinear system, the 
complexity of such a calculation requires a huge computational 
cost and, thereby, cannot be accomplished within reasonable 
time. Furthermore, the knowledge of the initial state of the 
atmosphere is incomplete[34]. As a result, even if the equations 
could be solved mathematically within limited computational 
time, the solution may not be accurate. 

Different from the NWP models, statistical models focus on 
empirical relationships between historical data and forecast 
variables. Since statistical models learn from experience, the 
explicit knowledge of the underlying relationship is 
unnecessary. Sophisticated method based on time series 
algorithms[lO, 11,35-39], artificial neural networks[9, 17, 18, 
20, 31, 37, 38, 40, 41], support vector machines, Kalman 
Filters[42], and similar technologies have been employed. The 

Physics·based atmospheric 
models 

values from NWP models and measured data from the wind 
plant to predict the wind speed, wind-power output, and so on. 
Due to the capability of "learning from experience", the 
statistical models can account for the local terrain and other 
details that can't realistically be represented in the NWP 
models [1]. For the same reason, statistical models tend to 
predict typical events better than rare events. The framework 
for a combination wind power forecasting is illustrated in Fig. 
2. 

From the practical point of view, different data sources and 
forecasting techniques varies significantly with the time scope 
of forecasting. Generally, by exploiting recent data from wind 
plant or nearby location, statistical models are typically used 
for the short term forecasting, i.e., from zero to few hours. 
While NWP models results tend to have large error for the very 
short horizons. This is due to the fact that the data acquisition is 
not instantaneous, does not cover the full areas of the NWP 
models, and is too sparse to allow a perfect description of the 
atmospheres initial state. The longer-term forecasts will depend 

much more heavily on the NWP models. Since for long-term, 

when most data is available, the model, typically set up to cover 
the whole globe or at least a quarter of it, runs for another two 
hours or so, which means that the newest and most accurate 
results of the NWP model are based on a four hour old snapshot 
of the atmosphere. The accuracy of a NWP model is typically 
best after 36 hours[7]. After about six to 10 days, the skill of 
NWP models is typically less than that of a climatology 
forecast, which uses the long-term average by season and time 
of day[l]. 

Typically, the accuracy of next day hour-by-hour power 
forecasts using current state-of-the-art methods will have a 
mean absolute error (MAE) of perhaps 10-15% of the rated 
(nameplate) capacity of the wind plant. While, for the next few 
hours can typically with MAEs on the order of 5% of rated 
wind plant capacity. Notably, the accuracy of energy forecasts, 
for example total wind energy for tomorrow, can be 
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Fig. 2 Wind power forecasting by a combination method 
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significantly better than the accuracy of power forecasts. These 
errors tend to balance out over longer periods of time so the 
accuracy of energy forecasting can be quite good. In addition, 
forecasting errors are significantly reduced when aggregated on 
a system wide basis. Due to the smoothing effects of 
geographic dispersion, system wide forecasting errors for 
multiple dispersed wind plants may be reduced by perhaps 
30-50% when compared with the errors of individual wind 
plants[32]. 

III. ERRORS WIND POWER FORECASTING 

Notably, the error of wind power forecasting is unavoidable 
and, therefore, in addition to the forecast values, the prediction 
tool should provide a prediction of the uncertainty of this 
forecast. 

A. Criteria of error measurements 

No prediction model forecasts perfectly. To evaluate the 
performance of a prediction model, criterion or measurement is 
essential. Following criteria are widely used. 

(1) Mean absolute error (MAE) 

MAE=� t lc;1 (1) 
N ;=1 

where N is the number of measurements, c; = R; -1; is the 

error of prediction Pi relative to the target value Ri at time i. 
(2) Total probabilistic prediction error (TPPE) 
Two TPPEs upward one (TPPEu) and downward one 

(TPPEd) can be defmed as follows: 
.... 

TPPEu = f max (P-R,O)· fp(R)·dR (2) 

.... 

TPPEd = f max (R-P,O)· fp(R)·dR (3) 

where fp(R) is the density function of prediction, R is the 

target value of prediction. 
TPPEu describes the expected value of prediction over real 

data, and TPPEd describes the expected value of prediction 
under real data. 

(3) Square error (MSE) 

1 N 1 
SE=-L -c/ (4) 

N ;=1 2 

This is a classical criterion, which is the similar as MAE. 
(4) Error Entropy (EE) 

1 N N 
2 EE =-2 LLG(c; -c},2a I) 

N ;=1 ;=1 
(5) 

where G is a Gaussian function with a variance given by a value 

represented by 2a2 , a2I is the covariance matrix. 

(5) Correntropy (CC) 

1 N 

EE=-LG(cpa2I) (6) 
N ;=1 

(6) Error entropy with fiducial points (EEF) 

1 N 1 N N 
EEF= r-LG(cpa2I)+(1-r)-2 LLG(c; -cj,2�I) (7) 

N ;=1 N ;=1 ;=1 
where y is a weighting constant between 0 and 1. 
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Obviously, a good forecast is with minimal MAE, TPPE and 
MSE and, furthermore, it can be proved that maximal EE, CC 
and EEF imply the good performance of a forecasting tool [9]. 

B. Distribution of prediction errors 

Most of researches of this area focus on the algorithms to 
improve the accuracy of a forecast. Some criteria are selected to 
evaluate the proposed method. Few researches address the 
problem of the distribution of prediction error, which tied 
directly with the problem of system reserve and storage system 
dispatch. 

The autoregressive or related time series models are widely 
used in wind modeling, and large numbers of sophisticated 
algorithms are designed based on these models. Usually, these 
models presuppose the errors subject to the normal distribution. 
For a large geographic scope, due to the statistical 
compensation of combined errors, it is defmitely acceptable. 
However, for a small area with a short time interval, empirical 
data show that the wind power distribution is fat-tailed and 
nonsymmetrical[9, 11,43]. Models based on errors with normal 
distribution will not easy to model these characteristics. 

To cover these essential characteristics of wind power, a 
convenient option is modeled the error by the conditional 
Gaussian distributions. The method proposed in [43] is to 
transform well-behaved Gaussian distributions of the forecast 
error of the wind speed into non-Gaussian distributions. 

pdf[P(um),P(up)] = pdf [p(um)lp(up) } pdf[P(up)] 
dP

I
-

1 _�r = pdf (umlup ) . pdf (up ) ' 
du Um 

'
"Jutp 

(8) 

where up is the predicted wind speed, um is the measured 

values of wind speed, pdf ( up ) is the unconditional wind speed 

distribution (the Weibull distribution is used in [43]), 

pdf ( um lup ) is the conditional probability density function 

calculated by 

I -_pd_f_(u....;;m;....' u...,!p;....
) pdf(um up) ­

pdf (up) 
(9) 

where pdf (um,up) is the joint distribution assumed as a 

normal distribution. 
A more straightforward wind power prediction error model 

is given by a Beta distribution as follows [11, 16]: 

pa-I . (1-pl-1 
pdf (P) = 

B(a,p) 
(10) 

1 
B(a,p)= fpa-I ' (1-pl-l dP (11) 

o 

where a and p are parameters. 
Fig. 3 illustrates the probability density function of Beta 

distribution with different parameters. The major reason for 
selection of Beta distribution is its variable kurtosis, which 
make is suitable for the fat-tailed data. 
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Fig. 3 The pdf of Beta distribution with different parameters 

IV. ApPLICATIONS OF WIND POWER FORECASTING 

The objectives of a wind power forecast depend on the 
application and, therefore appropriate methods are selected. At 
present, the most important application for wind power 
forecasting is to evaluate energy and reserve of a power system, 
an essential issue for system operation. Another application is 
to provide forecasting of wind power feed-in for power system 
operation and system security assessment. Due to the location 
of wind farms are often far from the load center, wind power 
forecasting precision will significantly affect congestion caused 
by physical flows. 

Generally, different technologies for wind power forecasting 
are established based on the purposes of applications. From the 

point of view of the power systems, following applications are 
critical: 

• Optimal generation schedule requires wind generation 
forecasting of the whole control area. For this objective, 
the time horizon will be determined by the types of 
conventional generating units, as well as the trading gate 
closure times. Unit commitment for systems with 
significant wind penetration is one of the hot topic in this 
areas [12, 35, 44-48]. 

• To determine reserve power and energy, an accurate wind 
power forecasting is critical[48-51]. To accomplish this 
issue, the net forecasting errors associated with wind 
power and demand should be minimized. The difficulties 
lie in the relative error on wind production forecast is 
usually larger than the error on the load forecast. 
Furthermore, the standard deviation of this error increases 
with the prediction horizon[52]. 

• For the purpose of security management, such as grid 
operation and congestion management, the forecast wind 
power generation in each grid area or grid connection point 
is needed. For this purpose, a forecast for small region or a 
single wind farm is required. 

To cover the requirements of application, generally, current 
wind power forecasting tools may be classified into a couple of 
groups. According to the scope of the forecasting, following 
three kinds of forecasting are implemented. 

• Single park forecasting 
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• Multi-park forecasting 

• Wide area forecasting 
Usually, geographic dispersion increases relative forecasting 
errors decrease as a consequence of statistical compensation of 
combined errors. 

On the other hand, according to the time horizon, other three 
kinds of forecasting are used, they are 

• Long term forecast. Normally used to estimate wind power 
energy outcome during long periods of time. 

• Short term forecast 1 hour to several days. 

• Very short term forecast <1 hour. 

V. CONCLUSION 

For the purpose of establishment of green power systems and 
delivery, power systems have been undergoing fundamental 
changes. During this process, with significant wind power 
generation penetration into power systems, sophisticated wind 
power forecasting tools associated a variety of meteorology 
input and their active integration into power-system operation 
are critical needed. Large numbers of methods for different 
applications have been developed based on various theories. 
Among these models, digital signal processing theory is 
playing a key role for data analysis, fitting and prediction. 
Although, until now, no perfect wind power forecasting tools 
are available, it is believed that associated with new technology, 
dramatic improvement will be accomplished. 
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